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Abstract The Transient receptor potential (TRP) family of cation channels is a

large protein family, which is mainly structurally uniform. Proteins consist typi-

cally of six transmembrane domains and mostly four subunits are necessary to form

a functional channel. Apart from this, TRP channels display a wide variety of

activation mechanisms (ligand binding, G-protein coupled receptor dependent,

physical stimuli such as temperature, pressure, etc.) and ion selectivity profiles

(from highly Ca2+ selective to non-selective for cations). They have been described

now in almost every tissue of the body, including peripheral and central neurons.

Especially in the sensory nervous system the role of several TRP channels is

already described on a detailed level. This review summarizes data that is currently

available on their role in the central nervous system. TRP channels are involved in

neurogenesis and brain development, synaptic transmission and they play a key role

in the development of several neurological diseases.

1 The Transient Receptor Potential Family of Cation Channels

The transient receptor potential (TRP) multigene superfamily encodes integral

membrane proteins that function as ion channels. Members of this family are

conserved in yeast, invertebrates and vertebrates. All members TRP channels are

subdivided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM

(melastatin), TRPP (poly-cystin), TRPML (mucolipin), TRPA (ankyrin) and TRPN

(NOMPC-like), which is only found in invertebrates. Of the 6 mammalian

subfamilies, 28 members are known, with only 27 in humans (TRPC2 is a

pseudogene; see Fig. 1) (Nilius and Owsianik 2011).
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It is clear from the current state of the literature that almost all 28 members of

mammalian TRP channel play a key role in establishing the five classical senses

described in De Anima (book II, 350 B.C.) by Aristotle, which allow humans to

perceive the outside world: sight (visus), hearing (auditus), smell (olfactus), taste

(gustus) and touch (contactus). For instance, recent studies have firmly established

the role of temperature-sensitive TRPs (thermoTRPs) as the principal molecular

thermometers in the peripheral sensory system, and provided the first molecular

insight into the mechanisms underlying the exquisite thermo- and chemosensitivity

of these channels. However, also for balance (or equilibrioreception), which is now

Fig. 1 Phylogenetic tree of the transient receptor potential family of ion channels. TRPC

(canonical), TRPM (melastatin), TRPV (vanilloid), TRPA (ankyrin), TRPP (polycistin) and

TRPML (mucolopid). TRPC2 is a pseudogene in humans. The TRP channels reported to be

expressed in brain are indicated in bold
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also considered as a sixth exteroceptive sense, and the interoceptive senses, that

provide information from within the body (e.g. proprioception informs the brain

about the relative position of muscles and joints), TRP channels play an essential

role (for an extensive review see Damann et al. 2008).
Now, it is widely recognized that TRP channels play a much wider role in the

nervous system. They are involved in many homeostatic functions and, importantly,

play an essential role in our brain much beyond their function as cell sensors (see

Fig. 2).

Fig. 2 Schematic representation of the proposed roles of TRP channels in neurons. TRP channels

are cation channels that constitute an influx pathway for Ca2+, Na+ and/or Mg2+. Most TRP

channels are Ca2+ permeable, except TRPM4 and TRPM5, which permeate exclusively monova-

lent cations. TRPM6 and TRPM7 are Mg2+ permeable. TRP channels are activated by endogenous

ligands (e.g. Endocannabinois, pregnenolonsulphate), physical and mechanical stimuli (heat, cold,

stretch) and/or through receptor-activated Gq coupled intracellular signalling pathways. Basically,

TRP channels influence Ca2+ signalling by allowing Ca2+ to enter the cell directly, or through

membrane depolarisation which provides the trigger for voltage-gated Ca2+ channels to activate,

or which limits the driving force for Ca2+ entry. A depolarisation mediated by TRP channels as

such will influence the firing of action potentials in neurons. All these principal effects will lead to

downstream signalling events mediated by other proteins (including exocytosis, gene expression,

growth cone migration, etc.). For more details, see the text
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TRPCs are highly expressed in various parts of the brain (for a complete

overview, see Table 1). They function generally as receptor-activated ion channels

and have been implicated in the formation of synapses in the developing brain,

amongst others. Among all 28 mammalian TRPs, TRPV1 is probably the best-

studied TRP channel in neurons. In the peripheral nervous system it is critically

involved in nociception via sensory C and A∂ fibres, and is activated by the ‘hot’

and pungent capsaicin and heat. This channel is also expressed in central neurons

and plays a very important ‘non-sensory role’ in brain. The expression of other

Vanilloid TRP channels has also been reported in different brain structures. TRPV2

expression has been shown in hippocampal neurons cultures and co-localized with

TRPV1 in rat cortex (Liapi and Wood 2005). TRPV4 is detected in rat and mouse

hippocampus (Gao et al. 2004; Shibasaki et al. 2007) and in substancia nigra

(Guatteo et al. 2005).
The TRPM subfamily has eight members and has been named after the first

identified member “Melastatin”. Some of these channels are expressed in the

central nervous system. TRPM2 is a Ca2+ permeable ion channel, expressed in

hippocampal pyramidal neurons (Bai and Lipski 2010; Xie et al. 2012) and in

dopaminergic neurons in substantia nigra (Freestone et al. 2009; Chung et al. 2011;
Mrejeru et al. 2011). TRPM3 is highly expressed in the dentate gyrus, the hippo-

campus and likely plays a role during the development of the cerebellum (Lee et al.
2010) (Zamudio-Bulcock et al. 2011; Zamudio-Bulcock and Valenzuela 2011).

TRPM4 and TRPM5 mRNA are also detected in the central nervous system. RT

PCR experiments showed TRPM4 and TRPM5 expression in brain extracts from

mouse and rat (Launay et al. 2002; Crowder et al. 2007; Yoo et al. 2010). TRPM5 is

highly detectable by ISH and using reporter mice in the olfactory bulb and to a

lesser extent in the thalamus (Lin et al. 2007). TRPM7 was detected on the mRNA

and protein level in cell bodies from hippocampal neurons, cerebral neurons and

cerebrospinal-fluid contacting neurons (Fonfria et al. 2006; Wei et al. 2007; Cook
et al. 2009; Coombes et al. 2011; Zhang et al. 2011a). Finally, also TRPA1, TRPP1
and TRP-ML have been reported in the brain (see Table 1).

2 Clues for the Role of TRP Channels in the Development

of the Brain and Neuronal Function

2.1 Axon Guidance, Growth Cone Tuning and TRPC’s

Axon guidance and neurite outgrowth are essential processes in the developing

brain. Establishment of functional and morphological polarity of the neuronal cell

is an important step in the formation of synapses and neuronal networks. Several

essential signalling pathways have been identified already in this process, including

Gq coupled receptors and tyrosine kinase linked receptors, but a key feature is

obviously the regulation of the intracellular Ca2+ signaling in the growth cone.
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rö
tz
in
g
er

co
m
p
le
x
(M

)

In
h
ib
it
io
n
b
y
A
T
P

V
o
lt
ag
e
d
ep
en
d
en
t

T
R
P
M
5

W
h
o
le

b
ra
in

(M
,
R
,
H
)

R
T
-P
C
R
,
re
p
o
rt
er

m
o
u
se

C
a2

+
im

p
er
m
ea
b
le

P
ro
ce
ss
in
g
o
f

se
m
io
ch
em

ic
al
si
g
n
al
s

F
o
n
fr
ia
et
al
.
(2
0
0
6
),
K
u
n
er
t-
K
ei
l

et
al
.
(2
0
0
6
),
C
ro
w
d
er

et
al
.

(2
0
0
7
),
L
in

et
al
.
(2
0
0
7
)

P
re
B
rö
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In neuronal growth cones, spatiotemporally distinct Ca2+waves can be detected

upon receptor stimulation, and in their absence normal neuronal differentiation is

prevented. Thus, these Ca2+ signals are in effect the link between external stimuli

and processes such as growth-cone protrusion, axonal pathfinding and formation

of synaptic contacts. These Ca2+ waves are largely dependent on the activity of

Ca2+permeable ion channels, and it’s clear that TRPC channels are important

candidates for a role in the developing brain (Tai et al. 2009). Indeed, Ca2+ influx
via TRPC channels appears to be a critical component of the signalling cascade

that mediates the guidance of growth cones and survival of neurons in response to

chemical cues such as neurotrophins or Netrin-1 (Wang and Poo 2005) (Talavera

et al. 2008). The role of TRPC in growth cone path finding has been reviewed

already by several groups (Bezzerides et al. 2004; Moran et al. 2004; Wang and

Poo 2005).

