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Abstract. The quality-related characteristics cannot sometimes be represented in
numerical form, such as characteristics for appearance, softness, color, etc. In this
case fuzzy set theory can handle this problem. This chapter develops fuzzy control
charts for linguistic data. Later, unnatural pattern analyses are made using the
probability of a fuzzy event. Unnaturalness of the linguistic data is searched with
an intelligent data mining procedure.

1 Introduction

The boundaries of classical sets are required to be drawn precisely and, there-
fore, set membership is determined with complete certainty. An individual is
either definitely a member of the set or definitely not a member of it. This
sharp distinction is also reflected in classical process control charts, where
each process is treated as either “in control” or “out of control”. However,
most sets and propositions are not so neatly characterized. It is not surprising
that uncertainty exists in the human world. To survive in our world, we are
engaged in making decisions, managing and analyzing information, as well
as predicting future events. All of these activities utilize information that is
available and help us try to cope with information that is not. Lack of in-
formation, of course, produces uncertainty, which is the condition where the
possibility of error exists. Research that attempts to model uncertainty into
decision analysis is done basically through probability theory and/or fuzzy set
theory. The former represents the stochastic nature of decision analysis while
the latter captures the subjectivity of human behavior. When the data used to
construct process control charts are incomplete, vague, or linguistic, classical
process control charts fail to determine the nature of the process. Therefore,
a fuzzy approach to process control charts are necessary to adopt.

Fuzzy sets were introduced in 1965 by Lotfi Zadeh with a view to reconcile
mathematical modeling and human knowledge in the engineering sciences.
Since then, a considerable body of literature has blossomed around the concept
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of fuzzy sets in an incredible wide range of areas, from mathematics and
logics to traditional and advanced engineering methodologies. Applications
are found in many contexts, from medicine to finance, from human factors to
consumer products, from vehicle control to computational linguistics, and so
on . . . Fuzzy logic is now currently used in the industrial practice of advanced
information technology.

Basically, when a point on the control chart is falling outside of the three-
sigma control limits it shows an out of control situation. There are some
interesting questions related to the computation of the probability that a
chart will be out of control even all points on the chart are within three-sigma
limits. Based on the expected percentages in each zone, sensitive run tests can
be developed for analyzing the patterns of variation in the various zones on the
control chart. The concept of dealing with probability of the data pattern on
the control chart is known as “unnatural pattern analysis”. Whenever a point
is drawn on the control chart, the rules of accepting a pattern as unnatural
should be examined. Analysis of unnatural patterns can be discovered through
intelligent data mining.

Data mining (DM) is a non-trivial process of identifying valid, novel, po-
tentially useful, and ultimately understandable patterns from data. The main
data mining application areas are marketing, banking, retailing and sales,
manufacturing and production, brokerage and securities trading, insurance,
computer hardware and software, government and defense, airlines, health
care, broadcasting, and law enforcement.

Intelligent data mining (IDM) is to use intelligent search to discover in-
formation within data warehouses that queries and reports cannot effectively
reveal and to find patterns in the data and infer rules from them, and to
use patterns and rules to guide decision-making and forecasting. Main tools
used in intelligent data mining are case-based reasoning, neural computing,
intelligent agents, and other tools (decision trees, rule induction, data visual-
ization).

In recent years, the need to extract knowledge automatically from very
large databases has grown. In response, the closely related fields of knowledge
discovery in databases (KDD) and data mining have developed processes and
algorithms that attempt to intelligently extract interesting and useful infor-
mation from vast amounts of raw data. The term DM is frequently used to
designate the process of extracting useful information from large databases.
The term KDD is used to denote the process of extracting useful knowledge
from large data sets. DM, by contrast, refers to one particular step in this
process. Specifically, the data mining step applies so-called data mining tech-
niques to extract patterns from the data. Additionally, it is preceded and fol-
lowed by other KDD steps, which ensure that the extracted patterns actually
correspond to useful knowledge. Indeed, without these additional KDD steps,
there is a high risk of finding meaningless or uninteresting patterns [4, 8]. In
other words, the KDD process uses data mining techniques along with any re-
quired pre- and post-processing to extract high-level knowledge from low-level



Fuzzy Process Control with Intelligent Data Mining 317

data. In practice, the KDD process is interactive and iterative, involving nu-
merous steps with many decisions being made by the user. DM techniques are
essentially pattern discovery algorithms. Some techniques such as association
rules are unique to data mining, but most are drawn from related fields such as
databases, statistics, pattern recognition, machine learning, neurocomputing,
and artificial intelligence.

