
Sequential Pattern Mining�

Tian-Rui Li1, Yang Xu1, Da Ruan2, and Wu-ming Pan3

1 School of Science, Southwest Jiaotong University, Chengdu 610031, P. R. China
{trli, xuyang}@swjtu.edu.cn

2 Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, 2400 Mol,
Belgium
druan@sckcen.be

3 College of Software Engineering, Sichuan University, Chengdu 610065,
P.R. China
fluedpan@hotmail.com

Summary. Sequential pattern discovery has emerged as an important research
topic in knowledge discovery and data mining with broad applications. Previous
research is mainly focused on investigating scalable algorithms for mining sequen-
tial patterns while less on its theoretical foundations. However, the latter is also
important because it can help to use existing theories and methods to support more
effective mining tasks. In this chapter, we conduct a systematic study on models
and algorithms in sequential pattern analysis, especially discuss the existing algo-
rithms’ advantages and limitations. Then, we build the relation between the closed
sequential patterns and fixed point, which can serve as a theoretical foundation of se-
quential patterns. Finally, we discuss its applications and outline the future research
work.

1 Introduction

Data mining is mainly concerned with methodologies for extracting patterns
from large data repositories. Sequential pattern mining, since its introduction
in [1], has become an active research topic in data mining, with broad ap-
plications [2, 3]. For example, consider a Web access database at a popular
site, where a Web user and Web page are regarded as an object and attribute
respectively. The discovered patterns are the sequences of most frequently
accessed pages at that site. This kind of information can help to improve
a system design such as better a hyperlinked structure between the corre-
lated pages and lead to better marketing decisions like strategic advertisement
placement [2]. There are many other domains where sequence mining has been
applied, which include discovering customer buying patterns in retail stores,
� This work was partially supported by the National Natural Science Foundation

of China (NSFC) under the grant No.60474022.

Tian-Rui Li et al.: Sequential Pattern Mining, Studies in Computational Intelligence (SCI) 5,
103–122 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

104 T.-R. Li et al.

analysis of Web access databases, identifying plan failures, mining DNA se-
quences and gene structures, and finding network alarm patterns. Moreover,
a deep understanding of efficient sequential pattern mining methods may also
have strong implications on the development of efficient methods for mining
frequent subtrees, lattices, subgraphs, and other structured patterns in large
databases [4].

Many studies have been contributed to the efficient mining of sequential
patterns in the literature, most of which was focused on developing efficient
algorithms for finding all sequential patterns such as AprioriAll [1], GSP [5],
SPADE [6], PrefixSpan [7] and so on. In addition, enormous sizes of available
databases and possibly large number of mined sequential patterns demand ef-
ficient and scalable parallel algorithms. Therefore, several parallel algorithms
such as HPSPM [8], pSPADE [9], TPF [10] were proposed and have good
performance. Moreover, recent research on sequential pattern mining has pro-
gressed to closed sequential pattern mining, which can greatly reduce the
number of frequent subsequences and improve the efficiency [4, 11].

Yet, the above work all assumes that the database is static, and a database
updates requires rediscovering all the patterns by scanning the entire old
and new database. Then, there is a need for efficient algorithms to update,
maintain and manage the information discovered. Some incremental mining
algorithms of sequential patterns were proposed, e.g. [12, 13, 14, 15, 16, 17],
and perform significantly better than the näıve approach of mining the whole
updated database from scratch.

However, a major common thread that runs through the vast majority of
earlier work is the lack of user-controlled focus in the pattern mining process
and then it demonstrates the need for novel pattern mining solutions. Recent
feasible solutions are to incorporate user-specified constraints in sequential
pattern mining, which enable the incorporation of user-controlled focus in the
mining process and avoid overwhelming volume of potentially useless results
[18, 19, 20].

Other work contributes on an extension of the problem of sequential pat-
tern mining like mining cyclically repeated patterns [21], approximate mining
of consensus sequential patterns [22], mining multidimensional sequential pat-
tern [23], mining top-k closed sequential patterns [24], mining frequent Max
sequential patterns [25], mining long sequential patterns in a noisy environ-
ment [26], mining hybrid sequential patterns and sequential rules [27], etc.

In this chapter, the models in sequential pattern mining are presented in
Sect. 2. A systematic analysis on algorithms for mining sequential patterns is
conducted in Sect. 3. In Sect. 4, a theoretical foundation of sequential pattern
mining is provided. Its applications are discussed in Sect. 5. Our current study
is summarized and some future research issues is also pointed out in Sect. 6.

Sequential Pattern Mining 105

2 Models of Sequential Patterns Mining

2.1 Original Model of Sequential Patterns Mining

The original model of mining sequential patterns was proposed in [1]. It can
be stated as follows:

Let I = {i1, i2, . . . , ik} be a set of all items. A subset of I is called an
itemset. A sequence s = 〈s1, s2, . . . , sm〉(si ⊆ I) is an ordered list. The size,
|s|, of a sequence s is the number of itemsets in the sequence. The length,
l(s), is the total number of items in the sequence, namely, l(s) =

∑m
i=1 |si|.

A sequence α = 〈α1, α2, . . . , αm〉 is a sub-sequence of another sequence β =
〈β1, β2, . . . , βn〉, denoted as α � β, (if α �= β, written as α � β), if and
only if ∃k1, k2, . . . , km, such that 1≤ k1 < k2 < . . . < km ≤ n and α1 ⊆
βk1 , α2 ⊆ βk2 , . . . , αm ⊆ βkm

. We also call β is a super-sequence of α and β
contains α. A sequence database, D = {d1, d2, . . . , dk}, is a set of sequences.
Each sequence is associated with an id. For simplicity, say the id of di is i.
|D| represents the number of sequences in the database D. The support of a
sequence α in a sequence database D is the number of sequences in D which
contain α, support(α) = |{d|d ∈ D and α � d}|. Given a minimum support
threshold, min sup, the set of frequent sequential patterns, FS, includes all the
sequences whose support is no less than min sup. Given a sequence database
and a user-specified min sup, the problem of mining sequential patterns is to
find all the frequent subsequences in the database.

The set of the closed frequent sequential pattern is defined as follows, CS =
{α |α ∈ FS and /∃β ∈ FS such that α � β and support(α) = support(β)}.
Since CS includes no sequence which has a super-sequence with the same
support, we have CS ⊆ FS. The problem of the closed sequence mining is to
find CS above a minimum support threshold.