The first report on a TRPC channel as a regulator of neurite length and growth

cone morphology (Greka et al. 2003) showed that TRPC5 expression is inversely

related to hippocampal neurite length. Knockdown of channel activity by

overexpressing a dominant-negative mutant channel allowed significantly longer

neuritis and filopodia to form. TRPC5 knockout mice harbour long, highly

branched granule neuron dendrites with impaired dendritic claw differentiation in

the cerebellar cortex. Apparently, TRPC5 regulates dendrite morphogenesis in the

cerebellar cortex in a cell-autonomous manner. Behavioral analyses reveal that

TRPC5 knockout mice have deficits in gait and motor coordination and display

diminished fear-levels in response to aversive stimuli. The protein kinase calcium/

calmodulin-dependent kinase II beta (CaMKIIb) is a critical effector of TRPC5

function in neurons. TRPC5 forms a complex specifically with CaMKIIb, but not
the closely related kinase CaMKIIa, and thereby induces the CaMKIIb-dependent
phosphorylation of the ubiquitin ligase Cdc20-APC at the centrosome. Accord-

ingly, centrosomal CaMKIIb signaling mediates the ability of TRPC5 to regulate

dendrite morphogenesis in neurons (Puram et al. 2011). A role of TRPC5 in growth

cone regulation also seems to involve Semaphorin 3A, a member of a class of

growth-cone guidance – proteins. This protein mediates growth cone collapse,

which is reduced in hippocampal neurons from Trpc5�/� mice. This effect is due

to an inhibition of the calcium-sensitive protease calpain in wild-type neurons but

not in Trpc5�/� neurons. Calpain-1 and calpain-2 cleave and functionally activate

TRPC5. Semaphorin 3A initiates growth cone collapse via activation of calpain that

in turn potentiates TRPC5 activity. Thus, TRPC5 acts downstream of semaphorin

signaling and modulates neuronal growth cone morphology and neuron develop-

ment (Kaczmarek et al. 2012).
Other TRPC channels implicated in modulating neurite outgrowth, include

TRPC1 and TRPC6 (Li et al. 2005; Shim et al. 2009; Tai et al. 2009). Interestingly,
though these ion channels, like TRPC5, each constitute Ca2+ permeable channels,

their role in regulation of neurite outgrowth is often opposite; indicating that spatio-

temporal regulation of these channels is critical for proper regulation of neuronal

morphogenesis (Kumar et al. 2012).
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TRPC1 seems to be specifically essential for early neurogenesis. In hippocampal

development, proliferation of an adult neural progenitor cell (aNPC) is a critical

first step. TRPC1 is the most significantly upregulated TRPC channel during

neurogenesis and knockdown of TRPC1 markedly reduced the degree of aNPC

proliferation. Specifically, suppression of aNPC proliferation was found to be

associated with cell cycle arrest in G0/G1 phase (Li et al. 2012). Hence, TRPC1
plays probably an important role in hippocampal neurogenesis. Importantly, this

mechanism is discussed as a tool for improving adult hippocampal neurogenesis

and treating cognitive deficits (Li et al. 2012).
Furthermore, in a model system for neuritogenesis, i.e. nerve growth factor

(NGF)-differentiated rat pheochromocytoma 12 (PC12) cells, it was shown that

NGF markedly up-regulated TRPC1 and TRPC6 expression, but down-regulated

TRPC5 expression, while promoting neurite outgrowth. Overexpression of TRPC1

augmented, whereas TRPC5 overexpression decelerated NGF-induced neurite

outgrowth. Conversely, shRNA-mediated knockdown of TRPC1 decreased, whereas

shRNA-mediated knockdown of TRPC5 increased NGF-induced neurite extension.

TRPC6 overexpression slowed down neuritogenesis, whereas dominant negative

TRPC6 (DN-TRPC6) facilitated neurite outgrowth in NGF-differentiated PC12

cells. Using pharmacological and molecular biological approaches, it was shown

that NGF up-regulated TRPC1 and TRPC6 expression via a p75(NTR) -IKK(2) -

dependent pathway that did not involve TrkA receptor signalling in PC12 cells.

Similarly, NGF up-regulated TRPC1 and TRPC6 via an IKK(2) dependent pathway

in primary cultured hippocampal neurons. Thus, it can be suggested that a balance of

TRPC1, TRPC5, and TRPC6 expression determines neurite extension rate in neural

cells, with TRPC6 emerging as an NGF-dependent “molecular damper” maintaining

a submaximal velocity of neurite extension (Kumar et al. 2012).
In another study, the effects of TRPC channels and Stromal Interaction Molecule

(STIM)1-induced store-operated Ca2+ entry on neurite outgrowth of PC12 cells

were investigated. In general, it is now firmly established that upon depletion of

intracellular Ca2+ stores, STIM1 activates store-operated channels in the plasma

membrane (mainly members of the ORAI family). STIM1 and Orai assemble in

puncta in the ER membrane upon Ca2+ store depletion and during growth cone

turning. STIM1 knockdown perturbed growth cone turning responses to BDNF and

semaphorin-3a (Sema-3a) (Mitchell et al. 2012). It was also shown that PC12 cell

differentiation down-regulates TRPC5 expression, whereas TRPC1 expression is

retained and transfection of TRPC1 and TRPC5 increased the receptor-activated

Ca2+ influx that was in turn markedly augmented by the co-expression of STIM1.

Accordingly, overexpression of TRPC1 in PC12 cells increased neurite outgrowth

while that of TRPC5 suppressed it. Clearly, suppression of neurite outgrowth by

TRPC5 requires the channel function of TRPC5. Strikingly however, multiple lines

of evidence show that the TRPC1-induced neurite outgrowth was independent of

TRPC1-mediated Ca2+ influx. Thus, TRPC1 and TRPC5 similarly increased Ca2+

influx but only TRPC1 induced neurite outgrowth, the constitutively STIM1(D76A)

mutant that activates Ca2+ influx by TRPC and Orai channels did not increase

neurite outgrowth, and a channel-dead pore mutant of TRPC1 increased neurite
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outgrowth to the same extent as WT TRPC1. Regulation of neurite outgrowth by

TRPC1 thus seems independent of Ca2+ influx and TRPC1-promoted neurite

outgrowth depends on the surface expression of TRPC1. Therefore, the possibility

remains that TRPC1 merely acts as a scaffold at the cell surface to assemble a

signaling complex to stimulate neurite outgrowth (Heo et al. 2012).
Golli proteins, products of the myelin basic protein gene (MBP), function as a

new type of modulator of intracellular Ca2+ levels in oligodendrocyte progenitor

cells (OPCs). They affect a number of Ca2+-dependent functions, such as OPC

migration and process extension. Pharmacologically induced Ca2+ release from

intracellular stores evokes a significant extracellular Ca2+ entry after store depletion

in OPCs, and Golli promoted activation of Ca2+ influx by SOCCs in cultured OPCs

as well as in tissue slices. Strikingly, using a small interfering RNA knockdown

approach, it was shown that TRPC1 is involved in SOCC in OPCs and is modulated

by golli. Golli is physically associated with TRPC1 at OPC processes and TRPC1

expression is essential for the effects of golli on OPC proliferation. Thus, Ca2+

uptake through TRPC1 is an essential component in the mechanism of OPC

proliferation (Paez et al. 2011).
It is also know that bone morphogenic proteins (BMPs) are involved in axon

pathfinding. Indeed, a BMP7 gradient causes bidirectional turning responses from

nerve growth cones. This effect is due to activation of the kinase LIM (LIMK) and

the phosphatase Slingshot (SSH). Both enzymes regulate actin dynamics by

modulating the actin-depolymerizing factor (ADF)/cofilin-mediated actin dynam-

ics. This interaction requires the expression of TRPC1. It was suggested that

TRPC1 mediated Ca2+ signals thus support, through calcineurin phosphatase,

SSH activation and growth cone repulsion (Wen et al. 2007).
Another important player in the developing brain is Wnt5a. It has been shown

in vivo that Wnt5a gradients surround the corpus callosum and guide callosal axons

by Wnt5a induced repulsion, which also involves Ryk receptors. Application of

pharmacological inhibitors to acute brain slices revealed a signalling pathway

involving Ca2+release through IP3 receptors and calcium entry, presumably through

TRPCs. Expression of Ryk siRNA revealed that knock-down of the Ryk receptor

reduced outgrowth rates of postcrossing but not precrossing axons by 50 % and

caused axon misrouting. In the corpus callosum CaMKII inhibition reduced the

outgrowth rate of postcrossing (but not precrossing) axons and caused severe

guidance errors, which resulted from reduced CaMKII-dependent repulsion down-

stream of Wnt/calcium signalling (Hutchins et al. 2010). Wnt5a is thought to propel

cortical axons down the corticospinal tract and through the corpus callosum by

repulsive mechanisms. In cultured dissociated early postnatal cortical neurons from

hamsters, exposure to a gradient of Wnt5a is a model for studying the mechanism of