The application of data mining to fuzzy process control has not yet been
studied extensively. This chapter is organized as follows. In Sect. 2, the basics
of process control charts are summarized. Next, fuzzy process control charts
are explained in Sect. 3. Fuzzy Process Control with Intelligent Data Mining
is developed in Sect. 4. Finally a numerical application in Sect. 5, and con-
clusions in Sect. 6 are given.

2 Process Control Charts

Based on the statistical variation of any process – control charts help focus on
stability of a process. An essential element of producing a high quality prod-
uct is insuring that the characteristics of that product remain constant over
time. Statistical process control charts are widely used to determine whether
a process is stable and to monitor that process over time. When the character-
istics of interest can be measured (rather than simply observed), it is common
to take periodic samples of measurements and then plot statistic such as the
mean and range. It is used to determine how much variability in a process
is due to random variation and how much is due to unique events/individual
actions so that you know whether or not the process is in statistical control.
A typical control chart plots the sample statistics together with upper and
lower control limits shifted from center line (CL) as shown in Fig. 1.

Upper control limit (UCL)

Center line (CL)

Lower control limit (LCL)

Samples

Fig. 1. A typical process control chart
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Fluctuation of the points within the limits is due to variation built into the
process such as design or preventative maintenance and can only be affected
by changing that system. Fluctuation of the points outside of the limits comes
from special causes such as people errors, unplanned outages, etc., which are
not a part of the normal system or from an unlikely combination of steps.
Special causes must be removed from the system to use the SPC effectively.
Once this is done then the system can be described as “in control” and mea-
surements can be taken at regular intervals to ensure that the process does
not fundamentally change.

Based on the output of the process in consideration, SPC charts can be
categorized into two groups. These are:

1. Variables control charts: SPC charts used to control characteristics of a
product that can be measured on a continuous scale. An example of a
variable would be the length or width of a product or part. Most commonly
used variables control charts are X-Bar and R charts

2. Attributes control charts: SPC charts used to control which is an aspect
or characteristic of a product that cannot be put on a linear scale. For
example, a light bulb will either light or fail to light. “Good/bad” is an
attribute, as is the number of defects. Examples of attributes control charts
are p, np, c, and u charts.

If the process is stable, then the distribution of subgroup averages will be
approximately normal. With this in mind, we can also analyze the patterns
on the control charts to see if they might be attributed to a special cause of
variation. To do this, we divide a normal distribution into zones, with each
zone one standard deviation wide. Figure 2 shows the approximate percentage
we expect to find in each zone from a stable process. Zone C is the area from
the mean to the mean plus or minus one sigma, zone B is from plus or minus
one to plus or minus two sigma, and zone A is from plus or minus two to
plus or minus three sigma. Of course, any point beyond three sigma (i.e.,
outside of the control limit) is an indication of an out-of-control process. Since
the control limits are at plus and minus three standard deviations, finding
the one and two sigma lines on a control chart is as simple as dividing the
distance between the grand average and either control limit into thirds, which
can be done using a ruler. This divides each half of the control chart into three
zones. The three zones are labeled A,B, and C as shown in Fig. 3.

Based on the expected percentages in each zone, sensitive run tests can
be developed for analyzing the patterns of variation in the various zones.
Reference [16] recommends four rules to identify patterns (and implicitly,
points) in control charts as out-of-control. The first is the classical three-sigma
rule; that is, the chart has at least one point falling outside of the three-sigma
control limits. The other rules are: rule 2, two out of three consecutive points
more than two sigma away from the centerline, zone A, (with the two points
on the same side of the centerline); rule 3, four out of five consecutive points
more than one sigma away from the centerline, zone B, (with all four on the
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Fig. 2. Zones of normal distribution

A

A

B

C

C

B

CL

UCL

LCL

CL-1

CL-2

CL+2

CL+1

Fig. 3. Zones of a control chart

same side of the centerline); and rule 4, eight consecutive points on the same
side of the centerline, zones A+B +C. One-sided probabilities of the rules 1,
2, 3, and 4 are calculated as 0.00135, 0.0015, 0.0027, and 0.0039, respectively.

Characteristics of interest for variables control charts can exactly be mea-
sured by the instruments and/or devices, but that for attributes cannot be
measured directly and they consists of uncertainty. For this reason, fuzzy ap-
proaches to attributes control charts should be developed. In the next section,
fuzzy process control charts are proposed for attributes control charts.

