
4 Probing the Parity and Spin State

Classification into classes of superconductors with singlet and triplet pairing, re-
spectively, needs information on the parity and spin state of the pairing state. These
information can be accessed through measurements in a magnetic field due to the
different response of the pairs with S = 0 and S = 1, respectively, on an applied
magnetic field. In the following sections Hc2 measurements, the nuclear magnetic
resonance (NMR), and the muon spin rotation (µSR) are introduced as frequently
used probes of the parity and spin state.

4.1 Hc2 Measurements

Magnetic field can suppress superconductivity via two effects: orbital pair breaking
of the superconducting pairs in the superconducting state and Pauli limiting due to
the paramagnetism of the electron spins, which lowers the relative energy of the
normal state. Keeping this in mind, measurements of the upper critical field Hc2 can
yield information on the parity of the superconducting state. A paramagnetic limita-
tion of Hc2 arises in even parity superconductors due to the drop of the Pauli suscep-
tibility in the superconducting state χS which tends to zero as T → 0. The limitation
occurs at low temperatures when the increase in magnetic energy ∝ µ2

0µ
2
BN0H2 be-

comes larger than the energy gain in the superconducting state ∝ N0∆
2
0/2, where

N0 is the density of states per one spin projection. The superconducting state be-
comes unfavorable in a magnetic field higher than the so called paramagnetic limit
of superconductivity1 Hp given by

Hp =
∆0√

2µ0µB

, (4.1)

and the singlet state of Cooper pairs is destroyed. For the importance of Pauli lim-
iting the difference χN − χS is decisive apart from the ratio χS /χN which is known
for a given order parameter. χN is the susceptibility in the normal state. No Pauli
limiting is expected in simple triplet states with equal spin pairing as χN = χS in

1 This limit is also known as the Clogston-Chandrasekhar paramagnetic limit named after
Clogston and Chandrasekhar who first pointed out that a first-order transition to the normal
state occurs at Hp due to the pair-breaking effect of an external field on the electronic spins
[1, 2].
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28 4 Probing the Parity and Spin State

these states. In heavy-fermion systems where the orbital limit is very large due to the
large effective mass, paramagnetic limitation of Hc2 can take place [3, 4]. Therefore,
a simple Hc2 measurement already might probe the spin state of the Cooper pairs.

So far, the considerations did only apply to isotropic systems without spin-orbit
coupling. However, in systems with strong spin-orbit coupling the spin part of the
order parameter cannot orientate itself freely with respect to the orbital part and χS

can become smaller than χN for some orientations of the crystal relative to the mag-
netic field. Therefore, anisotropic Pauli limiting can occur even in a triplet super-
conductor. The analysis of Hc2 curves is further complicated by impurity spin-orbit
scattering which reduces the effect of paramagnetic limiting [5, 6, 7]. Spin-orbit
scattering leads to a finite susceptibility in conventional superconductors, and thus
increases the Clogston limit Hp. In conclusion, the occurrence respectively the ab-
sence of Pauli limiting in itself does not allow definite conclusions on the nature of
the superconducting state.

4.2 Nuclear Magnetic Resonance and Knight Shift

The basic idea of nuclear magnetic resonance (NMR) is that radiofrequency signals
can be used to measure resonant properties of nuclei in magnetic fields. In an ex-
ternal magnetic field the magnetic dipole moments of nuclei are partially aligned,
and the magnetization can be changed by irradiating with a radiofrequency. The
important concepts of nuclear magnetization and resonance absorption are widely
discussed in a number of textbooks [8] and therefore, will not be repeated here.
However, two items will be focused on in the following, namely the Knight shift
K = ∆ω/ω which is the shift ∆ω of the nuclear resonance at ω by polarized con-
duction electrons and the nuclear relaxation rate 1/T1 which accounts for the spin-
lattice relaxation process in metals due to spin-flip scattering of conduction elec-
trons by the nucleus.

The interaction responsible for both processes is the Fermi contact interaction
given by

Hhf = −2
3
µ0γNγe|φ(0)|2(S · I) (4.2)

where µ0 = 4π ·10−7 Vs/Am is the vacuum permeability, γN and γe are the gyromag-
netic ratio of the nucleus and electron, respectively, and |φ(0)|2 is the density of the
electrons at the nucleus normalized to one electron per unit volume. The diagonal
terms contribute to the Knight shift, but the nondiagonal part is responsible for the
spin relaxation.

