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3 Probing the Nodal Structure

The topology and k-spatial symmetry of zeroes of the gap function provide useful
information on the superconductive order parameter. Besides direct, i. e. spectro-
scopic probes of the nodal structure, bulk methods are usually used as an integral
probe of the low-energetic excitation spectrum at low temperature. In the following
sections frequently applied methods are discussed.

3.1 Specific Heat and Thermal Conductivity

The determination of the heat capacity of a substance provides information about its
internal energy. Specific heat is a bulk method which probes at low temperature the
entire low-energy excitations of a solid close to the Fermi level, i. e., it is sensitive
to the density of states at EF. The thermal conductivity is a transport property and
a directional probe, which depends on the direction of the applied thermal gradient.
Therefore, the thermal conductivity is capable to reveal the orientation and symme-
try of nodes in the gap function. Thermal-conductivity measurements on metals are
sensitive to the density of states at EF, as for metals at low temperatures primarily
electrons near the Fermi surface are responsible for the transport of energy.

In a standard s-wave superconductor with opening of an isotropic excitation gap
at the Fermi surface below Tc the specific heat C(T ) and the thermal conductivity
κ(T ) vanish exponentially in the limit T → 0. The existence of line or point nodes
alters this behaviour. The existence of quasiparticle excitations in the neighbour-
hood of these nodes gives rise to a non-exponential behaviour of both quantities,
particularly at low temperatures where the node contributions are dominant. These
low-energetic excitations are responsible for power laws ∼ T n in the temperature
dependence of both properties for T → 0 and the exponent n of T hints at the nodal
structure of the order parameter. For example, a T 2 behaviour of the specific heat
at T � Tc hints at line nodes, while C(T ) ∼ T 3 indicates point nodes of the gap
function. A list of exponents n of the low-temperature behaviour of C(T ) calcu-
lated under the aspect of order-parameter symmetry was published by Volovik and
Gor’kov [1].

However, the hint at the nodal structure might be hidden by extrinsic origins of
low-lying states within ∆. In particular, impurities are at the forefront of the extrin-
sic origins. On the other hand, if the impurity concentration is sufficiently low, the
dependence of the transport properties on the impurity concentration itself makes
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it feasible to uncover information on the order-parameter symmetry. It has been
shown [2, 3] that the effect of impurity scattering on the transport properties can
only be addressed if the scattering is in the strong scattering (unitary) limit, i. e. a
phase shift of δ0 = π/2 is involved in the scattering process. In this case, the temper-
ature dependence of the thermodynamic properties is quantitatively related to the
density of states and shows power laws depending on the position and form of the
line or point nodes of the superconducting gap. If the scattering phase shift is near
the Born limit δ = 0 no clear predictions can be made.

Unitary scattering leads to virtual bound states on the impurity sites. For the
typical concentration of impurities, these bound states overlap and lead to a small
“normal state-like” contribution (linear in T ) to κ. Theoretically, it can be described
by the development of a new energy scale γ, below which the density of states is
nearly constant and in particular, finite at the Fermi level. The parameter γ is inter-
preted as the bandwidth of quasiparticle states bound to impurities [4] and provides
a crossover energy scale as well. For energies larger than γ the transport properties
of unconventional superconductors are determined by the quasiparticle excitations
at the nodes, below γ the transport properties are dominated by the bound states.
The energy scale and the zero-energy density of states depend on both the impu-
rity concentration and the scattering phase shift δ0. Graf et al. [5, 6] calculated the
electronic contribution to the thermal conductivity for various order-parameter sym-
metries and found for some a universal value as the temperature approaches zero.
Universal means that the thermal conductivity becomes independent of the impurity
concentration and κ/T = const (see Fig. 3.1). Thus, experiments on unconventional
superconductors with controlled impurity concentrations might allow to distinguish
various order-parameter scenarios, depending on whether or not they approach a
universal limit.

