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Abstract. This paper presents an intelligent technique based method for analyz-
ing and interpreting sensory data provided by multiple panels for the evaluation of
industrial products. In order to process the uncertainty existing in these sensory
data, we first transform all sensory data into fuzzy sets on a unified scale using
the 2-tuple fuzzy linguistic model. Based on these normalized data sets, we com-
pute the dissimilarities or distances between different panels and between different
evaluation terms used by them, defined according to the degree of consistency of
data variation. The obtained distances, expressed with crisp numbers, are turned
into fuzzy numbers for a better physical interpretation. Thus, these fuzzy distances
permit to characterize in an easier way the evaluation behaviour of each panel and
the quality of the evaluation terms used. Also, based on soft computing techniques
and the dissimilarity between terms, we develop procedures for interpreting terms
of one panel using those of another panel and a model for setting the relationships
between the physical product features and the evaluation terms. Then, we introduce
a new method to forecast the consumer preference from the sensory evaluation pro-
vided by an expert panel. This general approach has been applied to two kinds of
industrial products concerning both cosmetic and textile industries.

Key words: Sensory Evaluation, quality, assessment, fuzzy linguistic model, dis-
similarity, distance, fuzzy distance, interpretation

1 Introduction

In many industrial sectors such as food, cosmetic, medical, chemical, and
textile, sensory evaluation is widely used for determining the quality of end
products, solving conflicts between customers and manufacturers, developing
new products, and exploiting new markets adapted to the consumer’s prefer-
ence [1, 2, 3]. In the [2], sensory evaluation is defined as a scientific discipline
used to evoke, measure, analyze, and interpret reactions to the characteristics
of products as they are perceived by the senses of sight, smell, taste, touch,
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and hearing. In general, sensory evaluation can be described as “under pre-
defined conditions, a group of organized individuals evaluate some products
with respect to certain given target”. Consequently, there are four basic factors
in sensory evaluation: evaluation product, evaluation panel, evaluation target
and evaluation environment. According to the difference cases of these factors,
we can divide sensory evaluation into two levels [4]: (1) design-oriented sensory
evaluation; and (2) market-oriented sensory evaluation. Design-Oriented Sen-
sory Evaluation (DOSE) is done by a trained panel composed of experienced
experts or consultants inside the enterprise for judging industrial products
on a number of analytical and non-hedonic linguistic descriptors in a con-
trolled evaluation environment, such as an evaluation laboratory. The evalua-
tion target of design-oriented sensory evaluation is to obtain the basic sensory
attributes of products to improve the quality of product design and devel-
opment. Market-Oriented Sensory Evaluation (MOSE) is given by untrained
consumer panels using analytical and hedonic descriptors according to their
preference on the products to be evaluated in an uncontrolled evaluation en-
vironment, such as supermarkets. The evaluation target of market-oriented
sensory evaluation is to obtain the preference degree of consumers in order
to forecast the market reaction to the evaluated product. Afterwards, the
key issue is to compute data provided by a DOSE in order to forecast the
consumers’ preference (B2C: Business to Consumer) assuming the data are
obtained for a precise context and/or end-use for the industrial product, since
sensory evaluation is context dependant.

Sensory evaluation of industrial products leads to a set of linguistic terms,
named subjective evaluation, strongly related to consumer’s preference but
difficult to be normalized due to their uncertainty and imprecision (see Fig. 1).
As such, this evaluation restricts the scientific understanding of product char-
acteristics for those who wish to design high quality product by engineering
means. Hence, a great number of researchers tried to develop objective evalua-
tion systems by physical measurements in order to replace sensory evaluation,
e.g. [5, 6]. In practice, these objective evaluation systems are often expensive
and lead to precise numerical data describing indirectly products but their
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interpretation for the product quality related to consumer’s preference has to
be exploited. In this chapter (Sect. 4.4), we present a fuzzy based method
for modeling the relationships between the sensory evaluation provided by
panels and the physical features measured on appropriate apparatus, which is
called objective evaluation. The published model is named ‘Product evalua-
tion model’. Compared with physical measures, sensory evaluation as a result
of a human measurement is more efficient for quality determination and it
can not be, for a long term, completely replaced by objective evaluation. This
method can be applied to set up the product process model (see Fig. 1).

In sensory evaluation, the main difficulties can be summarized as follows:

1. For an individual, the evaluation of a sample (in numerical score or linguis-
tic expression) gives a relative result depending on the comparison with the
other samples. This score is significant only for one specific collection of
products and for one particular individual. It is not normalized in a general
background.

2. The terms used by different individuals in an evaluation are not normalized.
Even if they use a common term, its significance is not necessarily the same
for them.

3. The scales and the upper and lower bounds used by different individuals
are often different, which should be unified to the same scale so that the
aggregation of all sensory data can be done.

In our previous work [7], we propose an approach based on a linguistic
2-tuple model [8] for the formalization and the analysis of sensory data. This
approach permits to initially normalize and aggregate sensory data inside each
panel, i.e. a group of evaluators and compute the dissimilarities or distances
between different panels and between different terms used according to the
degree of consistency of relative data variation. The quality of each panel and
evaluation terms can be estimated from these dissimilarity criteria. However,
the physical meaning of the corresponding results is not easy to be interpreted
and distances for different panels are not easy to be compared because the de-
finition of the distance is related to a specific evaluation space, whose number
of evaluation terms is not the same with respect to another evaluation space.

We propose here two procedures in order to provide a systematic inter-
pretation to sensory data obtained by different panels and to forecast the
consumer preference using a training set of products with known DOSE. The
first procedure permits to interpret the values of the dissimilarities between
panels and between evaluation terms. In this procedure, each evaluation score
is generated by a random variable distributed between its lower and upper
bounds uniformly and then the scores of each panel on all terms for all prod-
ucts to be evaluated constitute a random evaluation matrix. The statistical
distribution of the dissimilarity between two panels or between two terms can
be obtained from the corresponding random evaluation matrices using the
equations given in Sect. 4.1. For specific panels or terms, the fuzzy values
or linguistic values of distances between them can be calculated according to
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these statistical distributions. This interpretation will be very important in
the understanding of the behavior of panels and terms used in the evaluation.