It follows that the Knight shift for s-electrons is given by

K =
∆ω

ω
=

2
3
χPauli

|ψ(0)|2
N

(4.3)

which is equal (apart from a factor 2/3) to the Pauli susceptibility χPauli multiplied
by an amplification factor |ψ(0)|2/N, which gives the ratio of the electron density at
the nucleus to the average electron density.
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For the relaxation rate 1/T1 one finds

1/T1 =
4π
9
µ2

0γ
2
Nγ

2
e�

3|φ(0)|4D(EF)2kBT (4.4)

with D(EF) the density of states at the Fermi level and kB the Boltzmann constant.
Both items are substantially influenced if a metal becomes superconducting. In

an s-wave superconductor the spin susceptibility χspin drops to zero, while in equal-
spin-pairing states the spin susceptibility is unchanged in all field directions as long
as the order parameter d(k) is free to rotate2. This is the case if the energy of the
spin-orbit coupling is weaker than that of the applied magnetic field. If the spin-
orbit coupling is strong enough to lock the order parameter to the crystal lattice,
only χspin perpendicular to d is unchanged, whereas χspin parallel to d approaches
zero for T → 0. Such a dependence of χspin on the direction and magnitude of
the applied magnetic field was actually observed in the spin-triplet superconductors
UPt3 [12] and Sr2RuO4 [13] (see Sects. 9.1 and 10.1).

The relaxation process involves flipping of spins so that the relevant matrix ele-
ment for nuclear-spin relaxation by interaction with quasiparticles have the case II
coherence factors [14]. This corresponds to constructive interference in the relevant
low-energy scattering process and causes the relaxation rate 1/T1 to rise above the
normal value upon cooling through Tc before it exponentially drop-off to zero with
the freeze-out of quasiparticles at lower temperatures. This phenomenon is called
the Hebel-Slichter peak after Hebel and Slichter who first observed this peak in the
nuclear relaxation rate of aluminum [15]. Its explanation was a great triumph for
the BCS theory. For unconventional order parameters, case I and case II coherence
factors are the same and do not lead to any enhancement3 [17].

The temperature dependence of the relaxation rate also acts as a probe for the
nodal structure of the superconductor. Even though the coherence peak might be
suppressed, s-wave superconductivity is evidenced by an exponential decrease of
1/T1 below Tc. In contrast, the relaxation rate of unconventional superconductors
exhibits a T n power-law behaviour. For example, in the case of a line node 1/T1 ∼
T 3 is observed. An overview over resonance experiments on heavy-fermion systems
including heavy-fermion superconductors has been published by Kitaoka et al. [18].

2 A constant Knight shift was also reported for the s-wave superconductor V [9]. The reason
is that the orbital contribution to the Knight shift in V corresponding to the Van Vleck
orbital susceptibility is the principal contribution, and this orbital shift is independent of
the spin state of the conduction electrons. Other reasons for a constant spin susceptibility
unrelated to pairing symmetry are strong spin-orbit coupling [10] or pecularities of the
electronic structure [11].

3 Although the existence of this peak is one of the crucial tests for BCS superconductivity,
one should keep in mind that indeed, this peak might be absent in the classical supercon-
ductors Nb and V [16] and other strong-coupling superconductors.
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4.3 Muon Spin Rotation

The muon spin rotation (µSR) technique is a local-probe hyperfine method like nu-
clear magnetic resonance discussed above. Together with neutron scattering and
NMR, it is one of the very few microscopic methods investigating the bulk of the
material, as the muons penetrate tenth of a millimetre into the sample. In recent
years, µSR has become a primary method for the study of type-II superconductors,
because muons are an ideal tool to investigate weak-magnetism phenomena in zero
external field, and can be utilized to search for the occurrence of spontaneous mag-
netism below Tc, which would signal a possible breakdown of the time-reversal
symmetry invariance. Moreover, µSR transverse-field measurements below Tc can
furnish valuable information on the possible anisotropies of the temperature depen-
dence of the London penetration depth, which could indicate a crystal symmetry
breaking. Due to the local character of the µ+ probe and its uniform implantation in
a sample, µSR has been utilized to check whether the coexistence of magnetism and
superconductivity in the heavy-fermion superconductors appears on a microscopic
scale. In the following a brief introduction to the µSR technique is given, for more
details the reader is referred to textbooks or specialized reviews (see e. g. [8, 19, 20]
and refs. therein). Here, only µ+ spin rotation is considered since positive muons are
used much more extensively than negative muons in solid state physics research.