A second test for the order-parameter symmetry arises from the magnetic-field
dependence of thermal conductivity and specific heat. As pointed out by Volovik
[7] the density of states in a magnetic field in superconductors with order-parameter
nodes is dominated by contributions from extended quasiparticle states rather than
the bound states associated with the vortex cores. The remarkable consequence of
this observation is a term in the specific heat varying as

√
HT for a line node. Kübert

and Hirschfeld [8] derived a scaling law for the quasiparticle transport properties in
the variables T/

√
H, mixing field and temperature dependence, which can be used

as a test of the nodal structure, as no scaling is expected, e. g. for linear point nodes.
A third experimental tool for probing the superconducting gap structure has been

established recently by Izawa and coworkers [9]. They used angular-dependent ther-
mal conductivity in the vortex state to study nodal superconductors. The most re-
markable effect for the understanding of the heat transport in the mixed state is the
Doppler shift of the delocalized quasiparticle spectrum which is generated by the
supercurrents around the vortices. This effect gives rise to the finite density of states
in the presence of nodes, at which the Doppler shift exceeds the local energy gap
[10, 11, 12, 13].
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Fig. 3.1. Thermal conductivity κ vs. temperature for unconventional superconductors in the
unitary limit (σ = 1) with a dimensionless scattering rate α = 0.01. The different pairing
states are: (i) dx2−y2 with B1g(D4h) symmetry and 4 linear line nodes, (ii) polar state with
A1u(D6h) symmetry and 1 linear line node, (iii) hybrid I state with E1g(D6h) symmetry and
2 linear point nodes and 1 linear line node, and (iv) hybrid II state with E2u(D6h) symmetry
and 2 quadratic point nodes and 1 linear line node. For comparison the result for an isotropic
BCS superconductor is shown (by courtesy of M. Graf, LANL). As pointed out by Graf and
coworkers κ/T has a finite intercept for the unconventional pairing states (i) – (iv)

3.2 Magnetic Penetration Depth

A further probe for the nodal structure are measurements of the magnetic penetration
depth λ. Two methods have been established to give access to this quantity, namely
measurements of the surface impedance in a microwave resonator and transverse-
field µSR studies. The measurements of the surface impedance Zs have played a key
role in expanding the understanding of superconductivity. Microwave measurements
are made in cavity resonators applying resonance modes with frequencies f0 in the
GHz range. Such measurements probe the complex conductivity σ = σ′ − iσ′′

as a function of temperature and frequency, from which the superfluid density as
well as the properties of the thermally excited quasiparticles can be deduced. The
surface resistance and changes in surface reactance of the sample mounted inside
the resonator are obtained from the full-width at half-maximum and the changes of
f0 of the resonance curves. In the local limit of the two-fluid model [14] the surface
impedance and complex conductivity are given by

Zs = Rs + iXs =

( iµ0ω

σ′ − iσ′′

)1/2

, (3.1)
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where the real part Rs is the surface resistance and the imaginary part Xs is the
surface reactance. The two-fluid model gives a conductivity

σ =

(
e2

m∗

) [ ns

iω
+

nnτ

1 + iωτ

]
, (3.2)

where ns = 1 − nn is the superfluid density, and nn is the normal fluid density; in
the superconducting state, τ is the scattering lifetime of the thermally excited quasi-
particles and m∗ is their effective mass. Both contributions to the surface impedance
and complex conductivity reflect that in the two-fluid model most of the current at
frequencies in the microwave range will be carried as a lossless supercurrent, but
there will be dissipation from the normal component for any nonzero frequency.
The magnetic penetration depth λ and its temperature dependence is obtained from
ns = λ(0)2/λ(T )2 which is derived from σ′′.

The second possibility for the determination of the magnetic penetration depth
are transverse-field µSR studies (see Sect. 4.3). In type-II superconductors the pres-
ence of the flux-line lattice causes an additional line broadening of the µSR line
which is assumed to be Gaussian. The muon depolarization rate then is given by
1/λ2 ∝ ns, where λ is the magnetic penetration depth and ns the superfluid density.

Such studies yield information on the absolute value of λ, its anisotropy, and the
temperature dependence λ(T ) which is altered in the presence of gap nodes. How-
ever, one has to be cautious against such experiments. As already pointed out by
Tinkham [14] the magnetic penetration depth λ−2 cannot have a universal temper-
ature dependence on T/Tc even in the BCS theory because of the variation of the
ratio ξ0/λL(0) for different metals. The temperature dependence slightly differs in
the pure local limit (l � ξ, ξ � λ), the pure anomalous limit (l � ξ, ξ � λ), and
the dirty local limit (l � ξ, ξ � λ) compared to the empirical approximation of the
two-fluid model given by

λ(T )
λ(0)

=
1

[1 − (T/Tc)4]1/2
(3.3)

i. e. an exponent n = 4 for λ−2 ∝ 1 − (T/Tc)n. In a clean, local, weak-coupling BCS
superconductor the exponent n is generally closer to n = 2 than to n = 4 [14]. For
d-wave order parameter the temperature dependence is altered as well. The presence
of line nodes gives rise to a continuum of low-lying excitations which results in a
linear temperature dependence of λ−2 ∝ ns. Further, according to calculations by
Hirschfeld and Goldenfeld [15] the presence of impurities leads to a crossover to a
quadratic temperature dependence at low T .