Example 1. Table 1 is a sample sequence database, referred as D when the con-
text is clear. The alphabetic order is taken as the default lexicographical order.
The set of items in the database is {a, b, c, d, e, f}. Obviously, 〈(ce)(a)(af)(c)〉
is a sequence in the database and its size is equal to 4. This whole sequence
contributes only one to the support of (a) although item a appears more than
once in it. The support of (a) is 5 in the database. If min sup = 3 (taken as
default in this chapter), CS, FS are listed in support descending order (in
the form of sequence : support) as below,

CS = {(a) : 5, (c) : 4, (a)(a) : 3, (a)(c) : 3, (a)(b) : 3, (c)(a) : 3} ;
FS = {(a) : 5, (c) : 4, (a)(a) : 3, (a)(c) : 3, (a)(b) : 3, (c)(a) : 3, (b) : 3} .

CS has the exact same information as FS, but includes much fewer patterns.

106 T.-R. Li et al.

Table 1. A sample sequence database D

Identifier Sequence

1 〈(ce)(a)(af)(c)〉
2 〈(a)(a)(b)(d)〉
3 〈(a)(bf)(b)(c)〉
4 〈(b)(c)(a)(b)〉
5 〈(a)(c)(a)(be)〉

2.2 Related Models of Mining Sequential Pattern

First is an episode discovery approach presented by Mannila et al in [28].
Sequences of events describing the behavior and actions of users or systems
can be collected in several domains. An episode is a collection of events that
occur relatively close to each other in a given partial order. Once such episodes
are known, one can produce rules for describing or predicting the behavior of
the sequence. The problem of this model is to find all patterns that occur
in some user-specified percentage of windows through moving a time window
across the input sequence. It could provide such information like “events of
type b, c, and d occur together in 8% of windows of 50 time units” or “event
of type b is followed by event of type d 20 times in the event sequence”.

Second is the generalized sequential patterns also proposed by Srikant and
Agarwal in [5], motivated by real applications such as in a book club. Time
constraints that specify a minimum and/or maximum time period between
adjacent elements in a pattern are incorporated in the original model and
the items to be presented in a set of transactions whose transaction-times
are within a user-specified time window are allowed. Given a user-defined
taxonomy on items, sequential patterns are also allowed to include items across
all levels of the taxonomy. The problem of this model is to find all sequences
whose support is greater than the user-specified minimum support, given a
database D of data-sequences, a taxonomy T , user-specified min-gap and max-
gap time constraints, and a user-specified sliding-window size.

Third is a universal formulation of sequential patterns proposed in [29],
which can unify and generalize the above formulations. There are two novel
concepts in this universal formulation. One is the directed acyclic graph rep-
resentation of the structural and timing constraints of sequential patterns.
The other is that this approach supplies several different ways in which sup-
port of a pattern can be defined, each of which can be suitable in specific
applications, depending on the user’s perception. By choosing specific com-
binations of structural constraints, timing constraints, and support counting
methods, this formulation can be made identical to the above formulations.
A sequential pattern is said to be interesting if it occurs enough number of
times (support threshold) satisfying the given timing constraint (ms, ws, xg,
ng), where ms, ws, xg, ng represent maximum span, event-set window size,

Sequential Pattern Mining 107

maximum gap, minimum gap, respectively. The problem of this model is to
find all interesting sequential patterns, given timing constraint (ms, ws, xg,
ng) and support threshold.

In sum up, investigation of models is the first step to discover useful infor-
mation from database, which helps to support more efficient decision making.
It is an important and interesting problem still worthy of study in the future.

3 Analysis of Sequential Pattern Mining Algorithms

Due to its extensive applications, lots of sequential mining algorithms were
developed to increase efficiency and effectiveness. They can be categorized into
the following classes: BFS(Breadth-first Search)-based method, DFS(Depth-
first Search)-based method, closed sequential pattern based method, parallel-
based method, incremental-based method and constraint-based algorithm.
Here we study several representative algorithms in those classes respectively.

3.1 BFS-Based Method

AprioriAll, AprioriSome and DynamicSome, these three algorithms are first
proposed in the pioneering work of sequential pattern mining by Agrawal and
Srikant [1]. The latter two algorithms were developed to discover only maximal
sequential patterns. The first algorithm, AprioriAll, finds all patterns. It is
regarded as a three-phase algorithm in brief. It first finds all frequent itemsets
using Apriori, transforms the database so that each transaction is replaced by
the set of all frequent itemsets contained in the transaction, and then makes
multiple passes over the database to generate candidates, count the supports
of candidates, and to discover sequential patterns. Its performance was shown
better than or comparable to the other two algorithms. However, this approach
nearly doubles the disk space requirement which could be prohibitive for large
databases.

The GSP algorithm, proposed in [2], performs like the AprioriAll algo-
rithm, but it does not need find all the frequent itemsets first. In addition,
it allows for (1) time-gap constraints, placing bounds on the time separation
between adjacent elements in a pattern, (2) sliding time windows, permitting
the items in an element of a pattern to span a set of transactions within a
user-specified time window, (3) item taxonomies, given a user-defined taxon-
omy (is-a hierarchy), enabling the discovery of patterns across different levels
of a user-defined taxonomy. GSP is also designed to discover these general-
ized sequential patterns. It makes multiple passes over the database and finds
out frequent k-sequences at the kth database scanning. In each pass, every
data sequence is examined to update the support counts of the candidates
contained in this sequence. Initially, each item is a candidate 1-sequence for
the first pass. Frequent 1-sequences are determined after checking all the data
sequences in the database. In succeeding passes, frequent (k − 1)-sequences

108 T.-R. Li et al.

are self-joined to generate candidate k-sequences. Again, the supports of these
candidate sequences are counted by examining all data sequences, and then
those candidates having minimum supports become frequent sequences. This
process terminates when there is no candidate sequence left. Empirical evalu-
ation indicates that GSP is much faster than the AprioriAll algorithm by up
to 20 times. However, because of the sliding window, minimum and maximum
time gaps, it needs backtracking to check if the data sequence s contains each
candidate sequence stored in the leaf, which leads to the high computational
cost. In addition, its I/O cost may be very high since the number of I/O passes
required is determined by the length of the longest frequent sequences.