Wnt5a effects. Turning assays indicated that cortical axons were repelled away

from a point source of Wnt5a. Surprisingly, during the 1-h turning assay, axons

exposed to Wnt5a also increased their growth rates by almost 50 %. Ryk receptors

but not Frizzled (Fz) receptors were required for Wnt5a-promoted axon outgrowth,

whereas both Ryk and Fz receptors were required for repulsive growth-cone

turning. Both Ryk and Fz receptors mediated calcium signalling, which is required
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for axon outgrowth and repulsive turning. Treatments with pharmacological

inhibitors revealed that distinct Ca2+ signalling mechanisms were involved in

Wnt5a-dependent axon outgrowth versus repulsive guidance. Ca2+ release from

intracellular stores through inositol 1,4,5-trisphosphate receptors was required for

Wnt5a-induced axon outgrowth but not for repulsive turning. In contrast, Ca2+

entry through TRPCs was required for both repulsive growth-cone turning and

Wnt5a-increased axon outgrowth. Taken together, these results indicate that a

guidance cue can induce increased rates of axon outgrowth simultaneously with

repulsive guidance and may provide an understanding of how cortical axons may be

repelled down the spinal cord in vivo (Hutchins et al. 2010; Li et al. 2010).
As mentioned above, the action of many extracellular guidance cues on axon

pathfinding requires Ca2+ influx at the growth cone (Hong et al. 2000; Nishiyama

et al. 2003; Henley and Poo 2004; Henley et al. 2004), but how activation of

guidance cue receptors leads to opening of plasmalemmal ion channels remains

largely unknown. Recent findings reveal that PI(3,4,5)P3 elevation polarizes to the

growth cone’s leading edge and can serve as an early regulator during chemotactic

guidance (Henle et al. 2011). A gradient of a chemoattractant triggered rapid

asymmetric PI(3,4,5)P3 accumulation at the growth cone’s leading edge, as

detected by the translocation of a GFP-tagged binding domain of Akt, in Xenopus

laevis spinal neurons. Growth cone chemoattraction requires in this setting

PI(3,4,5)P3 production and Akt activation, and genetic perturbation of polarized

Akt activity disrupted axon pathfinding in vitro and in vivo. Furthermore, patch-

clamp recording from growth cones revealed that exogenous PI(3,4,5)P3 rapidly

activated cation currents, with properties reminiscent of TRPC channels, and

asymmetrically applied PI(3,4,5)P3 was sufficient to induce chemoattractive

growth cone turning in a manner that required downstream Ca2+ signalling.

Which TRPC channels are specifically involved remains unclear from this work.

Immunophilins, including FK506-binding proteins (FKBPs), are protein

chaperones with peptidyl-prolyl isomerase (PPIase) activity. FKBPs are most highly

expressed in the nervous system, where their physiological function remains how-

ever unclear. Interestingly, FKBP12 and FKBP52 catalyze cis/trans isomerization of

regions of the TRPC1 protein, which is implicated in controlling channel opening.

FKBP52, on the other hand, mediates stimulus-dependent TRPC1 gating through

isomerization, which is required for chemotropic turning of neuronal growth cones

to netrin-1 and myelin-associated glycoprotein and for netrin-1/DCC-dependent

midline axon guidance of commissural interneurons in the developing spinal cord.

FKBP12 mediates opening of TRPC1 is not required for growth cone responses

to netrin-1. This study demonstrates a novel physiological function of proline

isomerases in chemotropic nerve guidance through TRPC1 gating and may have

significant implication in clinical applications of immunophilin-related therapeutic

drugs (Shim et al. 2009).
TRPV1 is expressed in the neurites and in the filopodia of central neurons.

Several data indicate that it regulates growth cone morphology and growth cone

movement. Activation of TRPV1 results in growth cone retraction and formation of

varicosities along the neuritis (Goswami and Hucho 2007). In relation with this, it is
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interesting to consider that MYCBP2 is upregulated in the cerebellum and hippo-

campus, during the major synaptogenic period in these structures. MYCBP2 has

been demonstrated to influence neuronal outgrowth and synaptogenesis by

regulating the p38 MAPK-signaling pathways. Surprisingly, in the peripheral

nervous system, the loss of MYCBP2 inhibits the internalization of TRPV1.

Since both TRPV1 and MYCBP2 are involved in the neuronal growth in brain,

this effect of MYBPC2 on TRPV1 might be a part of the mechanism regulating

neuronal growth in hippocampus and cerebellum (Holland and Scholich 2011).

TRPV1 could be also involved in CNS regeneration after lesions, i.e. in the leech

CNS: exposure to TRPV1 agonists after a nerve cut enhances neurite outgrowth,

while capsazepine exposure produces this opposite effect (Meriaux et al. 2011).
Using siRNA interference to control TRPV4 expression in DRG neurons

cultures, Jang et al. (2012) showed that TRPV4 can mediate neurite outgrowth

via the regulation of neurtrophic factors. This regulation of neurite outgrowth could

also occur in brain structures where TRPV4 is largely expressed. More than this,

this study suggests than aberrant activity of TRPV4 could lead to some pathologies

due to neuritogenesis defects.

Another vanilloid TRP channel, TRPV2, is also involved in growth cone guid-

ance probably via sensing of membrane stretch during development (Shibasaki

et al. 2010).
TRPM3 is activated by pregnolone sulfate (PS), a neurosteroid which is

retrogradly released in cerebellum and in hippocampus. Interestingly, during devel-

opment, PS release potentiates and refines the glutamatergic synapses in brain.

Pharmacological experiments using a TRPM3 antagonist has demonstrated an

inhibition of the PS induced glutamatergic synapse potentiation (Zamudio-Bulcock

et al. 2011; Zamudio-Bulcock and Valenzuela 2011). Although there is no direct

evidence, since the trmp3 KOmice have not been analysed in these studies, it might

be suggested that TRPM3 acts a modulator of glutamatergic transmission in brain

and therefore might play a role in synaptic contact establishment.

2.2 A Role for TRP Channels in Synaptic Plasticity and
Behaviour

TRPC are widely expressed in the brain and play several roles in development and

normal neuronal function. Members of the TRPC family are generally coupled to

activation of Gq coupled receptors. Activation of phospholipase C leads to produc-

tion of IP3 and diacylglycerol (DAG). The latter is described as a specific activator

of TRPC3, TRPC6 and TRPC7. TRPC1 and TRPC4 are reported to be store-

operated, i.e. activated by depletion of IP3 sensitive stores, or receptor operated

and finally TRPC5 is activated by increases of intracellular [Ca2+]. Thus it can be

anticipated that TRPC channels are players when Gq coupled neuronal receptors

are stimulated. This class of receptors includes metabotropic muscarinic, glutamate
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and GABA receptors. With this in mind, it is not surprising that TRPC channels

have been implicated in processes such as spine formation and modulation of

synaptic transmission through membrane depolarization (Tai et al. 2009).
For instance, it is known that group I metabotropic glutamate receptors

(mGluRs) play an essential role in cognitive function. Group 1 mGluR activation

induced in CA1 pyramidal neurons intracellular Ca2+ waves and a biphasic electri-

cal response composed of a transient Ca2+ -dependent SK channel-mediated hyper-

polarization and a (possibly TRPC-mediated) sustained depolarization. The

generation and magnitude of the SK channel-mediated hyperpolarization depended

solely on the rise in intracellular Ca2+ concentration whereas the TRPC channel-

mediated depolarization required both a small rise in [Ca2+]i and mGluR activation.

Surprisingly in this study, TRPC-mediated current were suppressed by forskolin-

induced rises in cAMP. Thus, SK- and TRPC-mediated currents robustly modulate

pyramidal neuron excitability by decreasing and increasing their firing frequency.

Apparently, cAMP levels provide an additional level of regulation by modulating

TRPC-mediated sustained depolarization that might stabilize periods of sustained

firing (El-Hassar et al. 2011). The mGluR1 receptor is particularly important for

synaptic signalling and plasticity in the cerebellum. Unlike ionotropic glutamate

receptors that mediate rapid synaptic transmission, mGluR1s produce in cerebellar

Purkinje cells a complex postsynaptic response consisting of two distinct signal

components, namely a local dendritic calcium signal and a slow excitatory post-

synaptic potential. The basic mechanisms underlying these synaptic responses were

clarified in recent years. Dendritic calcium signal results from IP3 receptor-

mediated calcium release from internal stores. mGluR1-mediated slow excitatory

postsynaptic potentials are mediated by the transient receptor potential channel

TRPC3. This surprising finding established TRPC3 as a novel postsynaptic channel

for glutamatergic synaptic transmission (Hartmann et al. 2011).
It is a common feature that neurons sum their input by spatial and temporal

integration. Temporally, presynaptic firing rates are converted to dendritic mem-

brane depolarizations by postsynaptic receptors and ion channels. In several regions

of the brain, including higher association areas, the majority of firing rates are low.