The second procedure permits to interpret the relationship between terms
used by different panels. This relationship is recurrently determined using a
genetic algorithm with penalty strategy. It can be considered as a dictionary
for the understanding between different panels. Using this dictionary, an eval-
uation term used by one panel can be transformed into one or several terms
used by another panel. It will be very helpful for solving commercial conflicts
between producers and consumers at the level of understanding of evaluation
terms (B2B: Business to Business). The general proposed approach tries to
allow manufacturers to reduce cost and time for designing new products and
thus to become more reactive and competitive for the market demands and
requirements. Using suitable tools, the manufacturers will be able to predict
the ability for a product to become a success on a specified market. The final
challenge is to be able to tune the process parameter for producing the ap-
propriate product which will fit the market demand. Additional components,
such as marketing elements (price, retailer location, and so on, . . . ), have also
to be taken into account.

In order to illustrate the effectiveness of our proposed approach, we apply
it to sensory data provided by two sets of industrial products. The first set
corresponds to fabrics designed for apparel: T-shirts. The hand evaluation for
those 43 knitted cotton samples are obtained from 4 sensory panels in France
and China. Each panel uses its own terms and evaluation bounds different
from the others. Based on the proposed method, we compare the behaviors on
fabric hand evaluation between textile professionals and students and between
French and Chinese consumers in order to make the adaptive design of textile
products to consumer’s preference. The second set of data is related to the
cosmetic industry. It includes 8 lotions with varying performance according to
their interaction with the skin or the human feeling they express at the first
contact.

2 Description and Formalization of Sensory Data

The concepts of sensory evaluation used in this chapter can be formalized as
follows.

P = {P1, P2, . . . , Pr} : the set of r panels, each panel, Pi = {Ii1,
Ii2, . . . , Ii,h(i)}, being composed of h(i) individuals evaluating the hand feeling
of fabric samples.

A = {aik|i = 1, 2, . . . , r; k = 1, 2, . . . ,m(i)} : the set of linguistic terms
used for the fabric hand evaluation. For the panel Pi, it uses m(i) terms, i.e.
Ai = {ai1, ai2, . . . , ai,m(i)}. For one or several panels, different linguistic terms
can be correlated between them, but in general they can never be replaced
one by another. It is also possible for two terms used by different panels to be
identical, but they are not necessarily equivalent at semantic level.
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T = {t1, t2, . . . , tw, . . . , tn} : the set of n industrial products to be evalu-
ated. The relationships among different terms of the evaluation, the behaviors
of different panel members can be studied from these samples.

Ei = {Ai;Ei1, Ei2, . . . , Ei,h(i)} : the evaluation space for the panel Pi/(i ∈
{1, 2, . . . , r}).

Eij : the evaluation matrix n × m(i) of the individual Iij . Each element
of this matrix, eij(k, 1) represents a relative numerical score or a granular
linguistic expression given by Iij for evaluating the sample tk on the term
ail/ (k ∈ {1, 2, . . . , n} , l ∈ {1, 2, . . . ,m (i)}). It is obtained by a classification
procedure for the whole samples of T .

The sensory data, provided by the consumers, are obtained through a
survey and the consumers’ panel can be considered as a free profiling panel.
The consumers fill a questionnaire form. For each question, they select the
most appropriate grade (intensity) according to their feeling. For example, if
the question about the product concerns its ‘softness’, the consumer’s answer
can be chosen from the following grades of softness: {not Soft, slightly Soft,
Soft, very Soft, extremely soft}. Since the survey is repeated for many people,
the consumer evaluation matrix is computed so that each element denotes
the population percentage who thinks the product satisfies the considered
grade compared to the term and for all the products of T . Thus, a consumer
panel (MOSE) can be regarded as a regular panel of P, but with only one
member (h(i) = 1), with a number of terms that corresponds to the number
of terms used in the survey and with an evaluation matrix (scores) which
corresponds to the population percentage. We also define the vector X =
(x1, . . . , xw, . . . , xn)T which concerns the consumers’ preference about all the
products which belong to T . Through a survey, they express their preference
for one product over the all set. Thus, the component xw of X corresponds
to the consumers’ rate who appreciate the w-th product over the (n − 1)-th
other products. As a mother of fact, the more consumers are enrolled in the
survey, the more precise is the market preference evaluation. The sum for all
the x′

ws, as the expression of the consumers rate who rank the w-th product
at the top level, is then equal to 1:

∑n
w=1 xw = 1

3 Linguistic 2-Tuple for Finding
the Optimal Unified Scale

In sensory evaluation, results given by different individuals on different at-
tributes or terms may have different scales. This is because the sensitivity of
each individual to the samples to be evaluated, strongly related to his personal
experience and the corresponding experimental conditions, is often different
from others. Moreover, these sensory data may be in a numerical form or a
granular linguistic form. So it is necessary to develop a suitable unified scale
in order to normalize and aggregate these data.
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The 2-tuple fuzzy linguistic model [8] can be used for unifying multi-
granular linguistic information without loss of information. Using this model,
sensory data provided by different individuals on different attributes can be
normalized on the common optimal scale. However, in [8], the transformation
is carried out between levels of a linguistic hierarchy only. Here, we general-
ize the 2-tuple model to be used in transforming among arbitrary scales and
several quantitative criteria permitting to select the most suitable scale for all
individuals and all attributes or terms.

3.1 2-Tuple Fuzzy Linguistic Model

In the panel Pi, for each individual Iij and each term ail, the corresponding
sensory data varying between 0 and g(i, j, l) = max{eij(k, l)|k = 1, 2, . . . , n}
can be transformed into a fuzzy set of g(i, j, l) + 1 modalities denoted by
Uijl = {u1, u2, . . . , ug(i,j,l)} as shown in Fig. 2.

0 1 t g

u0 ut ugu1

0 1 t

u0 ut ugu1 … …

Fig. 2. Fuzzy set Uijl composed of g + 1 modalities

For simplicity, g(i, j, l) is denoted by g for unambiguous cases. We consider
that any evaluation score of Iij for the term ail is included between 0 and g
and it can be represented by a 2-tuple (ug

t , α
g) with αg ∈ [−0.5, 0.5].

For any β ∈ [0, g], the 2-tuple that expresses the equivalent information is
obtained using the following function:

∆(β) =
{

ut t = round(β) .
α = β − tα ∈ [−0.5, 0.5) and ∆−1(ut, α) = t + α = β .

For the panel Pi, the evaluation results of the individuals Iij ’s can be
aggregated by transforming all the corresponding fuzzy sets to be on a unified
scale.