MFS, proposed in [30], is a modified version of GSP. It tries to reduce the
I/O cost needed by GSP. With GSP, every database scan discovers frequent
sequences of the same length. MFS, on the other hand, takes a successive re-
finement approach. It first computes a rough estimate of the set of all frequent
sequences as a suggested frequent sequence set, makes use of it and generalizes
the candidate generation function of GSP to maintain the set of maximal fre-
quent sequences known so far. Then, longer sequences can be generated and
counted early, which is the major source of efficiency improvement of MFS
over GSP. Experiment results show that MFS saves I/O cost significantly
compared with GSP.

SPADE, proposed in [6], uses the observation that the subsequence rela-
tion induces a lattice which is downward closed on the support, i.e., if β is
frequent, then all subsequences αβ are also frequent. It decomposes the orig-
inal lattice into smaller sub-lattices, so that each sublattice can be processed
entirely in main-memory using a breadth-first or depth-first search (SPADE
also belongs to DFS-based method) for frequent sequences. Starting with the
frequent single items, during each step the frequent sequences of the previous
level are extended by one more item. Before computing the support of a new
sequence, a pruning step ensures that all its subsequences are also frequent,
greatly reducing the search space. The experimental results show that SPADE
is about twice as fast as GSP. In addition, if we do not count the cost of com-
puting frequent 2-item sequences, SPADE outperforms GSP by an order of
magnitude in most cases. The reason is that SPADE uses a more efficient
support counting method based on the idlist structure. Furthermore, SPADE
only scans the original database twice to generate frequent 1-item sequences
and 2-item sequences respectively, and the remaining operations are solely
performed on the idlist of each sequence, which keeps shrinking during the
mining process and is much smaller than the original database. SPADE also
shows a linear scalability with respect to the number of sequences.

3.2 DFS-Based Method

In [31], Han et al. proposed a projection-based algorithm called FreeSpan,
which aims at reducing the generation of candidate subsequences. Its general
idea is to use frequent items to recursively project sequence databases into

Sequential Pattern Mining 109

a set of smaller projected databases based on the currently mined frequent
sets, and grow subsequence fragments in each projected database respectively.
This process partitions both the data and the set of frequent patterns to be
tested, and confines each test being conducted to the corresponding smaller
projected database. FreeSpan only needs to scan the original database three
times, independent of the maximal length of the sequence. Performance study
shows that FreeSpan mines the complete set of patterns and is efficient and
runs considerably faster than the GSP algorithm. The major cost of FreeSpan
is to deal with projected databases. Moreover, since a length-k subsequence
may grow at any position, the search for length-(k + 1) candidate sequences
will need to check every possible combination, which is quite costly.

To solve this problem existing in FreeSpan, in [7], Pei et al. proposed
another projection based algorithm called PrefixSpan. Its general idea is to
examine only the prefix subsequences and project only their corresponding
postfix subsequences into projected databases, instead of projecting sequence
databases by considering all the possible occurrences of frequent subsequences.
In each projected database, sequential patterns are grown by exploring only
local frequent patterns. PrefixSpan mines the complete set of patterns and is
efficient and runs considerably faster than both GSP algorithm and FreeSpan.
However, similar to FreeSpan, the major cost of PrefixSpan is also the con-
struction of projected databases. In the worse case, PrefixSpan needs to con-
struct a projected database for every sequential pattern. If there are a large
number of sequential patterns, the cost is non-trivial.

In [32], Sequential PAttern Mining using a bitmap representation (SPAM)
was proposed by J. Ayres, et al. Based on a lexicographic tree of sequences,
SPAM utilizes a depth-first traversal of the search space combined with a ver-
tical bitmap representation to store each sequence, which allows for efficient
support counting as well as significant bitmap compression. In addition, vari-
ous pruning mechanisms are implemented to reduce the search space. SPAM is
especially efficient when the sequential patterns in the database are very long.
Moreover, a salient feature of this algorithm is that it incrementally outputs
new frequent itemsets in an online fashion. Experimental results demonstrate
that this algorithm outperforms SPADE and PrefixSpan on large datasets by
over an order of magnitude. However, SPAM assumes that the entire database
(and all data structures used for the algorithm) completely fit into main mem-
ory which is not suitable for mining sequential pattern from large databases
and it consumes more space in comparison with SPADE and PrefixSpan.

3.3 Closed Sequential Pattern Based Method

Previous sequential pattern mining algorithms mine the full set of frequent
subsequences satisfying a minimum support threshold in a sequence database.
However, since a frequent long sequence contains a combinatorial number
of frequent subsequences, such mining will generate an explosive number of
frequent subsequences for long patterns, which is prohibitively expensive in

110 T.-R. Li et al.

both time and space. It is proved that for mining frequent patterns (for both
itemsets and sequences), one should not mine all frequent patterns but the
closed ones since the latter leads to not only more compact yet complete result
set but also better efficiency, which can greatly reduces the number of frequent
subsequences [4, 11].

CloSpan is such an algorithm for mining closed sequential patterns [4]. It
divides the mining process into two stages. In the first stage, a candidate set
is generated. The second stage helps eliminate non-closed sequences. CloSpan
develops several efficient search space pruning methods and it is hash-based
algorithm which can efficiently execute the search space optimization with
negligible cost. The performance of CloSpan shows that it not only generates
a complete closed subsequence set which is substantially smaller than that
generated by PrefixSpan, but also runs much faster. However, it follows a
candidate maintenance-and-test paradigm and results in a rather poor scal-
ability in the number of frequent closed patterns because a large number of
frequent closed patterns (or just candidates) will occupy much memory and
lead to a large search space for the closure checking of new patterns, which
is usually the case when the support threshold is low or the patterns become
long.

BIDE is a more efficient algorithm to mine closed sequential patterns [11].
It avoids the curse of the candidate maintenance-and-test paradigm, prunes
the search space more deeply and checks the pattern closure in a more effi-
cient way while consuming much less memory in contrast to the previously
developed closed pattern mining algorithms. It does not need to maintain the
set of historic closed patterns, thus it scales very well in the number of fre-
quent closed patterns. BIDE adopts a strict depth-first search order and can
output the frequent closed patterns in an online fashion. A thorough perfor-
mance study shows that BIDE consumes order(s) of magnitude less memory
and runs over an order of magnitude faster than the previously developed
frequent (closed) sequence mining algorithms, especially when the support is
low. It also has linear scalability in terms of the number of sequences in the
database. However, like other closed sequence mining algorithms, it will lose to
some all-frequent-sequence mining algorithms with a high support threshold.