3 Fuzzy Process Control Charts

Even the first control chart was proposed during the 1920’s by Shewhart,
today they are still subject to new application areas that deserve further
attention. The control charts introduced by [11] were designated to monitor
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processes for shifts in the mean or variance of a single quality characteristic.
Further developments are focused on the usage of the probability and fuzzy set
theories integrated with the control charts. A bibliography of control charts
for attributes is presented by [17].

If the quality-related characteristics cannot be represented in numerical
form, such as characteristics for appearance, softness, color, etc., then control
charts for attributes are used. Product units are either classified as conforming
or nonconforming, depending upon whether or not they meet specifications.
The number of nonconformities (deviations from specifications) can also be
counted. The binary classification into conforming and nonconforming used in
the p-chart might not be appropriate in many situations where product qual-
ity does not change abruptly from satisfactory to worthless, and there might
be a number of intermediate levels. Without fully utilizing such as intermedi-
ate information, the use of the p-chart usually results in poorer performance
than that of the x-chart. This is evidenced by weaker detectability of process
shifts and other abnormal conditions. To supplement the binary classification,
several intermediate levels may be expressed in the form of linguistic terms.
For example, the quality of a product can be classified by one of the following
terms: “perfect”, “good”, “medium”, “poor”, or “bad” depending on its devi-
ation from specifications appropriately selected continuous functions can then
be used to describe the quality characteristic associated with each linguistic
term.

In the literature, different procedures are proposed to monitor multino-
mial processes when products are classified into mutually exclusive linguistic
categories. Reference [2] used fuzzy set theory as a basis for interpreting the
representation of a graded degree of product conformance with quality stan-
dard. Reference [2] stressed that fuzzy economic control chart limits would be
advantageous over traditional acceptance charts in that fuzzy economic con-
trol charts provide information on severity as well as the frequency of product
nonconformance. References [10, 14] proposed an approach based on fuzzy set
theory by assigning fuzzy sets to each linguistic term, and then combining
for each sample using rules of fuzzy arithmetic and developed two approaches
called fuzzy probabilistic approach and membership approach.

Apart from fuzzy probabilistic and fuzzy membership approach, [7] intro-
duced modifications to the construction of control charts given by [13, 14].
Their study aimed at directly controlling the underlying probability distrib-
utions of the linguistic data, which were not considered by [10]. These pro-
cedures are reviewed by [18] and discussed by [9] and [1]. Reference [6] used
triangular fuzzy numbers in the tests of control charts for unnatural patterns.
Reference [3] proposed a neural fuzzy control chart for identifying process
mean shifts. Reference [18] gave a review of statistical and fuzzy control charts
based on categorical data. Reference [12] discussed different procedures of
constructing control charts for linguistic data, based on fuzzy and probability
theory. A comparison between fuzzy and probability approaches, based on the
Average Run Length and samples under control, is conducted for real data.
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Contrary to the conclusions of [10] the choice of degree of fuzziness affected
the sensitivity of control charts.

Current fuzzy control charts are based on the fuzzy transformation from
vague data to crisp data, and then, carried out as in the classical control
charts. With the integration of the α-cut of fuzzy sets, [5] proposed α-cut
fuzzy control charts.

3.1 Fuzzy p Control Charts

In classical p charts, products are distinctly classified as “conformed” or “non-
conformed” when determining fraction rejected. In fuzzy p control charts,
when categorizing products, several linguistic terms are used to denote the
degree of being nonconformed product such as “standard”, “second choice”,
“third choice”, “chipped”, and so on. . . A membership degree of being a non-
conformed product is assigned to each linguistic term. Sample means for each
sample group, Mj , are calculated as:

Mj =
∑t

i=1 kijri

mj
(1)

where kij is the number of products categorized with the linguistic term i in
the sample j, ri is the membership degree of the linguistic term i, and mj is
the number of products in sample j. Center line, CL, is the average of the
means of the n sample groups and can be determined by (2)

CL = M̄j =

∑n
j=1 Mj

n
(2)

where n is the number of sample groups initially available. Since the CL is a
fuzzy set, it can be represented by triangular fuzzy numbers (TFNs) whose
fuzzy mode is CL, as shown in Fig. 4. Then, for each sample mean, Lj(α) and
Rj(α) can be calculated using (3) and (4), respectively.