For rates below 20 Hz, the ionotropic receptors alpha-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA) receptor and N-methyl-d-aspartate (NMDA)

receptor will not produce effective temporal summation. Interestingly, TRP

channels activated by metabotropic glutamate receptors would be more effective,

owing to their slow kinetics. Using a computational model of the TRP channel and

its intracellular activation pathway, it was suggested that synaptic input frequencies

down to 3–4 Hz and inputs consisting of as few as three to five pulses can be

effectively summed. Temporal summation characteristics of TRP channels may be

important at distal dendritic arbors, where spatial summation is limited by the

number of concurrently active synapses. It may be particularly important in regions

characterized by low and irregular rates (Petersson et al. 2011).
Finally, activation of muscarinic receptors on pyramidal cells of the cerebral

cortex induces the appearance of a slow afterdepolarization that can sustain auton-

omous spiking after a brief excitatory stimulus. This phenomenon has been
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hypothesized to allow for the transient storage of memory traces in neuronal

networks. Muscarinic receptors have the ability to induce the inward aftercurrent

underlying the slow afterdepolarization which is inhibited by expression of a Gq-11

dominant negative mutant and which is also markedly reduced in a phospholipase C

ß1 (PLCb1) knock-out mouse. These results indicate that the Gq-11/PLCß1 cascade

plays a key role in the ability of muscarinic receptors to signal the inward current.

Muscarinic afterdepolarizations might be mediated by a calcium-activated nonse-

lective cation current. Surprisingly, it was found that expression of a TRPC

dominant negative protein inhibits, and overexpression of wild-type TRPC5 or

TRPC6 enhances, the amplitude of the muscarinic receptor-induced inward

aftercurrent. Furthermore, coexpression of TRPC5 and T-type calcium channels

is sufficient to reconstitute a muscarinic receptor-activated inward current in human

embryonic kidney HEK-293 cells. These results indicate that TRPC channels might

mediate the muscarinic receptor-induced slow afterdepolarization seen in pyrami-

dal cells of the cerebral cortex and might suggest a possible role for TRPC channels

in mnemonic processes (Yan et al. 2009).
TRPC6 is reportedly localized post-synaptically in excitatory synapses and

promotes their formation via a Ca2+/calmodulin-dependent kinase IV (CaMKIV) –

cAMP-response-element binding protein (CREB)-dependent pathway. Over-

expression of TRPC6 increases the number of spines in hippocampal neurons and

TRPC6 knockdown with RNAi decreases the number. Transgenic mice overex-

pressing trpc6 showed enhancement in spine formation, and a better spatial learning

and memory inMorris water maze. These results reveal a previously unknown role of

TRPC6 in synaptic and behavioral plasticity (Zhou et al. 2008). These results were
confirmed in a second study (Tai et al. 2008). Interestingly, it was shown that the

peak expression of TRPC6 in rat hippocampus was between postnatal day 7 and 14, a

period known to be important for maximal dendritic growth. Mechanistically, these

authors suggest that Ca2+ influx through the TRPC6 channel leads to CaMKIV and

CREB. Overexpression of TRPC6 increased phosphorylation of both factors and

promoted dendritic growth in hippocampal cultures. Downregulation of TRPC6

suppressed phosphorylation of both CaMKIV and CREB and impaired dendritic

growth. Expressing a dominant-negative form of CaMKIV or CREB blocked the

TRPC6-induced dendritic growth. Furthermore, inhibition of Ca2+ influx suppressed

the TRPC6 effect on dendritic growth. In transgenic mice overexpressing Trpc6, the
phosphorylation of CaMKIV and CREB was enhanced and the dendritic growth was

also increased. Thus it seems that TRPC6 plays an important role during the

development of the central nervous system (CNS) and has a profound impact on

learning and memory through the regulation of spine formation (Tai et al. 2008).
In the cerebellum, Purkinje cell TRPC3 channels underlie the slow excitatory

postsynaptic potential (EPSP) observed following parallel fibre stimulation. TRPC3

channel opening requires stimulation of metabotropic glutamate receptor 1

(mGluR1), activation of which can also lead to the induction of long term depres-

sion (LTD), which underlies cerebellar motor learning. LTD induction requires

protein kinase C (PKC) and protein kinase G (PKG) activation, and whilst PKC

phosphorylation targets are well established, virtually nothing is known about PKG
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targets in LTD. TRPC3 channels are inhibited following phosphorylation by PKC

and PKG in expression systems, we examined whether native TRPC3 channels in

Purkinje cells are a target for PKG or PKC, thereby contributing to cerebellar LTD.

In Purkinje cells, activation of TRPC3-dependent currents is not inhibited by

conventional PKC or PKG to any significant extent and that inhibition of these

kinases does not significantly impact on TRPC3-mediated currents, TRPC3-

dependent currents may differ significantly in their regulation from those

overexpressed in expression systems (Nelson and Glitsch 2012).

TRPV1 is largely expressed in brain and plays a surprisingly important ‘non-

sensory role’ in brain. The expression of other Vanilloid TRP proteins has been

reported in different brain structures (Kauer and Gibson 2009) and role is strikingly

versatile and is involved in the general “excitability” of the cortex (Mori et al.
2012). Indeed, TRPV1 activation induces long-term depression at CA1

interneurons synapses (Gibson et al. 2008). Activation of TRPV1 by capsaicin

and capsazepin led to the depression of the communication at interneuron synapses.

This capsaicin induced LTD was absent in the trpv1 KO mouse. This synaptic

depression apparently is mediated via a presynaptic activation of calcineurin, a

phosphatase known to decrease neurotransmission probably linked in DRG to

TRPV1 (Wu et al. 2005). This inhibition of the excitatory transmission via

TRPV1 activation has also been reported in the dentate granule cells. Chávez

et al. (2010) showed that this depression of the synaptic communication was due

to an internalization of the AMPA receptor in a calcineurin dependent manner.

Surprisingly, application of capsaicin also enhances the long-term potentiation

of pyramidal neurons in the CA1 of hippocampus. Bennion et al. (2011) proposed

that this modulation of synaptic plasticity by TRPV1 is mediated by its effects on

the inhibitory GABAergic system (Bennion et al. 2011). The enhancement of LTP

in CA1 neurons would be then the consequence of the depression of the synaptic

communication of the inhibitory interneurons in the CA1 region previously

reported by Gibson et al. (2008). The influence on synaptic plasticity is also

important in the Nucleus Accumbens (NAc) which plays a key role in goal-directed

behaviours and reward dependent learning and in amygdala. In NAc, as in dentate

gyrus, TRPV1 can trigger LTD via the endocytosis of the AMPA receptors.

Nevertheless, on the opposite of the modulation of the synaptic plasticity in

hippocampus, in the NAc, the endocannabinoids act post synaptically through

TRPV1 (Grueter et al. 2010). Remarkably and although the mechanism remains

unclear, capsaicin application in amygdala increases the amplitude of the LTP,

suggesting a role for TRPV1 in the modulation of synaptic plasticity in this

structure.

This TRPV1 mediated synaptic plasticity in brain might explain some properties

of Docosahexaenoic acid (DHA). DHA is known to enhance cognitive functions

(Morley and Banks 1998). DHA supplementation in primary hippocampal neuron

cultures regulates TRPV1 and TRPV2 expression in a dose dependent manner

without altering TRPV3 or TRPV4 expression. This suggests that DHA positive

effects on memory could be mediated by modulation of the endovanilloid receptors

expression.
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In accordance with this modulation of hippocampus synaptic plasticity, TRPV1

also presents a role in the memory consolidation. In vivo injection of capsazepine

disrupted memory consolidation following a strong training protocol. This might

highlight a possible synergic role of the endocannabinoid and endovanilloid system

in memory consolidation (Genro et al. 2012).
TRPV1 could also control the anxiety-like behavior through its expression in the

medial prefrontal cortex. Injection of capsaicin increases anxiogenic response in

mice whereas capsazepine injection significantly exhibits an anxiolytic effect

(Manna and Umathe 2011). This was confirmed by injections of capsazepine in

prefrontal cortex of rats (Aguiar et al. 2009). Moreover, anandamide release

has opposite effect on the anxiety behaviour: cannabinoid receptor type 1 (CB1)

activation inhibits whereas TRPV1 activation enhances anxiety-like behaviour. The

blockade of TRPV1 might be a functional tool to treat anxiety while preventing the

risks associated with the long-term use of benzodiazepines (Moreira et al. 2011).
Interestingly, another study reported that the trpv1 KO mice exhibit less stress or

anxiety than WT mice (Marsch et al. 2007).
Although there is no direct evidence for an involvement of TRPV1 in the

obsessive compulsive disorder (OCD), TRPV1 might be considered as a potential

therapeutic target in such a depression syndrome. Indeed, Umathe et al. (2012) have

reported that a TRPV1 antagonist produced a persistent inhibition of the OCD while

capsaicin or anandamide produced the opposite effect. Inhibition of TRPV1 might

be an effective tool in the treatment of OCD.