Let ug(i, l) be the value of the unified scale for all the individuals of Pi

on the term ail. For each individual Iij , any evaluation score (ug
t , α

g) on this
term can be transformed into a new 2-tuples:

(uug
s , αug) = ∆

(
∆−1(ug

t , α
g) · ug

g

)
(1)

This transformation can be denoted by the function s = Tr(t, g, ug).
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3.2 Obtaining the Optimal Common Scale

In order to best aggregate the sensory evaluation of multiple individuals in
the same panel, we have to find an optimal value of the unified scale ug for
all the individuals of Pi.

For the panel Pi, its optimal unified scale can be calculated according to
the two following principles:

1. The sensory data given by the individuals Iij should cover all the modalities
of the unified scale, i.e., any uug

s (s ∈ {0, 1, 2, . . . , ug}) should correspond
to at least one data.

2. The variation or the trend of the sensory data should not change very much
with the transformation of the scale.

The sensory data of Iij for evaluating n samples on the term ail before the
transformation are {eij(1, l), eij(2, l), . . . , eij(n, l)}. After the transformation,
these data become {sij(1, l), sij(2, l), . . . , sij(n, l)}, where

sij(k, l) = Tr(eij(k, l), g, ug) for k = 1, 2, . . . , n .

According to the first principle, we first calculate the number of data for each
modality q of the unified scale ug, i.e.,

N mod i(l, q) =
h(i)∑

j=1

n∑

k=1

equ(sij(k, l), q) ,

with

equ(p, q) =
{

1 if p = q
0 otherwise

The criterion of coverage of the unified scale is then defined by

Coveri(l) = min {N mod i(l, q) |q = 0, 1, 2, . . . , ug } .

According to this criterion, ug should be selected so that Coveri(l) is as
big as possible. If this value is 0, it means that there exists at least one non-
significant modality uug

s on the unified scale ug.
According to the second principle, the difference of the trend between two

data sets {eij(1, l), eij(2, l), . . . , eij(n, l)} and {sij(1, l), sij(2, l), . . . , sij(n, l)}
should be as small as possible. So, the corresponding criterion is defined by

Trendi(l) = min {trendij(l) |j = 1, . . . , h(i)} ,

with
trendij(l) =

2
n(n − 1)

∑

k1<k2

cij(k1, k2, l),

and
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cij(k1, k2, l) =
{

1 if (eij(k1, l) − eij(k2, l))(sij(k1, l) − sij(k2, l)) > 0
0 otherwise .

According to this criterion, ug should be selected so that the value of
Trendi(l) is as big as possible. If two data sets {eij(1, l), eij(2, l), . . . , eij(n, l)}
and {sij(1, l), sij(2, l), . . . , sij(n, l)} for any individual Iij vary completely
with the same trend, the value of Trendi(l) will be maximized and there is no
information lost in the data set {sij(k, l)} on the unified scale ug.

The optimal value of ug can be obtained by maximizing the linear combi-
nation of these two criteria as follows:

max {Coveri(l) + ρ · Trendi(l)} (2)

where ρ is a positive constant adjusting the ratio of these two criteria.
As the optimal value of ug is obtained, for each individual Iij and each

term ail, the optimal unified evaluation score (uog
s , αog) can be obtained by

transforming sensory data into a new 2-tuples by using (1). The sensory data
for all individuals of this panel can be aggregated on this optimal scale.

3.3 Aggregating Sensory Data on the Desired Domain

On the common optimal scale, the transformed evaluation scores on term
ail for all individuals can be aggregated using an averaging operator. The
aggregated evaluation result of Pi for one sample on the term ail can be
calculated by

(ūug
s , ᾱug) = ∆

(∑h(i)
j=1 ∆−1(uug

sj
, αug

sj
)

h(i)

)

where (uug
sj

, αug
sj

) is the transformed 2-tuples of the evaluation scores of the
individual Iij for the same sample on the term ail.

In the same way, all the aggregated evaluation scores of Pi for different
terms of Ai are transformed to be on the unique unified scale and can be
expressed by a matrix of n × m(i) 2-tuples, denoted by Si (evaluation space
for Pi). Each element of Si is a 2-tuples denoted by (usi(k,l), αsi(k,l)) for k =
1, 2, . . . , n and l = 1, 2, . . . ,m(i). For simplicity, this 2-tuples is replaced by
si(k, l) if the weak influence of αsi(k,l) can be neglected. The matrix Si =
(Si1 Si2 · · ·Si,n)T includes n vectors, each of them representing the evaluation
results for one sample. These vectors will be used in the next section for the
analysis and interpretation of panels and term.

4 Analysis and Interpretation of Sensory Data

In this section, we first define a number of criteria, according to the normalized
matrices Si = (si(k, l)), i ∈ {1, . . . , r} obtained from Sect. 3, in order to
analyze the performance of the evaluators and the used description terms.
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4.1 Dissimilarity between Individuals and between Terms

The sensory data of two panels Pa and Pb constitute two evaluation spaces
Sa and Sb. The dissimilarity between Pa and Pb cannot be defined using
classical methods, which compute distances between the vectors Sak and Sbk

(k ∈ {1, . . . , n}) because these two vectors are not in the same space. So a new
dissimilarity criterion between two individuals Pa and Pb has been defined in
[7].

In this definition, the dissimilarity criterion takes into account the degree
of consistency of relative variations of two different sensory data sets. If the
internal relative variations of these two data sets are close each other, and
then the dissimilarity between the corresponding panels is small. Otherwise,
this dissimilarity is great. Formally, this dissimilarity is defined by

Dab =
2

n(n − 1)

∑

i<j

dab(i, j) (3)

It depends on the following elements:

1. The dissimilarity between Pa and Pb related to the relative variation be-
tween fabric samples ti and tj : dab(i, j) = |vra(i, j) − vrb(i, j)|.

2. The relative variations between ti and tj for Pa and Pb:

vra(i, j) =
1√

m(a)
‖Sai − Saj‖

vrb(i, j) =
1√
m(b)

‖Sbi − Sbj‖ .

The definition of Dab permits to compare, between these two panels, the
relative variations on the samples of T . The dissimilarity between two panels
reaches its minimum only when the internal variations of their sensory data
are identical.

The dissimilarity Dab can be considered as a distance between Pa and Pb

because it satisfies the following three conditions:

(i) Daa=0
(ii) Dab = Dba

(iii) Dab + Dbc ≥ Dac

The two first conditions (i)&(ii) can be easily proved from the definition of
the dissimilarity. The proof of the third condition (iii) is given as follows.