Lj(α) = Mjα (3)
Rj(α) = 1 − [(1 − Mj)α] (4)

Membership function of the M̄ , or CL, can be written as:

µMj
(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if x ≤ 0
x
M̄

, if 0 ≤ x ≤ M̄

1−x
1−M̄

, if M̄ ≤ x ≤ 1

0, if x ≥ 1

(5)

Control limits for α-cut is also a fuzzy set and can be represented by TFNs.
Since the membership function of CL is divided into two components, then,
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Fig. 4. TFN representation of M̄ and Mj of the sample j

each component will have its own CL, LCL, and UCL. The membership
function of the control limits depending upon the value of α is given below.

Control Limits(α)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

CLL = M̄α

LCLL = max
{

CLL − 3
√

(CLL)(1−CLL)
n̄ , 0

}

UCLL = min
{

CLL + 3
√

(CLL)(1−CLL)
n̄ , 1

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, if 0 ≤ Mj ≤ M̄

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

CLR = 1 −
[(

1 − M̄α
)
α
]

LCLR = max
{

CLR − 3
√

(CLR)(1−CLR)
n̄ , 0

}

UCLR = min
{

CLR + 3
√

(CLR)(1−CLR)
n̄ , 1

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, if M̄ ≤ Mj ≤ 1

(6)

where n̄ is the average sample size (ASS ). When the ASS is used, the control
limits do not change with the sample size. Hence, the control limits for all
samples are the same. A general illustration of these control limits is shown
in Fig. 5.

For the variable sample size (VSS ), n̄ should be replaced by the size of the
jth sample nj . Hence, control limits change for each sample depending upon
the size of the sample. Therefore, each sample has its own control limits. The
decision that whether process is in control (1) or out of control (0) for both
ASS and VSS is as follows:
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(α)LLCL

(α)LCL

(α)LUCL

(α)RLCL
(α)RCL

(α)RUCL

M

-level

1

Fig. 5. Illustration of the α-cut control limits (ASS)

Process Control =

⎧
⎪⎨

⎪⎩

1, if LCLL(α) ≤ Lj(α) ≤ UCLL(α) ∧ LCLR(α)
≤ Rj(α) ≤ UCLR(α)

0, otherwise .

(7)

The value of α-cut is decided with respect to the tightness of inspection
such that for a tight inspection, α values close to 1 may be used. As can be
seen from Fig. 5, while α reduces to 0 (decreasing the tightness of inspection),
the range where the process is in control (difference between UCL and LCL)
increases.

3.2 Fuzzy c Control Charts

In the crisp case, control limits for number of nonconformities are calculated
by the (8–10).

CL = c̄ (8)
LCL = c̄ − 3

√
c̄ (9)

UCL = c̄ + 3
√

c̄ (10)

where c̄ is the mean of the nonconformities. In the fuzzy case, each sample,
or subgroup, is represented by a trapezoidal fuzzy number (a, b, c, d) or a
triangular fuzzy number (a, b, d) as shown in Fig. 6. Note that a trapezoidal
fuzzy number becomes triangular when b = c. For the ease of representation
and calculation, a triangular fuzzy number is also represented as trapezoidal
by (a, b, b, d) or (a, c, c, d). Center line, C̃L, given in (8), is the mean of fuzzy
samples, and it is shown as (ā, b̄, c̄, d̄) where ā, b̄, c̄, and d̄ are the arithmetic
means of the a, b, c, and d, respectively:
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µ

1

a aα b c dα d

α

a) Trapezoidal (a, b, c, d)

µ

1

da aα dαb=c

α

b) Triangular (a, b, b, d)

Fig. 6. Representation of a sample by trapezoidal and/or triangular fuzzy numbers

C̃L =

(∑n
j=1 aj

n
,

∑n
j=1 bj

n
,

∑n
j=1 cj

n
,

∑n
j=1 dj

n

)
=
(
ā, b̄, c̄, d̄

)
(11)

where n is the number of fuzzy samples.
Since the C̃L is a fuzzy set, it can be represented by a fuzzy number whose

fuzzy mode (multimodal) is the closed interval of [b̄, c̄]. C̃L, ˜LCL, and ˜UCL
are calculated using (12–14).