3.4 Parallel-Based Method

The most time consuming operation in the discovery process of sequential
patterns is the computation of the frequency of the occurrences of interesting
subsequences in the sequence database. However, the number of sequential
patterns grows exponentially and the task of finding all sequential patterns
requires a lot of computational resources, which make it an ideal candidate
for parallel processing.

Three parallel algorithms, NPSPM, SPSPM, HPSPM, based on GSP for
mining sequential patterns on a shared-nothing environment were presented
in [8]. All three approaches partition the datasets into equal sized blocks

Sequential Pattern Mining 111

among the nodes. In NPSPM, the candidate sequences are replicated on all
the processors, and each processor gathers local support using its local data-
base block. A reduction is performed after each iteration to get the global sup-
ports. Since NPSPM replicates the entire candidate set on each node, it can
run into memory overflow problems for large databases. SPSPM partitions
the candidate set into equal-sized blocks and assigns each block to a sepa-
rate processor. While SPSPM utilizes the aggregate memory of the system,
it suffers from excessive communication, since each processor’s local database
has to broadcast to all other processors to get global support. HPSPM uses
a more intelligent strategy to partition the candidate sequences among the
nodes using hash function, which eliminates the customer transaction data
broadcasting and reduces the comparison workload. Among three algorithms
HPSPM was shown to be the best approach through the experiments on an
IBM SP2 distributed memory machine. However, the main limitation of all
these parallel algorithms is that they make repeated passes over the disk-
resident database partition, incurring high I/O overheads. Furthermore, the
schemes involve exchanging the remote database partitions during each itera-
tion, resulting high communication and synchronization overhead. They also
use complicated hash structures, which entail additional overhead in mainte-
nance and search, and typically also have poor cache locality [9].

pSPADE is a parallel algorithm based on SPADE for fast discovery of
frequent sequences in large databases, targeting shared-memory systems [9]. It
decomposes the original search space into small suffix-based classes. Each class
can be solved in main-memory using simple join operations and efficient search
techniques, which not only minimizes I/O costs by reducing database scans,
but also computational costs. Further each class can be solved independently
on each processor requiring no synchronization. It has good locality and little
false sharing. Experiments on a 12 processor SGI Origin 2000 shared memory
system show that pSPADE delivers good speedup and has excellent scale-up
properties. However, like SPADE, the limitation of pSPADE is that it works
on the assumption that each class and its intermediate idlists fit in main
memory, which require lots of memory.

DPF, TPF are two different parallel algorithms for finding sequential pat-
terns on distributed-memory parallel computers [10]. DPF decomposes the
computation by exploiting data parallelism, whereas TPF utilizes task paral-
lelism. The feature of TPF is the development of a static task decomposition
scheme that uses a bipartite graph partitioning algorithm to simultaneously
balance the computations and at the same time reduce the data sharing over-
heads, by minimizing the portions of the database that needs to be shared
by different processors. Experiments on the 32-processor IBM SP2 parallel
computer show that they incur small communication overheads, achieve good
speedups, and can effective utilize the different processors, and that TPF out-
performed DPF. However, as number of processors increased, the accuracy
of estimated work-load decreased and the computation became increasingly
un-balanced.

112 T.-R. Li et al.

DTPF is an improved parallel algorithm of TPF, which uses task paral-
lelism along with dynamic load balancing scheme that minimizes idle time
in case when distributed workload is unbalanced [33]. Experiments on the
32-processor IBM SP2 parallel computer show that it is capable of achiev-
ing good speedups, substantially reducing the amount of the required work
to find sequential patterns in large databases, and it outperforms static load
balancing scheme algorithm, TPF.

3.5 Incremental-Based Method

The above studies all assume the database is static, and even a small change
in the database will require the algorithms to run again to get the updated
frequent sequences since previous sequential patterns would become irrele-
vant and new sequential patterns might appear. In practice, the content of a
database changes over time and thus there is a need for efficient algorithms
to update, maintain and manage the information discovered. If each time we
have to rerun the mining algorithms from scratch, it will be very inefficient or
infeasible. Incremental algorithm should be developed for sequential pattern
mining so that mining can be adapted to frequent and incremental database
updates, including both insertions and deletions. There are two cases in de-
veloping incremental algorithm: (1) Whole sequences are inserted into and/or
removed from the old database called as Sequence Model; (2) Sequences in the
old database are updated by appending new transactions at the end called
as Transaction Model. The two models can model each other. Algorithms
designed for one model can also work under the other model.

A work for incremental sequential pattern updating based on SuffixTree
techniques was proposed in [12]. The structure used in that context acquires
the data and builds up the frequent sequences in one scan by means of a
SuffixTree. This method is thus very appropriate to an incremental sequence
extraction, because it only has to continue the data reading after the update.
The limitations are the complexity in space of this algorithm depends on the
size of the database and the SuffixTree is very expensive for dynamic strings
because of the sensitivity of the position to the update operation. Then, a
modified work of that on incremental sequential pattern updating was pro-
posed in [13]. The approach uses a dynamic SuffixTree structure, in which
substrings are referenced by addresses rather than positions, for incremental
mining in a single long sequence. The address reference restricts the impact
of updates to a small part of the dynamic SuffixTree, making efficient update
of the dynamic SuffixTree possible. Experiments showed that this incremen-
tal method performs substantially better than the non-incremental one for
large and dynamic databases. However, those two algorithms only focus on
incremental mining in a single long sequence.

FASTUP, proposed in [34], is in effect an enhanced GSP with improve-
ment on candidate generation and support counting. It takes into account the
previous mining result before generating and validating candidates using the

Sequential Pattern Mining 113

generating-pruning method. Experiments show that the performance of this
algorithm could be much faster than previous algorithms for the maintenance
of sequential patterns. However, it suffers the same limitations as GSP.

Reference [14] developed an incremental mining algorithm ISM based on
SPADE by maintaining a sequence lattice of an old database. The sequence
lattice includes all the frequent sequences and all the sequences in the negative
border, which is the collection of all sequences that are not frequent but both
of whose generating subsequences are frequent. Compared with SPADE, the
experiment results show that ISM is an improvement in execution time by up
to several orders of magnitude in practice, both for handling increments to
the database, as well as for handling interactive queries. However, maintaining
negative border, the number of which can be very huge, is memory consuming
and not well adapted for large databases. In addition, sequences in the negative
border may be unlikely to become frequent in the updated database if they
have low support. Moreover, ISM can only deal with the case of insertion.