Finally however, some caution should be taken concerning the role of TRPV1 in

brain. In 2011, Cavanaugh et al. created a trpv1 reporter mouse and actually showed

that the expression of TRPV1 in brain is much more restricted than first reported.

No expression, neither functional activity of TRPV1 could be detected in hippo-

campus, amygdala or cerebellum. This study puts previous studies involving

TRPV1 in physiology of brain in a different perspective. Indeed, it should be

noted also that previous studies showing an implication of TRPV1 in hippocampus

synaptic plasticity via capsaicin application, but never recorded TRPV1 direct

activation by calcium imaging or whole cell recording. These discrepancies could

have several explanations. First, Chávez et al. (2010) and Grueter et al. (2010)
suggested the role of TRPV1 in the synaptic plasticity in response to

endocannabinoids. This endocannabinoid-induced plasticity could also be triggered

by other TRP channels. Indeed Watanabe and colleagues showed that anandamine

could activate TRPV4 via epoxyeicosatrienoic acid (Watanabe et al. 2003) and
TRPV4 is known to be expressed in hippocampus (Shibasaki et al. 2007). Another
possibility could be that TRPV1 triggers LTD via a non-conducting function

(Kaczmarek 2006). In such conditions, some non-functional alternative splicing

forms of TRPV1 could be expressed in hippocampus and respond to capsaicin

without any calcium influx. Indeed, the authors reported a TRPV1 expression

(Cavanaugh et al. 2011) in hippocampus interneurons, but did not report any

capsaicin response in calcium imaging, suggesting a eventual non functional form

of TRPV1.
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TRPM channels have also been implicated in neuronal plasticity. TRPM2 is a

Ca2+ permeable cation channel activated by oxidative stress and is involved in cell

death. However, it may be also a modulator of hippocampal synaptic plasticity.

Indeed, Olah et al. (2009) have described TRPM2 as a regulator of voltage-

dependent Ca2+ channels and the NMDA receptors via a rise in the intracellular

calcium concentration, and its depolarizing effect. The study of hippocampus slices

in a trpm2 KO context showed that the LTD is selectively impaired because of

inhibition of the kinase GSK3beta, confirming TRPM2 as a key player in hippo-

campal synaptic plasticity (Xie et al. 2012). Additionally, TRPM2 is linked to

neuronal cell death after oxidative stress induced by glutathione (GSH). GSH

inhibits TRPM2 channels through a thiol-independent mechanism, which plays

an important role in aging and neurological diseases associated with depletion of

GSH (Belrose et al. 2012).
Finally, it has been shown that TRPA1 is involved in the glycinergic neurotrans-

mission generating IPSPs in the rat medullary dorsal horn (Substantia gelatinosa)

and also as a presynaptic channel in the nucleus supraopticus regulating glutamate

release (Yokoyama et al. 2011; Cho et al. 2012).

2.3 TRP Channels as Players in Neuronal Activity

Apart from the role of TRP channels in specific processes such as memory forma-

tion and neuronal development, an ever increasing number of studies links TRPC

channels with specific neuronal receptor activity. Basically TRPC channels can

provide a Ca2+ influx pathway, which couples to intracellular functions, or TRPC

channels can support a depolarization, which would influence action potential

triggering and bursting behavior. As such, TRPC channels have been linked

with metabotropic glutamate, GABA and acetylcholine receptors (see above, and

e.g. Berg et al. 2007), serotonin 2C and leptin receptors in pro-opiomelanocortin

neurons and kisspeptin receptors in hypothalamic neurons (Qiu et al. 2011; Sohn
et al. 2011; Williams et al. 2011).

In the mammalian central nervous system, slow synaptic excitation involves the

activation of metabotropic glutamate receptors (mGluRs). TRPC3, but not TRPC1,

is needed for mGluR-dependent synaptic signaling in mouse cerebellar Purkinje

cells. TRPC3 is the most abundantly expressed TRPC subunit in Purkinje cells. In

mutant mice lacking TRPC3, both slow synaptic potentials and mGluR-mediated

inward currents are completely absent, while the synaptically mediated Ca2+ release

signals from intracellular stores are unchanged. Importantly, trpc3 knockout mice

exhibit an impaired walking behavior. Taken together, these results establish

TRPC3 as a new type of postsynaptic channel that mediates mGluR-dependent

synaptic transmission in cerebellar Purkinje cells and is crucial for motor coordina-

tion (Hartmann et al. 2008; Hartmann and Konnerth 2008).

Cholecystokinin (CCK) is one of the most abundant neuropeptides in the brain

where it interacts with two G protein-coupled receptors (CCK-1 and CCK-2).
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Activation of both CCK receptors increases the activity of phospholipase C (PLC)

resulting in increases in intracellular Ca2+ release and activation of protein kinase C

(PKC). High density of CCK receptors has been detected in the superficial layers of

the entorhinal cortex (EC). Effects of CCK on neuronal excitability of layer III

pyramidal neurons in the EC include a remarkable increase of the firing frequency

of action potentials, which are mediated via activation of CCK-2 receptors and

required the functions of G proteins and PLC. In a recent study, CCK-mediated

facilitation of neuronal excitability appeared independent of IP3 receptors and PKC,

but relying on the activation of a cationic channel to generate membrane depolari-

zation. This cationic channel shows a pharmacological profile which has been

described for TRPC channels (but albeit relatively unselective): inhibition by

2-aminoethyldiphenyl borate (2-APB) and flufenamic acid (FFA) and potentiation

by Gd3+ and 100 mM La3+. Furthermore, CCK-induced enhancement of neuronal

excitability was significantly inhibited by intracellular application of the antibody

to TRPC5 suggesting the involvement of TRPC5 channels (Wang et al. 2011).
Another interesting growth hormone whose receptor has been linked with TRPC

channels is brain-derived neurotrophic factor (BDNF) (Jia et al. 2007; Sossin and

Barker 2007). BDNF is believed to be an important regulator of striatal neuron

survival, differentiation, and plasticity. Reduction of BDNF delivery to the striatum

has been implicated in Huntington’s disease. With respect to TRP channels, an

interesting study suggested that they might contribute to intracellular signaling

pathways, which lead to short-term induction of striatal gene expression by

BDNF. Indeed, gene expression responses to BDNF can be abolished by inhibitors

of TrkB (K252a) and calcium (chelator BAPTA-AM) and the (non-selective) tran-

sient receptor potential cation channel [TRPC] antagonist SKF-96365 (Gokce et al.
2009). BDNF also induces synaptic potentiation at both neuromuscular junctions

(NMJs) and synapses of the CNS through a Ca2+ dependent pathway. Pharmacolog-

ical inhibition or morpholino-mediated knockdown of Xenopus TRPC1 (XTRPC1)

can significantly attenuate the BDNF-induced potentiation of the frequency of

spontaneous synaptic responses at the NMJ. XTRPC1 was required specifically in

postsynaptic myocytes for BDNF-induced Ca2+ elevation and full synaptic potenti-

ation at the NMJ, suggesting a previously underappreciated postsynaptic function of

Ca2+ signalling in neurotrophin-induced synaptic plasticity (McGurk et al. 2011).
Persistent neuronal activity lasting seconds to minutes has been proposed to

allow for the transient storage of memory traces in entorhinal cortex and thus could

play a major role in working memory. Nonsynaptic plateau potentials, induced by

acetylcholine, account for persistent firing in many cortical and subcortical

structures. The expression of these intrinsic properties in cortical neurons involves

the recruitment of a non-selective cation conductance of unknown origin. In layer V

of rat medial entorhinal cortex, muscarinic receptor-evoked plateau potentials and

persistent firing induced by carbachol require PLC, decrease of PI(4,5)P2, and a

permissive [Ca2+]i. Plateau potentials and persistent activity were suppressed by the

generic nonselective cation channel blockers FFA (100 mM) and 2-APB (100 mM),

as well as by the TRPC channel blocker SKF-96365 (50 mM) and are not affected by

the TRPV channel blocker ruthenium red (40 mM). The TRPC3/6/7 activator OAG
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did not induce or enhance persistent firing evoked by carbachol. Voltage clamp

recordings revealed a carbachol-activated, nonselective cationic current with a

heteromeric TRPC-like phenotype, including outward rectification and a reversal

potential around 0 mV. Moreover, plateau potentials and persistent firing were

inhibited by intracellular application of the peptide EQVTTRL that disrupts

interactions between the C-terminal domain of TRPC4/5 subunits and associated

PDZ proteins of the NHERF family and which has been reported to be important for

TRPC4/C5 channel function (Harteneck et al. 2003), suggesting that TRPC4-5

mediated currents significantly contribute persistent depolarisation of neurons and

thus controls the firing and mnemonic properties of projection neurons in the

entorhinal cortex (Zhang et al. 2011b).
As mentioned above, TRPC6 is expressed in several types of neurons, including

cerebrospinal-fluid contacting neurons (Wu et al. 2011), cortical neurons (Tu et al.
2009b), and in the substantia nigra of normal rat brain (Giampa et al. 2007).