Muons belong to the lepton family and are produced via pion decay within the
pion mean lifetime of τ = 26 ns. The muon is implanted in the solid sample and
decays within 2.2 µs according to µ+ −→ e+ + νe + ν̄µ, where e+ is a positron and
νe and ν̄µ are neutrinos. Two important properties make the muons suitable as a
solid state probe: 1. muons produced in the above way are 100% spin-polarized
in the pion rest frame and 2. the muon decay is anisotropic, i. e. the positrons are
emitted preferentially in the direction of the muon spin. Hence, by measuring the
positron distribution, it is possible to determine the original µ+ spin direction. Po-
larized muons are implanted into a sample where the polarization is affected by the
local magnetic field until they decay. Because of its positive charge, the muon lo-
calizes at an interstitial site. If the implanted µ+ is subject to magnetic interactions
it precesses about the local magnetic field B(r) with a Larmor frequency

ωµ = γµB(r) , (4.5)

where γµ/2π = 135.5342 MHz/T is the muon gyromagnetic ratio. Consequently
the polarization Pµ becomes time dependent with Pµ(t) = G(t)Pµ(0), where G(t) re-
flects the normalized µ+-spin autocorrelation function which depends on the average
value, distribution, and time evolution of the internal fields and therefore contains
all physics of the magnetic interactions of the µ+ inside the sample. The envelope of
G(t) is called the µ+ depolarization function and a fast Fourier transformation yields
the µSR spectrum whose line shape and position can be further analyzed.

Two techniques are important for the investigation of superconductors: the zero-
field (ZF) µSR technique and the transverse-field (TF) µSR technique. The zero-
field (ZF) µSR technique monitors the time evolution of the muon ensemble under
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Fig. 4.1. The field distribution inside a superconductor as a function of position and the cor-
responding muon-spin relaxation function in the normal state (a), the superconducting state
(b), and in the superconducting state with a shorter penetration depth (c) (from [20])

the action of internal magnetic fields in zero external fields. The very large magnetic
moment of the muon makes µSR sensitive to extremely small internal magnetic
fields down to the order of 0.1 G. The zero-field technique has been widely utilized
to measure the spontaneous µ+ Larmor frequencies in magnetically ordered phases,
providing valuable information about the values of the static moment and the mag-
netic structures. In superconductors with time-reversal symmetry-breaking ordered
state an internal field occurs which leads to an additional µ+ depolarization due to
electronic magnetic moments. A broadening of the µSR line in zero field can fur-
ther be caused by a static distribution of internal fields or by fluctuations arising
from fluctuating magnetic moments. For the latter process the depolarization rate
σ1 = 1/T1 describes the spin-lattice relaxation (1/T1 process).

The transverse-field (TF) µSR technique gives access to the µ+ Knight shift. The
µ+ Knight shift originates from the magnetic-field-induced polarization of the con-
duction electrons. Local electronic moments can also contribute to the frequency
shift by producing an effective dipolar field and an additional hyperfine contact field
at the muon site. In the heavy-fermion compounds the µ+ Knight shift corresponds
to contributions to Bint both from the polarization of conduction electrons and local-
ized f moments induced by Hext. For this technique, an external field Hext is applied
perpendicular to the initial polarization Pµ(0). Pµ(t) precesses around the total field
Bµ at the µ+ site. From the oscillatory component of G(t) (see Fig. 4.1) the total
field Bµ can be extracted. After correction for the contribution of demagnetization
and Lorentz field one obtains the µ+ Knight shift

Kµ =
|Bint| − |Hext|
|Hext|

, (4.6)

where Bint are the internal fields induced by Hext.
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If an inhomogeneous field distribution is present, the muons located at different
sites will feel slightly different fields which will result in a loss of polarization by
dephasing the muon ensemble and consequently to a line broadening in the µSR
spectrum. A further origin of line broadening is the so-called 1/T2 process which
arises from the dephasing of the µ+ spins with depolarization rate σ2 = 1/T2.

For transverse-field µSR studies in type-II superconductors two effects play a
role: 1. the presence of the flux-line lattice causes an additional field distribution,
and 2. below Tc the µ+ Knight shift changes due to the formation of the Cooper
pairs. For Hext � Hc1 where Hc1 is the lower critical field, a type-II superconductor
is in the mixed state, where both superconducting and normal regions (vortex cores)
coexist. The muons implanted close to the vortex core experience a larger magnetic
field than those implanted in the superconducting regions between vortices. The
frequency shift is expected to be different in the superconducting and in the normal
regions, and consequently there is a spread in precession frequency. Therefore, the
measured field distribution is a convolution of the distribution due to the Knight
shift and the flux-line lattice [21].

The line broadening due to the presence of the flux-line lattice is traditionally as-
sumed to be Gaussian. The muon depolarization rate then is given byσ ∝ 1/λ2 ∝ ns,
where λ is the magnetic penetration depth and ns the superfluid density. Therefore,
such studies yield information on the absolute value of λ, its anisotropy, and the
temperature dependence λ(T ) which gives information about the gap nodes (see
Sect. 3.2). However, as pointed out by Sonier et al. in a recent review [22], a sim-
ple Gaussian fit of the line shape is sometimes not sufficient and even yields false
conclusions (see below in Sect. 7 and [22]).
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