Reference [16] developed two algorithms, GSP+ and MFS+, for incremen-
tal mining sequential patterns when sequences are inserted into or deleted from
the original database: one based on GSP and the other based on MFS. These
two algorithms can efficiently compute the updated set of frequent sequences
given the set of frequent sequences obtained from mining the old database.
Experiments show that GSP+ and MFS+ effectively reduce the CPU costs of
their counterparts with only a small or even negative expense on I/O cost.

Reference [35] developed another incremental mining algorithm, ISE, us-
ing candidate generate-and-test approach, namely, using information collected
during an earlier mining process to cut down the cost of finding new sequential
patterns in the updated database. The main new feature of it is that the set
of candidate sequences to be tested is substantially reduced. Furthermore, it
incorporates some optimization techniques for improving the efficiency. Em-
pirical evaluations show that the algorithm performs significantly faster than
the approach, GSP, of mining the whole updated database from scratch. The
limitation of this algorithm is the candidate set can be very huge, which makes
the test-phase very slow and its level-wise working manner requires multiple
scans of the whole database. This is very costly, especially when the sequences
are long.

IncSP is another efficient incremental updating algorithm for up-to-date
maintenance of sequential patterns after a nontrivial number of data sequences
are appended to the sequence database [36]. Assume that the minimum sup-
port keeps the same. It utilizes the knowledge of previously computed fre-
quent sequences, merges data sequences implicitly, prunes candidates early,
and separately counts supports with respect to the original database and the
newly appended database. Implicit merging ensures that IncSP employs cor-
rectly combined data sequences while preserving previous knowledge useful
for incremental updating. Candidate pruning after updating pattern supports
against the increment database further accelerates the whole process, since
fewer but more promising candidates are generated by just checking counts

114 T.-R. Li et al.

in the increment database. Eventually, efficient support counting of promis-
ing candidates over the original database accomplishes the discovery of new
patterns. IncSP both updates the supports of existing patterns and finds out
new patterns for the updated database. The simulation performed shows that
IncSP is several times faster than re-mining using the GSP algorithm, with
respect to various data characteristics or data combinations. IncSP outper-
forms GSP with regard to different ratios of the increment database to the
original database except when the increment database becomes larger than
the original database.

IncSpan is developed in [37] for incremental mining over multiple database
increments. Two novel ideas are introduced in the algorithm development.
First is maintaining a set of “almost frequent” sequences as the candidates in
the updated database, which has several nice properties and leads to efficient
techniques. Second is that two optimization techniques, reverse pattern match-
ing and shared projection, are designed to improve the performance. Reverse
pattern matching is used for matching a sequential pattern in a sequence.
Since the appended transactions are at the end of a sequence, reverse pattern
matching can prune additional search space. Shared projection is designed to
reduce the number of database projections for some sequences which share a
common prefix. Performance study shows that IncSpan outperforms ISM and
PrefixSpan on incrementally updated databases by a wide margin.

3.6 Constraint-Based Algorithm

Recent work has highlighted the importance of the paradigm of constraint-
based mining. Not only the paradigm allows users to express their focus in
mining, but also allows many kinds of constraints to be pushed deep inside
mining, confining the search for patterns only to those of interest to the user,
and therefore, improving performance. Constraint-based algorithms are close
related to user-specified constraints because of the arising problem, namely,
how to push kinds of constraints deep inside mining in order to improve per-
formance.

The use of Regular Expressions (REs) was proposed in [18] as a flexible
constraint specification tool that enables user-controlled focus to be incorpo-
rated into the pattern mining process. A family of novel algorithms, SPIRIT,
was developed for mining frequent sequential patterns that also satisfy user-
specified RE constraints. The main distinguishing factor among the proposed
schemes is the degree to which the RE constraints are enforced to prune the
search space of patterns during computation. The SPIRIT algorithms are il-
lustrative of the tradeoffs that arise when constraints that do not subscribe to
nice properties (like anti-monotonicity) are integrated into the mining process.
Experimental results clearly validate the effectiveness of the approach, show-
ing that speedups of more than an order of magnitude are possible when RE
constraints are pushed deep inside the mining process and also illustrates the
versatility of REs as a user-level tool for focusing on interesting patterns.

Sequential Pattern Mining 115

cSPADE was proposed in [38] for discovering the set of all frequent se-
quences with the following constraints: length and width restrictions, min-
imum and maximum gap between sequence elements, time window of oc-
currence of the whole sequence, item constraints for including or excluding
certain items, and finding sequences distinctive of at least one class, i.e., a
special attribute-value pair, that we are interested in predicting. The two
main strengths of cSPADE are that it delivers performance far superior to
existing approaches to constrained sequences, and that it incorporates the
constraints with relative ease.

Prefix-growth is also one of constraint-based algorithms for mining sequen-
tial patterns developed in [19] to push prefix-monotone constraints, which cov-
ers many commonly used constraints such as all monotonic, anti-monotonic
constraints and regular expression, deep into the mining process. Moreover,
some tough constraints, like those involving aggregate avg() and sum(), can
also be pushed deep into prefix-growth with some minor extensions. Experi-
mental results and performance study show that prefix-growth is efficient and
scalable in mining large databases with various constraints compared with
SPIRIT.

Moreover, there are many other kinds of algorithms for mining sequen-
tial patterns like DSG (Direct sequential pattern generation), a graph-based
algorithm, proposed in [39]. Though the disk I/O cost of DSG is very low
because it scans database only once, the related information may not fit in
the memory when the size of the database is large.

All in all, the existing algorithms for mining sequential patterns depend
heavily on massive computation that might cause high dependency on the
memory size or repeated I/O scans for the data sets. Though they are very
efficient, they are not sufficient for extremely large datasets and new solutions,
that do not depend on repeated I/O scans and less reliant on memory size,
still have to be found.

4 Theoretical Foundation of Sequential Pattern Mining

Previous work on sequential pattern discovery was mainly focused on studying
scalable algorithms while less on its theoretical foundations, which is also
important and makes it possible to use the existing theories or methods to
support more effective sequential pattern mining tasks. In the following, we
build the relation between the closed sequential patterns and the fixed point
by using the theory of formal concept analysis [40, 41], which can serve as a
theoretical foundation of sequential patterns [42].

Definition 1. Reference [40] A triple (G,M, I) is called a context if G and
M are sets and I ⊆ G ×M is a binary relation between G and M . We call
the elements of G objects, those of M attributes, and I the incidence of the
context (G,M, I).