Interestingly, Hyperforin, one of the main bioactive compounds of the medicinal

plant Hypericum perforatum (St. John’s wort), activates TRPC6 without affecting the

other TRPC channels (Tu et al. 2009a). A recent studies describes its impact on the

BDNF receptor TrkB and on adult hippocampal neurogenesis, since they appear

central to the mechanisms of action of antidepressants. Chronic hyperforin treatment

on cortical neurons in culture and on the brain of adultmice led to increased expression

of TRPC6 channels and TrkB via SKF-96365-sensitive channels controlling a down-

stream signaling cascade involving Ca2+, protein kinase A, CREB and p-CREB.

Hyperforin augmented the expression of TrkB in the cortex but not in the hippocam-

pus where neurogenesis remained unchanged (Gibon et al. 2012).
St. John’s Wort (SJW) has been used medicinally for over 5,000 years and first

gained attention as the constituent of SJW responsible for its antidepressant effects.

Since then, several of its neurobiological effects have been described, including

neurotransmitter re-uptake inhibition, the ability to increase intracellular sodium

and calcium levels, TRPC6 activation, NMDA receptor antagonism as well as

antioxidant and anti-inflammatory properties. Until recently, its pharmacological

actions outside of depression had not been investigated. Hyperforin has been shown

to have cognitive enhancing and memory facilitating properties. Importantly, it has

been shown to have neuroprotective effects against Alzheimer’s disease (AD)

neuropathology, including the ability to disassemble amyloid-beta (Ab) aggregates
in vitro, decrease astrogliosis and microglia activation, as well as improve spatial

memory in vivo (Griffith et al. 2010).
The analysis of Trpc6�/� mice clearly shows that TRPC6 activity affects

behaviour. Trpc6�/� mice showed no significant differences in anxiety in a marble

burying test, but demonstrated reduced exploration in the square open field and the

elevated star maze (Beis et al. 2011).
Using electromyography and transcranial magnetic stimulation, Mori et al.

(2012) described for the first time that some single nucleotide polymorphisms of

trpv1 in human can regulate cortical excitability probably by modulation of gluta-

mate release at synapses. In the striatum, TRPV1 regulates the release of the

excitatory messenger glutamate. Capsaicin application enhances the frequency of
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glutamate-mediated spontaneous (sEPSCs) and miniature (mEPSC) excitatory

postsynaptic currents (Musella et al. 2008, 2010). It also modulates GABA trans-

mission, an inhibitory pathway, via endocannabinoids (eCBs). The effect of capsa-

icin application both on glutamate and GABA transmission is lacking in the trpv1
KO mice.

Therefore, TRPV1 modulation offers alternative therapeutic routes in disorders

of striatal neurotransmission (Musella et al. 2008, 2010). Moreover other studies

suggest that this regulation of synapse activity might occur in several other

structures such as the pineal gland (Reuss et al. 2010).
Some brain neurons present a specific firing behaviour, called burst firing. This

spiking behaviour is characterized by a sustained firing activity. Such a burst firing

activity is involved in different brain processes like reward circuit, short-term

memory in an emotional and experience dependent learning context, respiratory

rhythms regulation. Ca2+ activated non-selective (CAN) currents are proposed to be

key players of sustained firing activity mechanisms (Rubin et al. 2009). TRPM4 and

TRPM5 are considered as the channel underlying CAN and could contribute in this

reasoning to many brain processes (Launay et al. 2002; Hofmann et al. 2003). So
far, the most investigated process of burst firing behaviour in which TRPM4 plays a

role is described in the pre-Bötzinger Complex (preBötC) neurons (Pace et al.
2007). The preBötC is involved in the respiratory rythmogenesis (Feldman and

Del Negro 2006). These neurons are characterized by an oscillating activity and by

the synchronization of their burst firing. Only 20 % of these neurons present a

pacemaker activity, meaning that most of the neurons generate inspiratory drive

potentials by evoking post-synaptic currents that depend on intrinsic membrane

properties (Del Negro et al. 2005). CAN currents have been proposed to be

responsible for amplifying glutamatergic synaptic drive by transforming the

glutamatergic synaptic inputs to membrane depolarization (Pace et al. 2007;

Mironov 2008; Mironov and Skorova 2011). Pace et al. showed that calcium influx

was able to induce some plateau potentials, and external sodium substitution and

flufenamic acid exposure attenuated those plateau potentials. They also proposed

CAN activation by glutamatergic inputs could direct (via NMDA-R calcium influx)

or indirect (via mGluR induced IP3 dependent calcium release, or AMPA-R

activation of voltage gated calcium channels). Crowder et al. (2007) detected by

RT-PCR TRPM4 and TRPM5 expression in preBötC neurons and showed that

excess of PIP2 augmented the inspiratory drive potential and the effect was

modulated by flufenamic acid (FFA) application (Crowder et al. 2007). Thus,
TRPM4 current could be activated by calcium waves in the soma and generate

inspiratory bursts by boosting glutamatergic synaptic inputs. More recently, a novel

pathway of activation of TRPM4 has been suggested in this system: the Epac/

cAMP pathway. Epac agonist application on preBötC neurons sensitized calcium

mobilization from IP3 internal calcium stores that stimulated TRPM4 and

potentiated bursts of action potentials (Mironov and Skorova 2011). It remains

unclear however, whether TRPM4 activity itself is regulated by this mechanism.

This mechanism of activation via glutamatergic synaptic inputs and the role of

TRPM4/5 in burst firing activity might be conserved also in other brain structures.
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Mrejeru et al., have described a similar mechanism in dopaminergic (DA) neurons

of substantia nigra (Mrejeru et al. 2011). Those neurons present two different

behaviours, tonic firing and bursts of action potentials. They showed by electro-

physiology that NMDA currents recruit a CAN current capable of generating a

plateau potential. This CAN current can be blocked by flufenamic acid and

9-phenanthrol application. Since mRNA expression of TRPM2 and TRPM4 has

been detected by RT-PCR (TRPM5 could not be detected), they hypothesized

TRPM4 to be the channel involved in the burst firing behavior. Although TRPM4

current has not been directly recorded in dopaminergic neurons, and the specificity

of flufenamic acid and 9-phenanthrol on brain slices has not been determined,

Mrejeru et al. provide the first evidences that TRPM channels (TRPM2 and

TRPM4) are expressed in substancia nigra neurons and could be a part of the

reward circuit by boosting NMDA currents during burst firing.

The neurons of the lateral nucleus of amygdala also display such a sustained

firing activity. The graded increase in firing is linked to a CAN current and is

blocked by flufenamic acid application (Egorov et al. 2002). The Allen Brain Atlas
shows TRPM4/5 mRNA expression in amygdala, leading to the conclusion that

either one or the two channels are involved in a burst firing activity in the lateral

nucleus and then are part of the mechanism for sustaining information about novel

items in a short term memory in a context of emotional and experience dependent

learning.

Although no direct evidence of endogenous TRPM4 or TRPM5 currents in

neurons are now available, a similar process of sustained firing activity dependent

on CAN channels exists in diverse structures such as the motoneurons of the

nucleus ambiguous, the layer II neurons of the entorhinal cortex (Egorov et al.
2002), the sensory neurons of the olfactory bulbs (Pressler and Strowbridge 2006),

indicating possibly a new role for TRPM4 and TRPM5 in firing behavior in brain

physiology. However, see also data mentioned above that imply a more prominent

role of TRPC4/C5 channels in this process (Wang et al. 2011; Zhang et al. 2011b).
In the absence of a specific pharmacology, TRP specific knockout mice or knock-

down strategies are clearly needed to clarify this issue.