If vra(i, j) ≥ vrb(i, j) ≥ vrc(i, j), then dab(i, j) + dbc(i, j) = vra(i, j) −
vrc(i, j) = dac(i, j).

If vra(i, j) ≥ vrc(i, j) ≥ vrb(i, j), then dab(i, j) + dbc(i, j) = vra(i, j) −
vrb(i, j) + vrc(i, j) − vrb(i, j) ≥ vra(i, j) − vrc(i, j) = dac(i, j).
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For any other conditions, the inequality dab(i, j) + dbc(i, j) ≥ dac(i, j) also
holds and then we have Dab +Dbc ≥ Dac. So, the three conditions of distance
are completely satisfied by the dissimilarity defined previously.

Another criterion is developed in order to compare two panels according to
the sensitivity of data for the evaluation of the samples of T [7]. The sensitivity
of Pa is defined by

SSBa =
2

n(n − 1)

∑

i<j

vra(i, j) (4)

where, vra(i, j) characterizes the relative variation of the sensory data given
by Pa from the sample ti to tj . If the value of SSBa is bigger than that of
SSBb, then we consider that Pa is more sensitive to the samples of T than Pb.
However, this does not mean that Pa is more efficient than Pb.

In the same way, we also define the dissimilarity or distance between terms
used by the same panel and by different panels [7]. This criterion permits to
study the redundancy of the terms used by each panel. In general, the bigger
the dissimilarity between any two terms used by a panel is, the more efficient
the evaluation results are.

4.2 Fuzzy Dissimilarity or Fuzzy Distance

The criteria of dissimilarity and sensitivity for panels and terms defined in
Sect. 4.1 are significant only for comparison because we do not know how to
physically interpret the absolute values of these criteria. We do not know if
a slight variation of such a criterion is physically important or not. In order
to give a physical interpretation to the results calculated from dissimilar-
ity criteria and sensitivity criteria, we transform these numerical values into
fuzzy numbers, whose membership functions are generated according to the
probability density distributions of the corresponding random matrices. The
detailed procedure is given as follows and, according to the above section, Pa

and Pb denote two panels a and b:

Step 1: For fixed values n, m(a) and m(b), generating two random matrices Sa

(dimension: n×m(a)) and Sb (dimension: n×m(b)), whose elements
obey the uniform distribution between lower and upper bounds of
normalized evaluation scores, i.e. 0 and ug.

Step 2: Computing the values of dissimilarity and sensitivity Dab, SSBa and
SSBb according to the equations in Sect. 4.1.

Step 3: Repeat Step 1 and Step 2 several times in order to obtain the proba-
bility density distributions for Dab, SSBa and SSBb(see Fig. 3).

Step 4: We then divide equally the area of each distribution into 5 parts.
According to these divided areas, we generate 5 fuzzy sub-sets for
each of Dab, SSBa and SSBb: {very small, small, medium, large, very
large}. The corresponding membership functions can be determined
from these 5 fuzzy numbers.
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Fig. 3. Distance Distribution Function (Dab) with uniformly selected random eval-
uation scores

Figure 3 gives the probability distribution for the dissimilarity Dab between
two panels Pa and Pb using 11 and 6 terms respectively as Fig. 4 shows how
we turn a crisp number of dissimilarity (or sensitivity) into a fuzzy one,which
makes easier the understanding. The membership functions corresponding to
the five fuzzy values equally dividing the area of this distribution are given
in Fig. 4. From these membership functions, we can see that the dissimilarity
Dab is sensitive only in the interval of [0.11, 0.30], in which three fuzzy values
small (S), medium (M) and large (L) are asymmetrically distributed. A value
of Dab smaller than 0.161 is considered as very small (VS) and a value of Dab

larger than 0.207 as very large (VL).

Fig. 4. From a distance crisp number to a fuzzy distance number
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In this way, each numerical value of dissimilarity criteria and sensitivity
criteria, calculated from (3) and (4) can be transformed into a fuzzy number
whose value includes the linguistic part taken from the previous 5 terms and
the corresponding membership degree. This fuzzy number permits to interpret
the dissimilarity or the sensitivity with respect to the whole distribution of
random values. The evaluation behaviors of different panels can be effectively
analyzed and compared from these fuzzy numbers.

Moreover, according to our experiments, the distributions of the dissimi-
larity and the sensitivity for different values of n,m(a) and m(b) are rather
similar. This is because the normalization with respect to these parameters
has been taken into account in the corresponding equations.

The interpreted results of the dissimilarity and the sensitivity are strongly
related to their probability distributions. In this paper, we suppose that there
does not exist any restriction in evaluation scores and values of the elements of
Sa and Sb and then they are selected randomly from the uniform distribution.
If some restriction exists in evaluation scores, the probability distributions of
the dissimilarity and the sensitivity will change accordingly and new member-
ship functions of the corresponding fuzzy values should be generated in order
to guarantee the correctness of the interpreted results.

This principle of interpretation using fuzzy distances can also be applied
to the analysis of terms used by the same panel and different panels.

4.3 Relationships Settings between Linguistic Terms

In industrial applications, there exists a strong need for interpreting evalua-
tion terms of one panel using those of another panel. In this paper, we propose
a genetic algorithm based procedure to do so. This procedure can be consid-
ered as a dictionary of terms for different panels and it is helpful for solving
commercial conflicts between sensory panels related to the understanding of
quality criteria. The details of this procedure are given as follows.

The sensory data of two panels Pa and Pb are obtained by evaluating the
same set of representative samples denoted by T . The terms sets of Pa and Pb

are denoted by Aa = {aa1, aa2, . . . , aa,m(a)} and Ab = {ab1, ab2, . . . , ab,m(b)}
respectively. For each term aak of Pa (k ∈ {1, . . . , m(a)}, we try to find the
optimal linear combination of the terms ab1, ab2, . . . , ab,m(b) to generate a new
term denoted by a(Pa, Pb, k) which is the closest to aak in semantics, i.e.
a(Pa, Pb, k) = wk

1
· ab1 + wk

2
· ab2 + · · · + wk

m(b)
· ab,m(b) with

∑m(b)
i=1 wk

i = 1.
The corresponding weights {wk

1
, wk

2
, . . . , wk

m(b)} are determined using a genetic
algorithm with penalty strategy [9] so that the distance between aak and
a(Pa, Pb, k) is minimal. This optimization procedure is realized by performing
the following steps:

Step 1: Finding the term of Pb the closest to aak

Computing the distance between aak and each term of Pb:
ab1, ab2, . . . , ab,m(b) using the method presented in Sect. 4.1. The correspond-
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ing values are denoted by {D1,D2, . . . , Dm(b)}. Selecting the term abx so that
Dx (the distance between abx and aak) is the smallest of {D1,D2, . . . , Dm(b)}.
Step 2: Building the support set of terms of Pb related to aak

Building a set of new terms of Pb: {ab1
′, . . . , ab,x−1

′, ab,x+1
′, . . . , ab,m(b)

′}
by adding the normalized evaluation scores of abx for all samples of T to
those of each term abi (i ∈ {1, . . . , b(m)} and i �= x). Computing the distance
between aak and each of these new terms and denoting the corresponding
results as {D′

1, . . . , D
′

x−1,D
′

x+1 · · ·D
′

m(b)}. If D
′

j < Dx (j ∈ {1, . . . , m(b)}
and j �= x), we consider that abjhas a contribution to the decrease of the
distance between abx and aak and then the corresponding weight wk

j > 0. If
D

′

i > Dx, we consider that abj has no contribution to the decrease of the
distance between abx and aak and then the corresponding weight wk

j = 0.
Therefore, we define the support set of terms of Pb related to aak by

Ak
b

= {abh1, abh2 , . . . , abhq
} with abh1 = abx and abhj

∈ Ab and wk
hj

> 0
for j∈{2,. . . ,q}.

In this case, all terms of Pb satisfying the condition wk
j =0 are deleted from

Ab and only the relevant terms having contributions to the construction of
the new term a(Pa, Pb, k) are preserved in the support set Ak

b
. This step can

largely reduce the computing complexity of Step 3.

Step 3: Building the term a(Pa, Pb, k) that is the closest to aak

By applying a genetic algorithm, we compute the optimal weights of the rele-
vant terms of Ak

b
in order to construct the term a(Pa, Pb, k) that is the closest

to aak in semantics. It is an optimization problem with constraints because
the sum of the weights should be equal to 1 and each weight should be no
smaller than 0. In this case, we use the penalty strategy [9] in the genetic
algorithm. The detail for this algorithm is given as follows.

Procedure for computing the weights of the relevant terms using a Genetic
Algorithm:

Begin
Coding and initializing the population of weights W k

b
(t) = (wk

h1
(t)wk

h2

(t) · · ·wk
hq

(t)) (t ← 0)
IF W k

b (t) satisfies the constraints (
∑q

j=1 wk
hj

= 1 and wk
hj

≥ 0 for j ∈
{1, . . . , q})

THEN Evaluate the fitness by fitness function A
ELSE Evaluate the fitness by fitness function B

End IF

While Not satisfying stop conditions

Do
Random Selection Operation
Crossover Operation
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Mutation Operation
Updating W k

b (t) (t ← t + 1) for generating the next population of weights

IF W k
b (t) satisfies the constraints

THEN Evaluate the fitness by fitness function A
ELSE Evaluate the fitness by fitness function B

End IF
End While
End

The fitness function A is defined by Dab(a(Pa, Pb, k), aak) = 2
n(n−1)

∑
i<j

dab(a(Pa, Pb, k), aak, i, j) with a(Pa, Pb, k) = (1−
∑q

j=2 wk
j ) ·abh1 +

∑q
j=2(w

k
j ·

abhj
)
(
abhj

∈ Ak
b

)
.

under the constraints
{

1 −
∑q

j=2 wk
j > 0

wk
j ≥ 0 (2 ≤ j ≤ q)

.

The concepts Dab and dab are computed according to the definitions in
Sect. 4.1.

We also define the fitness function B with penalty factor ρ as follows:

Dab(a(Pa, Pb, k), aak) =
2

n(n − 1)

∑

i<j

dab(a(Pa, Pb, k), aak, i, j) + ρ

where ρ = γ
∑q

j=2 wk
j
. γ is the parameter of penalty.

Figure 5 gives a practical example which recurrently computes the weights
of the relevant terms of Pb related to aak using the genetic algorithm running
for 100 generations. The evolution of the best value and the averaged value of
the fitness function shows that the algorithm converges to its optimum after
20 populations. The best linear combination of the terms of Pb related to the
term aak of Pa is then obtained.

Fig. 5. Evolution of the fitness function for computing the weights (one example)
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4.4 Forecasting the Consumers’ Preference

Usually, the number of descriptors used by experts is greater than those of
consumers. This lies in the fact the consumers’ knowledge is more basic. But
even if their experience on the product quality evaluation is poorer, their
feeling can be included in the results of experts or trained panels. Thus, it
means that relationships can be found between linguistic terms used by ex-
perts or trained panels and terms used by the consumers. Since the consumer
evaluation matrix is computed so that each element denotes the population
percentage, we need to adapt the relative variation between fabric samples
ti and tj to compute the distances between DOSE and MOSE panels. The
relative variation vrMOSE(i, j) is now estimated by considering the averaged
scores, computed with the grades values for a specific descriptor (see Table 1).
For each consumer’s term and each grade, we assign an absolute score accord-
ing to the number of grades and the range [0, 1], since the sensory data are all
normalized between 0 and 1. The average is then obtained by multiplying the
population rate and the absolute score. For the considered term, we obtain a
score which tends toward 1, if the major part of the consumers agrees with
the descriptor. Then, using the procedure described in Sect. 4.3, we compute
the relationships between the consumers’ sensory evaluation and the terms
used by DOSE panels. In the same way, we reproduce the same technique
for extracting the relationships between the consumers’ preference (vector X)
and the DOSE-linguistic descriptors. These last relationships lead to a vec-
tor of weights, which characterizes the optimal linear combination of the m(i)
DOSE-terms for explaining the consumers’ preference X: (wk

1 , wk
2 , . . . , wk

m(i))
T

where k equals 1, because the consumers’ preference is there considered as only
one descriptor and no more as a set of linguistic terms. Our target is to es-
timate what could be the consumers’ preference for an additional (n + 1)-th
product when its sensory evaluation is performed by the DOSE. Assuming
the xi’s vary in the range [0, 1], to find the preference xn+1, we construct
an array of all the preference vectors with an additional component which
lies in [0, 1] and represents the possible preference. Then, we compute all
the distances between the preference vector with additional components and
the optimal linear combination of DOSE-terms for the new product. The pre-
dicted preference corresponds to the minimum of those distances, because it
is the nearest distance between the optimal linear combination which mod-
els the preference and the forecasted preference. The Fig. 6 shows the curve
obtained with varying consumers’ preference. In this example, the nearest dis-
tance between the DOSE and the preference is about 13, which means that
13% of the consumers are expected to appreciate the product.