116 T.-R. Li et al.

For the object g and the attribute m, (g,m) ∈ I or more commonly, gIm
implies that ‘the object g possesses the attribute m’.

Definition 2. Reference [40] Let (G,M,R) be a context, then the following
mappings are Galois connections between P (G) and P (M):

s : G �→M, s(X) = {m ∈ M |(∀g ∈ X)gRm} ,

t : M �→ G, t(Y) = {g ∈ G| (∀m ∈ Y)gRm} ,

where P (G) and P (M) are the power sets of G and M, respectively.

Obviously, s ◦ t and t ◦ s are closed operators, also call them as Galois closed
operators. Let the identifier set ID, the sequential set D of a sequence database
be G and M of a context (G, M , R), a binary relation between U and D be
R, then (U , D, R) becomes a context. Their Galois connections are as follows:

t : D �→ U, t(α) = {g ∈ U | (∀m ∈ α)gRm}
s : U �→ D, s(X) = {m ∈ D| (∀g ∈ X)gRm}

Then, t(α) denotes all the id set that includes a sequence α. Moreover,
s ◦ t and t ◦ s are closed operators, also call them as Galois closed operators.

Theorem 1. {α ∈ P (D) |s ◦ t(α) = α} is the set of all closed sequential pat-
terns of sequence database D.

Proof. (Sufficiency) Suppose that a sequence α, satisfying s ◦ t(α) = α, is not
a closed sequential pattern. Then there exists a sequence β, satisfying α ⊂ β
and support(α) = support(β). Namely, t(α) = t(β) and thus s ◦ t(β) ⊇ β. It
is concluded that α = s ◦ t(α) = s ◦ t(β) ⊇ β, which contradicts that α ⊂ β.
Therefore, α is a closed sequential pattern.

(Necessity) Suppose that a sequence α is a closed sequential pattern of D.
Since s ◦ t is a closed operator, s ◦ t(α) ⊇ α. If s ◦ t(α) ⊃ α, according to the
definition of s and t, every sequence contains α also contains s ◦ t(α). Thus,
support(s ◦ t(α)) = support(α), which contradicts the assumption that α is a
closed sequential pattern. Therefore, we have s ◦ t(α) = α. �

Definition 3. Reference [43] Let P be a partial order set, Φ:P → P is a
mapping, a ∈ P . If Φ(a) = a, then call a is a fixed point of Φ.

Then, every sequence in the set {α ⊆ D |s ◦ t(α) = α} is a fixed point of the
mapping s ◦ t. To mine all frequent closed sequential patterns is equal to find
all fixed points of s◦t. The existence of fixed point of the mapping is confirmed
by the following theorems.

Theorem 2. Reference [43] Let P be a partial order set, Φ: P → P is a
mapping, satisfy that for every a ∈ P, a ≤ Φ (a), then Φ has fixed points.

Sequential Pattern Mining 117

Theorem 3. [43] Let P be a partial order set, Φ:P → P is an order-preserving
mapping, then Φ has fixed points and the minimum fixed point.

Theorem 4. s ◦ t : P (D) → P (D) has fixed points.

Proof. It is obvious that P (D) is a partial order set. Since s◦t : P (D) → P (D)
is a closed operator. Then, for every α ∈ P (D), α ⊆ s ◦ t(α) and s ◦ t is a
order-preserving mapping. Therefore, there exist fixed points of s ◦ t.

Since (P (D), ⊆) is a complete lattice and closed operator is order-
preserving mapping, then a concrete fixed point(namely, closed sequential pat-
tern) can be obtained by the fixed point theorem proposed by Knaster and
Tarski [43]. �

Theorem 5. Reference [43] Let P be a complete lattice, Φ: P → P is order-
preserving mapping, then ∨{a ∈ P |a ≤ Φ(a)} is a fixed point of Φ.

Theorem 6. ({α ∈ P (D) |s ◦ t(α) = α},⊆) constitues a join semi-lattice,
called as fixed point semi-lattice.

Proof. It is obvious. �

Because the closed sequential patterns keep all the support information of
all sequential patterns of sequence database, fixed point semi-lattice also keeps
them. Therefore, to mine all frequent closed sequential patterns is equal to
establish fixed point semi-lattice and mine all points on it that satisfy support
constraint.

Example 2. Frequent fixed-point semi-lattice of Table 1 is as follows (Fig. 1).
Every node’s support in this lattice is above the minimum support threshold.

a c

a a a b a c c a

Fig. 1. Frequent fixed-point semi-lattice

To sum up, much work has been done to efficiently discovery sequential
patterns while less work on its theoretical foundations. Based on the Galois
closed operator, identifier set, sequential set in sequential database together
with their binary relation constituted a context. The relation between the
fixed point and closed sequential pattern was established. To mine all frequent

118 T.-R. Li et al.

closed sequential patterns is equal to build fixed point semi-lattice and mine
all points on it that satisfy support constraint which serves as a theoretical
foundation of sequential patterns and makes it possible to use the existing
fixed point and lattice theories to support more effective sequential pattern
mining tasks.

5 Applications of Sequential Pattern Mining

In the daily and scientific life, sequential data are available and used every-
where. Since discovering interesting patterns can benefit us by predicting com-
ing activities, interpreting certain phenomena, extracting outstanding simi-
larities and differences for close attention, etc. Methods for mining sequential
patterns have successfully applied in many domains as follows.

• Retail industry: analysis of customer buying behavior.
• Medical treatment: discovering patterns in histories of medical records to

improve level of diagnosis.
• DNA sequences and gene structures: discovery of motifs and tandem re-

peats in DNA sequences.
• Telecommunication: finding network alarm patterns, telephone calling pat-

terns.
• Administration: identifying plan failures.
• Web service: discovering user access patterns.
• Information security: analysis of user’s behavior.
• Natural disasters: earthquakes forecasting.
• Science & engineering processes: study of engineering & scientific processes

such as experiment runs, satellite data streams, weather data.
• Stocks and markets: stock prices trend.

Following is an example which is a successful application of sequential
pattern mining. PLANMINE, an automatic mining method that discovers
event sequences causing failures in plans, was presented in [2]. Novel prun-
ing techniques to extract the set of the most predictive rules from highly
structured plan databases were developed. These pruning strategies reduced
the size of the rule set by three orders of magnitude. PLANMINE has been
fully integrated into two real-world planning systems. The rules discovered by
PLANMINE were extremely useful for understanding and improving plans,
as well as for building monitors that raise alarms before failures happen.