Finally, an intriguing role for TRPA1 in astrocytes has been shown. Astrocytes

contribute to the formation and function of synapses and are found throughout the

brain, where they show intracellular store-mediated Ca2+ signals. Recently, using a

membrane-tethered, genetically encoded calcium indicator (Lck-GCaMP3), it was

reported that Ca2+ fluxes mediated by spontaneously open TRPA1 channels gave

rise to frequent and highly localized ‘spotty’ Ca2+ microdomains near the mem-

brane that contributed appreciably to resting Ca2+ levels in astrocytes. Work in

cultured astrocytes and in brain slices showed that inhibiting these Ca2+ signals with

a TRPA1 specific blocker, leads to decreased astrocyte resting Ca2+ concentrations,

and decreased interneuron inhibitory synapse efficacy. It was shown that influx

through TRPA1, reduces the activity of a GABA transporter in astrocytes, GAT-3,

which leads to elevated extracellular GABA levels, and reduced miniature inhibi-

tory post-synaptic currents (mIPSC’s) specifically in interneurons, but not in

pyramidal neurons. This work highlights the housekeeping role of astrocytes in
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neuronal networks, and specifically the role of intracellular Ca2+ levels and TRPA1

therein (Clarke and Attwell 2011; Shigetomi et al. 2012).

3 TRP Channels Cause Neurological Diseases

3.1 TRP Channels Could Play a Role in Disease Mechanisms

Considering their function as Ca2+ influx channels, and considering the critical role

of intracellular [Ca2+] dynamics in neuronal differentiation, functional signalling

and survival it is clear that dysfunctional TRP channels can be expected to have a

profound effect on the neuron’s health status.

In neurons, excessive Ca2+ entry occurs via over-activation of glutamate

receptors (NMDA, AMPA, KA) or of a range of channels and transporters

(TRPM2, TRPM7, NCX, ASICs, CaV1.2, and hemichannels). Potentially toxic

cytoplasmic calcium concentrations can also occur due to release from internal

stores, either through physical damage to mitochondria and the endoplasmic retic-

ulum, or a malfunction of receptors and channels present in their membranes. Such

increases of cytoplasmic calcium concentrations can trigger a range of downstream

neurotoxic cascades, including the uncoupling mitochondrial electron transfer from

ATP synthesis, and the activation and overstimulation of enzymes such as calpains

and other proteases, protein kinases, nitric oxide synthase (NOS), calcineurin and

endonucleases. Alterations in Ca2+ homeostasis have been suggested in the onset/

progression of neurological diseases, such as Parkinson’s, Alzheimer’s, bipolar

disorder, hereditary ataxia and Huntington’s or with neurological aspects of aging

(Amaral et al. 2007; Amaral and Pozzo-Miller 2007a, b; Adachi et al. 2008;
Poduslo et al. 2008, 2009; Roedding et al. 2009; Cucchiaroni et al. 2010; Becker
et al. 2011).

TRP channels are also important regulators of membrane potential. They will

support slow depolarization of the cell and shape burst firing patterns of neurons or

support persistent activity of neurons. In this sense it can be anticipated that gain-

of-function mutations of TRP channels will contribute to prolonged burst firing

patterns and vice versa. Disease states which are associated with this in relation to

TRP channels include ataxia and epilepsy (Adachi et al. 2008; Becker et al. 2009,
2011; Tai et al. 2009). Epilepsy is caused mainly by perturbances of the balance of

excitation and inhibition within the central system. Because TRPV1 activation

modulates activity dependent synaptic efficacy, TRPV1 blockade is now consid-

ered as a potential antiepilepsy treatment (Fu et al. 2009). Basically, all the TRPM
could be key players in epilepsy. Indeed, the balance in ion homeostasis is impor-

tant for the neuronal network activity. TRP channels could fine-tune this neuronal

activity, so any perturbance of TRP physiology might be considered as an epilep-

togenic event (Stawicki et al. 2011). An epileptic seizure is composed of recurrent

bursts of intense firing. For instance, Schiller Y (2004) recorded a Ca2+ activated
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cation (CAN) current in neocortex slices treated with bicuculline to induce seizure

(Schiller 2004). This current was unaffected by changing chloride concentrations

but was sensitive to intracellular calcium changes and was blocked by flufenamic

acid application. This CAN current is activated by calcium influx through NDMA

receptors and voltage gated calcium channels. This is the first direct evidence that

CAN current is involved in a pathological process. Indeed this current could support

sustained seizure like events (Schiller 2004). Interestingly the mechanism seems to

be similar to what has been described in the preBötC and substancia nigra neurons.

Since TRPM4 and TRPM5 have been shown to function as CAN channels, further

investigation in trpm4 and trpm5 KO mice could improve the understanding of the

pathophysiological process leading to epileptic seizure.

TRPV channels, in cooperation with the endocannabinoid system, influence

GABAergic and glutamatergic synapses and play a modulatory function on dopa-

mine transmission. Through these mechanisms TRPV and endocannabinoids have

an important influence on various neurobiological processes (e.g., control of move-

ment, motivation/reward) and, particularly, on different pathologies affecting these

processes such as basal ganglia disorders, schizophrenia (Fernandez-Ruiz et al.
2010), and drug addiction.

TRPM4 is thought to be underlying the boosting of NMDA current in DA

neurons (Mrejeru et al. 2011). Since those neurons are vulnerable to

neurodegeneration, this CAN current boost mechanism may also explain the high

sensitivity of DA neurons for excitotoxicity. In this case, TRPM4 could be consid-

ered as a potential drug target in Parkinson disease (PD). But TRPM4 is not the only

TRPM that may be involved in PD. TRPM2 current has been recorded in DA

neurons and the injection of Rotenone, used as a model of PD, induces a current that

can be specifically inhibited by TRPM2 blockers. The ROS production induced by

the rotenone injection is probably the key player in the activation of TRPM2 in this

model (Freestone et al. 2009). Moreover, there is wide agreement that oxidative

stress induced TRPM2 activation could lead to cell death. This highlights a possible

relation between TRPM2 and the neurodegenerative part of PD (Belrose et al.
2012) described. Human genetic studies in western countries also revealed that

some single nucleotides polymorphisms in trpm2 and trpm7 could be associated

with risk factors for certain form of Parkinsonian Dementia Complex (Hermosura

et al. 2005, 2008; Hermosura and Garruto 2007). Nevertheless, a Japanese study

could not find any correlation between trpm7 SNP and PD (Hara et al. 2010). This
tends to suggest that, mainly TRPM2 should be considered as a risk factor for

neurodegenerative diseases as well as a potential therapeutic target.

3.2 TRPs Channels in Brain Injury and Stroke

TRPM7 is a potential target for neuroprotection after brain injury. Suppressing the

expression of TRPM7 in hippocampal CA1 neurons causes resistance to ischemic

cell death, preserved cell function and prevented ischemia-induced deficits in
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memory (Sun et al. 2009). Depletion of intracellular Mg2+, a symptom of traumatic

brain injury and a reduction of extracellular Ca2+ are both associated with poor

neurological outcome and are both conditions which activated TRPM7 thereby

possibly increasing the Ca2+ load of neuronal cells. This leads to secondary injury

processes and to cell death following brain injury, including stroke (Cook et al.
2009) TRPM7 has been implicated in ischemic brain damage. TRPM7 gene varia-

tion might play a role in the risk of ischemic stroke (Romero et al. 2009).

3.3 TRPs, Schizophrenia and Bipolar Disorders

TRP channels play a role in the pathogenesis of schizophrenia. TRPV1, in cooper-

ation with the endocannabinoid system, influences GABAergic and glutamatergic

synapses and play a modulatory function on dopamine transmission. Through these

mechanisms, TRPV1 and endocannabinoids have an important influence on various

neurobiological processes (e.g., control of movement, motivation/reward) and,

particularly, on different pathologies affecting these processes like basal ganglia

disorders, schizophrenia, and drug addiction (Fernandez-Ruiz et al. 2010).
Natural compounds, used in traditional medicine as anti-depressants, target TRP

channels, e.g. Incensole acetate which is released by the burning of resin from the

Boswellia plant has been used for religious and cultural ceremonies for millennia.