5 Product Evaluation and Process Models

In the product evaluation model (see Fig. 1), we have numerical input vari-
ables (selected physical features). Those input parameters, measured with
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Table 1. Example of consumer sensory evaluation for a set of samples T

Not
'soft'

Very
Little
'soft' 

Slightly
'soft' 'soft'

Very
'soft'

Extremely 
'soft' 

Absolute
scores 0 0.2 0.4 0.6 0.8 1 

Population 
rate (%) 

9 16 18 27 27 3 Product 
#1

Score ([0, 1]) 0.09 0.16 0.18 0.27 0.27 0.03 
average = 0.09x0 + 0.16x0.2 + 0.18x0.4 + 0.27x0.6 + 0.27x 0.8 + 0.03x1 = 

0.512
… …   …    

Population 
rate (%) 

1 7 5 45 32 10 Product 
#n

Score ([0, 1]) 0.01 0.07 0.05 0.45 0.32 0.10 
average = 0.01x0 + 0.07x0.2 + 0.05x0.4 + 0.45x0.6 + 0.32x 0.8 + 0.10x1 = 

0.66

appropriate devices, are chosen for their influence on the product quality. The
Abe’s method is then applied for extracting fuzzy rules directly from these
numerical data [10] and to build the model between the physical measure-
ments on the products and the sensory evaluation. This method permits to
obtain a good compromise between precision, robustness and interpretability.

Fig. 6. Distance curve with varying consumers’ preferences (percentage)
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The Abe’s method is briefly described below. At first, the universe of the
output is divided into a number of intervals. By putting the input data into
different classes according to the output intervals, we define two kinds of re-
gions in the input space: activation hyperboxes and inhibition hyperboxes. For
a given class of input data, an activation hyperbox contains all data belong-
ing to this class and an inhibition hyperbox inhibits the existence of data for
this class. Inhibition hyperboxes can be located by finding overlaps between
neighboring activation hyperboxes. In these located inhibition hyperboxes can
be defined new activation and inhibition hyperboxes for the next level. This
procedure is repeated until overlaps are solved (see Fig. 7).

In this procedure, the fuzzy rules are defined by activation and inhibition
hyperboxes (see Fig. 7). We select a suitable Gaussian function as membership
function and calculate the output value using Sugeno’s defuzzification method.

By comparison with other methods of fuzzy rules extraction which assume
the space of input variables is partitioned into a number of fixed regions, this
procedure generates more accurate fuzzy partition and fuzzy rules.

In practice, the fuzzy rules extracted using Abe’s method are less efficient
when the number of input variables is too great with respect to the quantity
of available data. It is the case in many industrial applications. For solving
this problem, we use Principle Component Analysis (PCA) [11] to reduce
the number of input variables before starting the procedure of fuzzy rules
extraction. By using this technique, the lower dimensional input space used
in the Abe’s method is obtained from the projection of the original high
dimensional space. Its principle is given below.

PCA performs a linear transformation of an input variable vector for rep-
resenting all original data in a lower-dimensional space with minimal infor-
mation lost.

The principle of the product evaluation model for one descriptor is shown
in Fig. 7. A very slight model internal parameters adjustment is required for
any other descriptor and the same procedure can be repeated in order to build
the product process model described in Fig. 1.

In the example described below (Sect. 6), experts obtain 7 levels for “Soft”
and for the whole fabric samples. Their evaluation scores are taken as output
data of the model. The data measured on 11 selected physical features are
taken as input data after the projection of the original space into the two-
dimensional subspace using PCA. Fuzzy rules are then directly extracted from
these input-output learning data (see Fig. 8).

6 Application

In order to highlight and to illustrate the effectiveness of the above approach,
we apply it to sensory data on fabric hand evaluation provided by 2 sensory
panels in France, including a fashion design expert (FE) and a group of trained



392 L. Koehl et al.

Aii(1)

Ajj(1)
Ijj(1)

Aij(2)

Aji(2)

Iij(2)

Aij(3)
Aji(3)

Level l = 1

Level l = 2

Level l = 3

Fig. 7. Fuzzy rules extraction by generating Activation and Inhibition hyperboxes
in the input space (2-D)
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Fig. 8. Product evaluation model for one descriptor with 11 product features

students (FTS) and 2 sensory panels in China, including a group of textile ex-
perts (CE) and a group of trained students (CTS). The fabric set is composed
of 43 knitted cotton samples produced using 3 different spinning processes.
These samples can be then classified into 3 categories: Carded, Combed and
Open-End, corresponding to different touch feelings. For FE, 11 evaluation
terms have been used and they include “soft”, “smooth”, “tight”, “slippery”,
“floppy”, “compact”, “hollow”, “pleasant”, “fresh”, “dense”, “flexible”. For
FTS, they use 4 terms, including “smooth”, “slippery”, “soft”, “tight”. For
CE and CTS, the terms used are not normalized and they vary with evalua-
tor. In general, each CE uses 6 or 7 terms such as “soft, “slippery”, “flexible”,
“texture”, “elasticity”, “thickness” and each CTS uses 3 or 4 terms such as
“soft”, “slippery”, “flexible”.
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6.1 Analysis at the Level of Evaluators

Applying the methods presented in Sects. 4.1 and 4.2 to analyze and interpret
the evaluation scores given by these 4 evaluation panels, we obtain the corre-
sponding crisp and fuzzy values of dissimilarity or distance and sensitivity in
Table 1.

From Table 2, we can notice that the averaged distances between French
and Chinese experts and between professional experts and students are very
small. It means that the general evaluation on fabric hand is related to neither
the cultural background nor the professional background. Moreover, since the
experts’ sensitivities are medium or large and the students’ sensitivities are
very small or small, it means that experts are more sensitive in the evaluation
of products.

6.2 Analysis in the Level of Terms

Using the methods in Sects. 4.1 and 4.2, we also calculate the crisp and fuzzy
distances between evaluation terms used by each panel. The averaged results
are given in Table 3. From Table 3, we can notice that the crisp values of
distances between different terms are very large or large for French experts
(FE) and very small or small or large for the other panels. This means that
French experts define more suitable terms for describing fabric hand and un-
derstand better their meaning in fabric hand evaluation. The overlap between
two different terms is not important.