All in all, several cases should be carefully studied during the process
of applications of sequential pattern mining: (1) Developing operations for
data cleaning; (2) Integration of the algorithm into the real-world system; (3)
Devising approaches to reduce the size of the rule set; (4) Visualization should
also be carefully considered.

Sequential Pattern Mining 119

6 Conclusions

Sequential pattern mining is one of the most popular pattern-discovery ap-
proaches in the field of knowledge discovery and data mining. In this chapter,
we conduct a systematic study on models and algorithms in sequential pat-
tern analysis, build the relation between the closed sequential patterns and
the fixed point and discuss its application domains. Despite recent advance in
the problem of sequential pattern mining, several problems still need serious
and immediate attention.

• Developing more efficient and scalable methods for mining sequential pat-
terns, including incremental mining of closed sequential patterns, incorpo-
rating user-specified constraints in the mining of closed sequential patterns,
developing methods to mine sequential patterns with other more compli-
cated constraints, devising sampling-based methods and random access
disk-based approaches like Inverted Matrix for efficient discovery of fre-
quent itemsets [44, 45], etc.

• Proceeding to explore its application domains, including development of
application-specific data mining system, invisible data mining (mining as
built-in function) and integration of existing algorithms for other compli-
cated structured patterns, etc.

• To continue studying theoretical foundations of sequential pattern mining
like Codd’s relational model [46] in order for us to apply them to the
development of more efficient mining algorithms and methods.

• To establish a benchmark to evaluate sequential pattern mining algorithms
like FIMI workshop for the problem of frequent itemset mining [47] in order
to generate a very healthy and critical discussion on the state-of-affairs in
sequential pattern mining implementations.

• To integrate efficient algorithms with database management systems, data
warehouse systems, and Web database systems, etc. which can maximally
benefit end-users.

• Development of techniques that incorporate privacy concerns in sequential
pattern mining since data mining, with its promise to efficiently discover
valuable, non obvious information from large databases, is particularly
vulnerable to misuse [48, 49].

References

1. Agrawal R, Srikant R (1995) Mining sequential patterns. In Proc of the 11th
Int Conf on Data Eng. Mar. 1995, Taipei, Taiwan. 3–14 103, 104, 105, 107

2. Zaki MJ, Lesh N, Ogihara M (2000) PLANMINE: Sequence mining for plan
failures. Artificial Intelligence Review, special issue on the Application of Data
Mining 14(6): 421–446 103, 107, 118

3. Wu PH, Peng WC, Chen MS (2001) Mining sequential alarm patterns in a
telecommunication database. In Proc of VLDB-01 Workshop on Databases in
Telecommunications. Sept. 2001, Roma, Italy. 37–51 103

120 T.-R. Li et al.

4. Yan X, Han J, Afshar R (2003) CloSpan: Mining Closed Sequential Patterns in
Large Databases. In SDM’03. May 2003, San Francisco, CA. 166–177 104, 110

5. Srikant R, Agrawal R (1996) Mining sequential patterns: generalizations and
performance improvements. In Proc of the 5th Int Conf on Extending Database
Technology. Mar. 1996, Avignon, France. 3–17 104, 106

6. Zaki MJ (2001) An eficient agorithm for mining fequent sequences. Machine
Learning J 42(1/2): 31–60 104, 108

7. Pei J, Han J, Pinto H, Chen Q, Dayal U, Hsu MC (2001) PrefixSpan: Mining
sequential patterns efficiently by prefix-projected pattern growth. In Proc of
2001 Int Conf on Data Eng. Apr. 2001, Heidelberg, Germany. 215–224 104, 109

8. Shintani T, Kitsuregawa M (1998) Mining algorithms for sequential patterns
in parallel: Hash based approach. In Proc of the Second Pacific-Asia Conf on
Know Discovery and Data mining. Apr. 1998, Merburn, Australia. 283–294 104, 110

9. Zaki MJ (2001) Parallel sequence mining on shared-memory machines. J of
Parallel and Distributed Computing 61(3): 401–426 104, 111

10. Guralnik V, Garg N, Karypis G (2001) Parallel tree projection algorithm for
sequence mining. In Sakellariou R Keane J Gurd J Freeman L (eds) Proc of 7th
European Conf on Parallel Computing. 310–320. Springer, Berlin Heidelberg
New York 104, 111

11. Wang J, Han J (2004) BIDE: Efficient mining of frequent closed sequences. In
Proc. of 2004 Int. Conf. on Data Eng. Apr. 2004, Boston, MA. 79–90 104, 110

12. Wang K, Tan J (1996) Incremental discovery of sequential patterns. In Proc of
Workshop on Research Issues on Data Mining and Know Discovery. June 1996,
Montreal, Canada. 95–102 104, 112

13. Wang K (1997) Discovering patterns from large and dynamic sequential data.
J of Intelligent Information Systems 9(1): 33–56 104, 112

14. Parthasarathy S, Zaki MJ, Ogihara M, Dwarkadas S (1999) Incremental and
interactive sequence mining. In Proc of the 8th Int Conf on Information and
Know Management. Nov. 1999, Kansas, Missouri, USA. 251–258 104, 113

15. Lee CH, Lin CR, Chen MS (2001) Sliding-Window filtering: An efficient algo-
rithm for incremental mining. In Proc of the ACM 10th Int Conf on Information
and Know Management. Oct. 2001, Atlanta, Georgia. 263–270 104

16. Zhang M, Kao B, Cheung D, Yip CL (2002) Efficient algorithms for incremental
update of frequent sequences. In Proc of the 6th Pacific-Asia Conf on Know
Discovery and Data Mining. May, 2002, Taipei, Taiwan. 186–197 104, 113

17. Masseglia F, Poncelet P, Teisseire M (2003) Incremental mining of sequential
patterns in large databases. Data Know. Eng 46: 97–121 104

18. Garofalakis MN, Rastogi R, Shim K (1999) SPIRIT: Sequential pattern mining
with regular expression constraints. In Proc of the 25th Int Conf on Very Large
Data Bases. Sept. 1999, Edinburgh, Scotland. 223–234 104, 114

19. Pei J, Han J, Wang W (2002) Mining sequential patterns with constraints in
large databases. In Proc of the 11th Int Conf on Information and Know Man-
agement. Nov. 2002, McLean, VA. 18–25 104, 115