It activates TRPV3, which is expressed in the brain and causes anxiolytic-like,

antidepressive-like behavioral effects and protects against brain ischemia

(Moussaieff et al. 2008, 2012). As mentioned above already, St. John’s Wort

has been used medicinally for over 5,000 years. Recently, Hyperforin, an anti-

depressive compound obtained from St. John’s Wort, has been identified as effec-

tive activator of TRPC6 (Leuner et al. 2007). It causes cognitive enhancing,

memory facilitating properties and has probably neuroprotective effects (Griffith

et al. 2010). TRPM2, which is highly expressed in the striatum (caudate nucleus and

putamen) is supposed to play a key role in bipolar disorders (Aita et al. 1999;
Uemura et al. 2005; Xu et al. 2006, 2009; Roedding et al. 2012). Recent case-
control studies implicate TRPM2 conferring risk for bipolar disorder (BD) and

genetic variants of TRPM2 have been identified to be coupled with BD supporting a

role for this channel in the pathogenesis of this disorder (Xu et al. 2009) (see for a
review Chahl 2007).

3.4 Lessons from KO Mice

In the absence of a clear and selective pharmacology of TRP channels, TRP

deficient mice remain the gold standard for delineating their functional role in

neurons, and their possible contribution to disease states. Another possibility is the

use of inbred mice with acquired mutations, which display a neurological
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phenotype which can be delineated to a mutation in a specific gene. An interesting

example for this approach is TRPC3.

In Trpc3�/� mice it has been shown that slow synaptic potentials, which are

associated with metabotropic glutamate receptor mediated activation of an inward

cation current are absent in cerebellar purkinje cells. This is associated with

impaired walking behavior and suggests that defects in TRPC3 could contribute to

impaired motor control and coordination also in human patients. Interestingly,

shortly thereafter a mouse line was identified from a large-scale phenotype-driven

mutagenesis, theMoonwalker mouse, which displays severe motor and coordination

defects, including impaired gait and balance. Genome sequencing revealed that

these mice have mutation in the trpc3 gene, which allegedly makes the channel

more active. Thus, a gain of function and a loss of function of the same channel leads

to similar defects in mice. Intriguingly, the gain-of-function mutant in the

Moonwalker mice is associated with increased Purkinje cell loss and altered den-

dritic development, as displayed by decreased dendritic length and arborisation.

Thus, one could unify these data by appreciating the loss of a depolarizing current in

the KOmice, which leads to defect inmGluR signaling, and realizing that the gain of

function mutant will disturb the normal Ca2+ and Na+ homeostasis at the developing

dendrites which will lead to developmental abnormalities (Trebak 2010).

Interestingly, in another mouse model of cerebellar ataxia, the staggerer mouse,

there was also a link with defective mGlu-TRPC3 signalling. Staggerer mutant

mice have a functional loss of a transcription factor, Retinoid-related Orphan

Receptor alpha (RORalpha), which is abundantly expressed in Purkinje cells

(PCs) of the cerebellum. Homozygous staggerer (sg/sg) mice show cerebellar

hypoplasia and congenital ataxia. Sg/sg mice serve as an important extreme

mouse model of the hereditary spinocerebellar ataxia type 1 (SCA1), since it has

been shown that RORalpha dysfunction is strongly correlated with SCA1 patho-

genesis. The prominent synaptic dysfunction in these mice is that sg/sg mice lack

metabotropic glutamate receptor (mGluR)-mediated slow EPSCs completely.

Western blot analysis in the sg/sg cerebellum revealed expression of mGluR1 and

TRPC3, both of which underlie mGluR-mediated slow currents in WT PCs. Immu-

nohistochemical data demonstrated marked mislocalization of mGluR1 on sg/sg

PCs. These results suggest that disruption of mGluR signalling at PF-PC synapses is

one of the major synaptic defects in sg/sg mice and may manifest itself in SCA1

pathology and cerebellar motor control in general (Mitsumura et al. 2011).

3.5 Lessons from Human Disease

Until now, only one TRP channel has been linked causally with a human neuronal

disease. Indeed, mutations in the TRPML1 gene are responsible for the develop-

ment of the devastating lysosomal storage disease disorder Mucolipidosis type IV.

Lysosomal storage diseases (LSDs) are caused by inability of cells to process the

material captured during endocytosis (Kiselyov et al. 2010, 2011).
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TRPML1, TRPML2 and TRPML3 belong to the mucolipin family of the TRP

superfamily of ion channels. The founding member of this family, TRPML1 was

cloned during the search for the genetic determinants of the lysosomal storage

disease mucolipidosis type IV (MLIV). Mucolipins are predominantly expressed

within the endocytic pathway where they appear to regulate membrane traffic and/

or degradation of lysosomal storage vesicles. The physiology of TRPML proteins

raises some of the most interesting questions of the modern cell biology. Their

traffic and localization is a multi-step process involving a system of adaptor

proteins, while their ion channel activity possibly exemplifies the rare cases of

regulation of endocytic traffic and hydrolysis by ion channels (Puertollano and

Kiselyov 2009).

Mucolipidosis type IV arises from mutations in TRPML1 (Bargal et al. 2000,

2001; Bassi et al. 2000; Slaugenhaupt 2002). The two other members, TRPML2 and

TRPML3 multimerize with TRPML1, are involved in TRPML1 distribution and

trafficking. TRPML1 functions as a Ca2+ and iron release channel in lysosomes

(Dong et al. 2010; Shen et al. 2012). The pathogenic mechanism by which loss of

TRPML1 leads to abnormal cellular storage and neuronal cell death is however still

poorly understood. Yeast two-hybrid and co-immunoprecipitation experiments

identified interactions between TRPML1 and Hsc70 as well as TRPML1 and

Hsp40. Hsc70 and Hsp40 are members of a molecular chaperone complex required

for protein transport into the lysosome during chaperone-mediated autophagy

(CMA). Fibroblasts from MLIV patients show a defect in CMA in response to

serum withdrawal. This defect in CMA was subsequently confirmed in purified

lysosomes isolated from control and MLIV fibroblasts. The amount of lysosomal-

associated membrane protein type 2A (LAMP-2A) is reduced in lysosomal

membranes of MLIV fibroblasts. As a result of decreased CMA, MLIV fibroblasts

have increased levels of oxidized proteins compared to control fibroblasts. Mecha-

nistically, TRPML1 may act as a docking site for intralysosomal Hsc70 allowing it

to more efficiently pull in substrates for CMA. It is also possible that TRPML1

channel activity may be required for CMA (Venugopal et al. 2009). More specifi-

cally, it was suggested that TRP-ML1 modulates postendocytic delivery to

lysosomes by regulating interactions between late endosomes and lysosomes

(Miedel et al. 2008).
Lysosomal lipid accumulation, defects in membrane trafficking and altered Ca2+

homoeostasis are common features in many lysosomal storage diseases. Interest-

ingly, in fibroblasts from patients with another lysosomal storage disorder, Nieman

Pick syndrome (NP), it was shown that sphingomyelins accumulate in lysosomes.

Sphingomyelins (SMs) are plasma membrane lipids that undergo sphingomyelinase

(SMase)-mediated hydrolysis in the lysosomes of normal cells. Patch-clamp

analyses revealed that TRPML1 channel activity is inhibited by SMs, but

potentiated by SMases. In NP-type C cells, increasing TRPML1’s expression or

activity was sufficient to correct the trafficking defects and reduce lysosome storage

and cholesterol accumulation. Thus, it was proposed that abnormal accumulation

of luminal lipids causes secondary lysosome storage by blocking TRPML1- and
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Ca2+-dependent lysosomal trafficking, which might be a common feature in lyso-

somal storage disorders (Shen et al. 2012).
Finally, a Drosophila model with a defective Trpml gene recapitulates the key

disease features, including abnormal intracellular accumulation of macromolecules,

motor defects and neurodegeneration. The basis for the buildup of macromolecules

was defective autophagy, which resulted in oxidative stress and impaired synaptic

transmission. Late-apoptotic cells accumulated in trpml mutant brains suggesting

diminished cell clearance. The accumulation of late apoptotic cells and motor

deficits could be rescued by expression of trpml+ in neurons, glia or hematopoietic

cells. Thus, from this model it was concluded that the neurodegeneration and motor

defects result primarily from decreased clearance of apoptotic cells, and it was

suggested that bone marrow transplantation may limit the progression of MLIV,

hematopoietic cells in humans are involved in clearance of apoptotic cells

(Venkatachalam et al. 2008).

4 Conclusion

TRP channels are relatively new membrane proteins that are involved in a plethora

of cell functions and are mainly appreciated as sensory ion channels. This review

maps TRP channels as important players in the function of our brain including the

forming of hard-wired connections in our developing brain by growth cone guid-

ance, regulation of synaptogenesis, spine forming and modulation of synaptic

plasticity. This new view on the function of TRP channels in our central nervous

system has already identified some of these channels as potential pharmaceutical

targets and has led to a new understanding of several brain diseases. However, we

have just entered a new era of neurophysiology and we anxiously await exciting

discoveries in a rapidly expanding field of brain research.
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