The results of crisp and fuzzy distances between different panels on the
term “soft” are given in Table 4 and Table 5 respectively.

Table 2. Averaged distances and sensitivities for different panels

FE CTSCEFTS
Crisp# 0.1563

Fuzzy set VS
Crisp# 0

Fuzzy set VS
Crisp# 0.1456

Fuzzy set VS
Crisp# 0.1692

Fuzzy set VS

Crisp# 0.4219 0.3635
S 0;2833 S 0.5459 VS 0.4900
M 0;7167 M 0.4531 S 0.5100

Sensitivities
0.4187 0.3977

Fuzzy set VS

0.1717 0.1622 0 CTS
VS VS VS

CE
VS VS VS

FTS
VS VS VS

FE
VS VS VS

Distances

0 0.1284 0.1717

0.1563 0.1456 0.1692

0.1284 0 0.1622

Table 4 and Table 5 show that the distances between different panels on
the term “soft” are sometimes rather important (M, L, VL) although most
of the fuzzy values of these distances are very small. The same phenomenon



394 L. Koehl et al.

Table 3. The averaged crisp and fuzzy distances between terms

Crisp# 0.2937 0.1844

L 0.792

VL 0.208

Crisp# 0.2911 0.1585

L 0.167 L 0.967

VL 0.833 VL 0.033

Crisp# 0.3708 0.2774

S 0.144

M 0.856

PROCESS FTSFE CE CTS

Carded

0.2546 0.289

Fuzzy Set VL VS VS

Combed

0.291 0.2869

Fuzzy Set VL VS

Open-End

0.3779 0.3289

Fuzzy Set VL VL VS

can be observed for the other terms such as “slippery” and “smooth”. This
means that one evaluation term is often semantically interpreted in different
ways by different panels. This remark has been validated by some industrial
companies. In these companies, there exist conflicts between suppliers and
consumers on quality criteria expressed in linguistic terms. A dictionary is
then needed for the understanding of evaluation terms between different pro-
fessional populations.

The performance of each evaluator or panel can be characterized by the
following criteria: 1) dissimilarity between terms he/she uses; 2) total number
of terms used; 3) sensitivity to the products be evaluated and 4) stability
or capacity of reproduction of evaluation scores. According to the previous
analysis on the sensory evaluation data provided by our panels, we can see
that the experts specialized in textile technology, especially the French expert
(FE) are more efficient than the other panels in the evaluation of fabric hand.
A sensory panel can also be trained according to these 4 criteria.

Table 4. The values of crisp distances between different evaluators on the common
term “soft”

Process
Evaluators CE FTS CTS CE FTS CTS CE FTS CTS

FE 0.1343 0.2123 0.1743 0.2262 0.2311 0.2661 0.102 0.21 0.1803
CE 0.2061 0.201 0.1325 0.1643 0.1803 0.1973
FTS 0.2189 0.1574 0.2874

Carded Combed Open-End

6.3 Interpretation of the Relationship
between Terms used by Different Panels

We use the method in Sect. 4.3 to interpret each term used by the panel of
French trained students (FTS), the panel of Chinese experts (CE) and the
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Table 5. The values of fuzzy distances between different evaluators on the common
term “soft”

Evaluators CE CTS CE

VS 0.813 S 0.417 S 0.417 VS 0.031 VS 0.969

S 0.187 M 0.583 M 0.583 S 0.969 S 0.031

VS 0.813 VS 0.969 VS 0.344

S 0.187 S 0.031 S 0.656

VS 0.125 L 0.1

S 0.875 VL 0.9

FTS

PROCESS

Carded Combed Open-End

FTS CTS

FE VS VS VL VS

FTS CTS CE

CE VS VS VS

FTS VS

panel of Chinese trained students (CTS) by those of the French Expert (FE).
For simplicity, we only discuss the case of Pa = FTS and Pb = FE in this
section. The 11 terms used by FE corresponds to Ab = {ab1, ab2, . . . , ab,11}
and the 4 terms of FTS to Aa = {aa1, aa2, aa3, aa4}. After applying the ge-
netic algorithm with penalty strategy presented previously, we obtain the
optimal linear combination of the terms of FE related to each term of FTS.
The corresponding weights wk

j ’s of these linear combinations are shown in
Table 6.

Table 6. The weights of optimal linear combinations of terms of FE related to those
of FTS

Terms of FE 

Terms
Of FTS

So
ft

Sm
oo

th

T
ig

ht
 

S
li

pp
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y 

Fl
op

py
 

C
om
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ct

H
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lo
w

 

Pl
ea
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nt

Fr
es

h 

D
en

se
 

Fl
ex
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le

 

Smooth 0.6 0 0 0 0.1 0 0.3 0 0 0 0 
Slippery 1 0 0 0 0 0 0 0 0 0 0 
Soft 0.3 0 0 0 0.3 0 0.4 0 0 0 0 
Tight 0 0.1 0 0 0 0 0.1 0 0 0.4 0.4 

Table 6 permits to interpret the relationship between terms used by FTS
and FE. Under this relationship, the terms used by FTS can be approximately
expressed by linear combinations of the terms of FE. For example, the term
“soft” used by FTS can be approximately expressed as a linear combination
of three terms of FE: “soft”, “floppy” and “hollow”, i.e.

soft FTS ≈ 0.33 · soft FE + 0.32 · floppy FE + 0.35 · hollow FE

Table 7 gives the distances between the terms of FTS and their correspond-
ing optimal linear combinations of terms of FE, obtained using the procedure
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Table 7. Evolution of distances between terms of FTS and FE

Distance between the term of FTS 
and the closest term of FE 

Distance between the term of FTS 
and the optimal linear combination of 

terms of FE 
Term of 

FTS
Crisp# Crisp#Fuzzy set Fuzzy set

VS 0.431 Smooth 0.211
S 0.569 

0.156 VS

Slippery 0.161 VS 0.161 VS
VS 0.367 Soft 0.212
S 0.638 

0.131 VS

M 0.501 Tight 0.237
L 0.499 

0.165 VS

in Sect. 4.3. These results show that the obtained optimal linear combinations
are very close to the terms of FTS related to the original terms of FE. Each
term of FTS corresponds to several terms of FE.