20. Pei J, Han J (2002) Constrained frequent pattern mining: A pattern-growth
view. SIGKDD Explorations 4(1): 31–39 104

21. Toroslu IH, Kantarcioglu M (2001) Mining cyclically repeated patterns. In:
Kambayashi Y, Winiwarter W, Arikawa M (eds): DaWaK 2001, LNCS 2114.
83–92 104

Sequential Pattern Mining 121

22. Kum HC, Pei J, Wang W, Duncan D (2003) ApproxMAP: Approximate mining
of consensus sequential patterns. In Proc of the 2003 SIAM Int Conf on Data
Mining. May 2003, San Francisco, CA. 311–315 104

23. Pinto H, Han J, Pei J, Wang K, Chen Q, Dayal U (2001) Multi-dimensional
sequential pattern mining. In Proc of the 10th Int Conf on Information and
Know Management. Nov. 2001, Atlanta, Georgia. 81–88 104

24. Tzvetkov P, Yan X, Han J (2003) TSP: Mining top-k closed sequential patterns.
In Proc. 2003 Int. Conf. on Data Mining. Nov. 2003, Melbourne, FL. 347–354 104

25. Afshar R (2001) Mining frequent Max and closed patterns. MA thesis, Simon
Fraser University, Canada 104

26. Yang J, Yu PS, Wang W, Han J (2002) Mining long sequential patterns in a
noisy environment. In SIGMOD’02. June 2002, Madison, WI. 406–417 104

27. Chen YL, Chen SS, Hsu PY (2003) Mining hybrid sequential patterns and se-
quential rules, Information Systems 27: 345–362 104

28. Mannila H, Toivonen H, Verkamo AI (1995) Discovering frequent episodes in
sequences. In Proc of the 1st Int Conf on Know Discovery and Data Mining.
Aug. 1995, Montreal, Canada. 210–215 106

29. Joshi MV, Karypis G, Kumar V (1999) Universal formulation of sequential pat-
terns. Technical Report Under Preparation. Department of Computer Science,
University of Minnesota, Minneapolis 106

30. Zhang M, Kao B, Yip CL, Cheung D (2001) A GSP-based efficient algorithm
for mining frequent sequences. In Proc. of IC-AI’2001. June 2001, Las Vegas,
Nevada, USA 108

31. Han J, Pei J, Mortazavi-Asl B, Chen Q, Dayal U, Hsu MC (2000) FreeSpan:
Frequent pattern-projected sequential pattern mining. In Proc of the 6th ACM
SIGKDD int conf on Know discovery and data mining. Aug. 2000, Boston, MA.
355–359 108

32. Ayres J, Gehrke JE, Yiu T, Flannick J (2002) Sequential pattern mining using
bitmaps. In Proc of the 8th ACM SIGKDD Int Conf on Know Discovery and
Data Mining. July 2002, Edmonton, Alberta, Canada. 429–435 109

33. Guralnik V, Karypis G (2001) Dynamic load balancing algorithms for sequence
mining. Technical Report 00-056, Department of Computer Science, University
of Minnesota 112

34. Lin MY, Lee SY (1998) Incremental update on sequential patterns in large data-
bases. In Proc of the 10th IEEE Int Conf on Tools with Artificial Intelligence.
Nov. 1998, Taipei, Taiwan. 24–31 112

35. Masseglia F, Poncelet, Teisseire M (2003) Incremental mining of sequential pat-
terns in large databases. Data & Know Eng 46: 97–121 113

36. Lin MY, Lee SY (2004) Incremental update on sequential patterns in large
databases by implicit merging and efficient counting. Information Systems 29:
385-404 113

37. Cheng H, Yan X, Han J (2004) IncSpan: Incremental mining of sequential pat-
terns in large database. In Proc. 2004 Int. Conf. on Know Discovery and Data
Mining. Aug. 2004, Seattle, WA. 527–532 114

38. Zaki MJ (2000) Sequence mining in categorical domains: Incorporating con-
straints. In 9th Int Conf on Information and Know Management. Nov. 2000,
Washington, DC. 422–429 115

39. Yen SJ, Chen ALP (1996) An efficient approach to discovering knowledge from
large databases. In Proc of 4th Int Conf on Parallel and Distributed Information
Systems. IEEE Computer Society. 8–18 115

122 T.-R. Li et al.

40. Ganter B, Wille R (1999) Formal concept analysis: Mathematical foundations.
Springer, Berlin Heidelberg, New York 115, 116

41. Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Efficient mining of association
rules using closed itemset lattices. Information Systems 24: 25–46 115

42. Li TR, Yang N, Ma J, Xu Y (2004) Theoretical foundations of sequential pat-
terns. In The World Congress on Intelligent Control and Automation. June 2004,
Hangzhou, China. 4241–4244 115

43. Smart DR (1974) Fixed point theorems. Cambridge University Press, Cam-
bridge, UK 116, 117

44. Lee S, Cheung D, Kao B (1998) Is sampling useful in data mining? A case in the
maintenance of discovered association rule, Data Mining and Know Discovery
2(3): 233–262 119

45. EI-Hajj M, Zaiane OR (2003) Inverted Matrix: Efficient discovery of frequent
items in large datasets in the context of interactive mining, In Proc. of the 9th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. Aug. 2003,
Washington, DC. 109–118 119

46. Mannila H (2000) Theoretical frameworks of data mining, SIGKDD explorations
1(2): 30–32 119

47. Goethals B, Zaki MJ (2003) Introduction: Advances in frequent itemset mining
implementations. In Proc of the IEEE ICDM Workshop on Frequent Itemset
Mining Implementations. Nov. 2003, Melbourne, Florida, USA. 1–13 119

48. Agrawal R, Srikant R (2000) Privacy-preserving data mining. In Proc of the
ACM SIGMOD Conf on Management of Data. May 2000, Dallas, TX. 439–450 119

49. Zhan Z, Chang LW, Matwin S (2004) Privacy-preserving collaborative sequen-
tial pattern mining. In SIAM DM 2004 Workshop on Link Analysis, Counter-
Terrorism & Privacy. Apr. 2004, Lake Buena Vista, Florida 119

	Sequential Pattern Mining
	Tian-Rui Li, Yang Xu, Da Ruan and Wu-ming Pan
	1 Introduction
	2 Models of Sequential Patterns Mining
	3 Analysis of Sequential Pattern Mining Algorithms
	4 Theoretical Foundation of Sequential Pattern Mining
	5 Applications of Sequential Pattern Mining
	6 Conclusions
	References