3.3 Ultrasound Attenuation

The last method which is introduced here is the use of ultrasound-attenuation mea-
surements, a rarely utilized tool for probing the gap nodes. When a sound wave
propagates through a metal the microscopic electric field due to the displacement of
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Fig. 3.2. Qualitative behavior of the ultrasound attenuation in the superconducting state. In
the presence of “active” nodes the attenuation grows by a factor T 2 faster than in the presence
of “inactive” nodes at low T (from [17])

the ions can impart energy to electrons near the Fermi level, thereby removing en-
ergy from the wave. In a superconductor well below Tc the rate of attenuation α(T )
of sound waves with �ω < 2∆ is markedly lower than in a normal metal. Therefore,
measurements of the ultrasonic attenuation allow the determination of the tempera-
ture dependence and the anisotropy of the energy gap. Moreno and Coleman have
developed a simple theory for the interpretation of transverse ultrasound attenua-
tion coefficients in systems with nodal gap anisotropy [16]. In their calculations,
performed in the hydrodynamic limit where the electron mean free path � is much
shorter than the sound wavelength λ, the low temperature power-law behaviour of
α(T ) is shown to depend strongly on the wave-vector direction q̂ and the polariza-
tion ê relative to the nodes. Nodes are “active” in attenuating sound, if neither of
these vectors is perpendicular to the direction of the node, while nodes are “inac-
tive” if either the vector q̂ or the polarization ê are perpendicular to the direction of
the node. In this way ultrasound-attenuation experiments can locate nodes in the gap
function. Based on the idea of “active” and “inactive” nodes Walker et al. worked
out a more generalized theory by replacing the isotropic electron stress tensor in
[16] by the electron-phonon matrix element. They derived an expression which is
also applicable to anisotropic multisheet Fermi surfaces. If the matrix element is
non-zero at the nodes for a particular phonon then the phonon can interact with the
nodal quasiparticle (and thus attenuate a sound wave), i. e. the node is “active” for
the particular phonon. If, on the other hand, the matrix element is zero at the nodes,
then the coupling of the phonon to the quasiparticle precisely at the node is zero and
grows as the distance from the node is increased. In this case, the node is “inactive”
for the particular phonon [17].

In addition to the interpretation of ultrasound attenuation data, Moreno and
Coleman have predicted a T 3.5 power law for the direction of inactive nodes and
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a T 1.5 power law for the direction of active nodes for the case of a two-dimensional
gap with k2

x−k2
y symmetry. In general, the ultrasound attenuation at T � Tc exhibits

a power law behaviour and the exponent n is larger by two in the case where only
”inactive“ nodes are present compared to the case when ”active“ nodes are present
(see Fig. 3.2).
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8. C. Kübert, P.J. Hirschfeld: Phys. Rev. Lett. 80(22), 4963 (1998) 22
9. K. Izawa, Y. Matsuda: J. Low Temp. Phys. 131(3/4), 429 (2003) 22

10. P. Thalmeier, K. Maki: Europhys. Lett. 58(1), 119 (2002) 22
11. I. Vekhter, P.J. Hirschfeld, J.P. Carbotte, E.J. Nicol: Phys. Rev. B 59(14), R9023 (1999) 22, 124
12. K. Maki, G. Yang, H. Won: Physica C 341-348(3), 1647 (2000) 22
13. H. Won, K. Maki: cond-mat/0004105 (2000) 22, 124
14. M. Tinkham: Introduction to Superconductivity (McGraw-Hill International Editions,

Singapore, 1996) 11, 23, 24, 29, 56
15. P.J. Hirschfeld, N. Goldenfeld: Phys. Rev. B 48(6), 4219 (1993) 24, 75, 125
16. J. Moreno, P. Coleman: Phys. Rev. B 53(6), R2995 (1996) 25
17. M.B. Walker, M.F. Smith, K.V. Samokhin: Phys. Rev. B 65, 014 517 (2002) 25, 95


	Part II Experimental Methods
	3 Probing the Nodal Structure
	3.1 Specific Heat and Thermal Conductivity
	3.2 Magnetic Penetration Depth
	3.3 Ultrasound Attenuation
	References