For the term “slippery” of FTS, there is only one term in the support set
of terms of FE. So, the procedure described in Sect. 4.3 can not decrease the
closest distance between terms of FTS and FE. For the other three terms,
the procedure implemented in Sect. 4.3 can effectively decrease the closest
distance between terms of FTS and FE. From the optimal linear combinations,
we obtain new terms of FE much closer to those of FTS than the original terms
of FE.

6.4 Interpretation of the Relationship
between Terms used by Different Panels

In the modeling of fabric evaluation, we first use Principle Component Analy-
sis (PCA) to obtain the reduced data and then extract fuzzy rules using the
Abe’s method. The corresponding results are given as follows.

The two components obtained from PCA are λ1 = 4.43 and λ2 = 1.16 with
46.9% and 16.7% of explanation respectively. For testing the effectiveness of
the model, we remove at each time one sample from the learning base and we
apply the Abe’s algorithm with the remaining data for extracting the fuzzy
rules base. By taking the removed sample as testing data, we compare the
output estimated from the model and the real output of the removed sample.
The corresponding results are shown in Tables 8 & 9.

From Table 8, we can see that the difference between the real output
and the output estimated by the fabric evaluation model is rather small.
For the descriptor “Soft”, the maximum evaluation error doesn’t exceed 2
marks over 7. For example, “0” means that the model gives the same score
as the experts and “1” means that there exists only one level of difference
between the model’s evaluation and the expert’s evaluation. The model also
gives good results for the other samples and the other descriptors. In average,
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Table 8. Fabric evaluation model results for the descriptor “soft”

Removed Real Estimated
Sample # Rules # Level(s) Output Output Error

4 1 8 2 7 5.83 1
10 1 8 2 7 4.95 2
14 1 8 2 6 3.50 2
14 2 7 1 4 4.50 1
16 1 8 2 6 4.25 2
16 2 8 2 4 3.74 0
22 1 8 2 6 3.50 2
22 2 8 2 4 4.02 0
24 1 7 2 5 3.27 2
24 2 8 2 4 3.51 0
26 1 8 2 3 3.44 0
26 2 8 2 3 3.71 1
28 1 8 2 3 3.85 1
28 2 8 2 2 2.89 1
31 1 8 2 2 2.49 0
31 2 8 2 2 2.71 1
34 1 8 2 1 1.65 1
34 2 8 2 1 1.20 0

average 0.94

by considering 9 linguistic terms all together for describing the touch han-
dle of the whole samples set, the evaluation error is about 1 point (1.11 –
Table 9). This represents the fabric evaluation model accuracy.

6.5 An Example of Consumers’ Preference Forecasting

To illustrate the consumers’ preference prediction, we collected one set of
sensory data related to the cosmetic industry. It includes 8 lotions with varying
performance according to their interaction with the skin or the human feeling
they express at the first contact. 19 terms are required by the experts for
describing the lotions quality. The consumers expressed their feeling with two
linguistic terms: the softness and the touch feeling. They ranked also the
lotions according to their preference. The running of the procedure described
above in Sect. 4.3 leads to the weights set of Fig. 9. Then, applying the method
of Sect. 4.4., we are able to predict the consumers’ preference (see Table 10).
The forecasting works quite well even if sometimes the error raises 15% over
100%. This drawback is due to the size of the training data set base which
contains only 8 samples. For testing the methods, we used 7 samples and tried
to predict the preference of the 8-th.
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Table 9. Results of fabric evaluation model for 9 linguistic terms used by a French
Experts panel

Tight Shiftless Smooth Compact Weak Pleasant Fresh Heavy Pliant

Removed
Sample Class Error

4 1 1 1 2 1 4 2 2 0 1
10 1 1 1 1 1 1 0 2 1 2
14 1 1 1 1 1 0 1 1 0 1
14 2 1 1 1 1 4 1 1 1 2
16 1 1 1 1 1 0 2 1 0 2
16 2 2 2 1 3 0 3 1 1 2
22 1 1 0 1 1 0 1 0 0 1
22 2 1 1 1 1 3 2 1 0 2
24 1 0 3 1 0 0 2 1 0 1
24 2 2 1 1 3 0 1 1 0 2
26 1 1 1 1 0 2 0 1 2 0
26 2 1 2 1 0 1 0 1 0 3
28 1 0 2 1 0 0 0 1 1 0
28 2 2 1 1 0 1 0 1 0 3
31 1 2 3 1 1 0 0 1 2 1
31 2 1 1 0 2 3 0 1 2 3
34 1 1 1 1 2 0 0 1 2 1
34 2 2 1 1 2 1 0 1 1 3

Total errors
average: (average):
1.11 1.17 1.33 1.00 1.11 1.11 0.83 1.06 0.72 1.66

0.00
0.02 0.02 0.01

0.05
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Fig. 9. Weights values for explaining the relationships between consumers’ prefer-
ence about the softness and experts’ terms



Sensory Quality Management and Assessment 399

Table 10. Difference between forecasted and real consumers’ preference for 8 lotions

Expressed (%) Forecasted (%) Error (%)

14 17 3
9 10 1

16 7 9
16 19 3
18 7 11
4 20 16

10 9 1
13 18 5

7 Conclusions

This paper presents a general method for analyzing and interpreting sensory
data given by different panels. The 2-tuple linguistic model is used for normal-
izing and aggregating sensory data of different individuals inside each panel
on an optimal unified scale. The dissimilarity criteria and the sensitivity crite-
ria are transformed into fuzzy numbers in order to obtain a suitable physical
interpretation, leading to a better understanding of the quality of panels and
evaluation terms. Also, we propose a procedure permitting to interpret terms
of one panel using the linear combination of terms of another panel. The opti-
mal weights of this linear combination are obtained using a genetic algorithm
with penalty strategy. This procedure is particularly significant for solving
commercial conflicts related to the understanding of product quality criteria
expressed in linguistic terms. The proposed method has been successfully ap-
plied to the analysis and the interpretation of the sensory data on fabric hand
evaluation provided by four panels.

This paper deals mainly with the introduction of intelligent methods for
both formalizing sensory data, which are expressed by human being, and mod-
eling the relationships between these sensory data and objective measures
operated on the fabrics. It gives promising results for assessing the sensory
quality of industrial products from manufacturers to consumers. Another con-
tribution in this paper is that we used PCA to project original higher dimen-
sional data into a lower dimensional subspace before starting the procedure
of fuzzy rules extraction. In general, a fuzzy model is efficient only when the
number of input variables is small enough with respect to the number of
learning data. We have to reduce the number of input variables if we can not
measure more numerical data.
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