C̃L =
(
ā, b̄, c̄, d̄

)
= (CL1, CL2, CL3, CL4) (12)

˜LCL
α

= C̃L
α
− 3
√

C̃L
α

=
(
ā, b̄, c̄, d̄

)
− 3
√(

ā, b̄, c̄, d̄
)

=
(
ā − 3

√
d̄, b̄ − 3

√
c̄, c̄ − 3

√
b̄, d̄ − 3

√
ā
)

= (LCL1, LCL2, LCL3, LCL4) (13)

˜UCL = C̃L + 3
√

C̃L = (ā, b̄, c̄, d̄) + 3
√

(ā, b̄, c̄, d̄)

=
(
ā + 3

√
ā, b + 3

√
b, c + 3

√
c, d̄ + 3

√
d̄
)

= (UCL1, UCL2, UCL3, UCL4) (14)

An α-cut is a nonfuzzy set which comprises all elements whose membership
is greater than or equal to α. Applying α-cuts of fuzzy sets (Fig. 4) values of
aα and dα are determined by (15) and (16), respectively.

aα = a + α(b − a) (15)

dα = d − α(d − c) (16)

Using α-cut representations, fuzzy control limits can be rewritten as given
in (17–19).
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C̃L
α

= (āα, b̄, c̄, d̄α) = (CLα
1 , CL2, CL3, CLα

4 ) (17)

˜LCL
α

= C̃L
α
− 3
√

C̃L
α

= (āα, b̄, c̄, d̄α) − 3
√

(āα, b̄, c̄, d̄α)

= (āα − 3
√

d̄α, b̄ − 3
√

c̄, c̄ − 3
√

b̄, d̄α − 3
√

āα)
= (LCLα

1 , LCL2, LCL3, LCLα
4 ) (18)

˜UCL
α

= C̃L
α

+ 3
√

C̃L
α

= (āα, b̄, c̄, d̄α) + 3
√

(āα, b̄, c̄, d̄α)

=
(
āα + 3

√
āα, b + 3

√
b, c + 3

√
c, d̄α + 3

√
d̄α
)

= (UCLα
1 , UCL2, UCL3, UCLα

4 ) (19)

Results of these equations can be illustrated as in Fig. 7. To retain the
standard format of control charts and to facilitate the plotting of observations
on the chart, it is necessary to convert the fuzzy sets associated with linguistic

1

LCL1

LCL2

LCL3

LCL4

1LCLα

4LCLα

1CLα

4CLα

4UCLα

1UCLα

UCL4

UCL3

UCL2

CL4

UCL1

CL1

UCL

CL

LCL

µ

CL2

CL3

Fig. 7. Representation of fuzzy control limits
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values into scalars referred to as representative values. This conversion may be
performed in a number of ways as long as the result is intuitively representative
of the range of the base variable included in the fuzzy set. Four ways, which
are similar in principle to the measures of central tendency used in descriptive
statistics, are fuzzy mode, α-level fuzzy midrange, fuzzy median, and fuzzy
average. It should be pointed out that there is no theoretical basis supporting
any one specifically and the selection between them should be mainly based
on the ease of computation or preference of the user [14]. Conversion of fuzzy
sets into crisp values results in loss of information in linguistic data. To retain
information of linguistic data we prefer to keep fuzzy sets as themselves and to
compare fuzzy samples with the fuzzy control limits. For this reason, a direct
fuzzy approach (DFA) based on the area measurement is proposed for the
fuzzy control charts. α-level fuzzy control limits, ˜UCL

α
, C̃L

α
, and, ˜LCL

α
,

can be determined by fuzzy arithmetic as shown in (20–22).

C̃L
α

= (CLα
1 , CL2, CL3, CLα

4 ) (20)

˜LCL
α

= C̃L
α
− 3
√

C̃L
α

= (CLα
1 , CL2, CL3, CLα

4 )

− 3
√

(CLα
1 , CL2, CL3, CLα

4 )

=
(
CLα

1 − 3
√

CLα
4 , CL2 − 3

√
CL3, CL3 − 3

√
CL2, CLα

4 − 3
√

CLα
1

)

= (LCLα
1 , LCL2, LCL3, LCLα

4 ) (21)

˜UCL
α

= C̃L
α

+ 3
√

C̃L
α

= (CLα
1 , CL2, CL3, CLα

4 )

+ 3
√

(CLα
1 , CL2, CL3, CLα

4 )

=
(
CLα

1 + 3
√

CLα
1 , CL2 + 3

√
CL2, CL3 + 3

√
CL3, CLα

4 + 3
√

CLα
4

)

= (UCLα
1 , UCL2, UCL3, UCLα

4 ) (22)

where,
CLα

1 = CL1 + α (CL2 − CL1) (23)

CLα
4 = CL4 − α (CL4 − CL3) (24)

Decision about whether the process is in control can be made according to
the percentage area of the sample which remains inside the ˜UCL and/or ˜LCL
defined as fuzzy sets. When the fuzzy sample is completely involved by the
fuzzy control limits, the process is said to be “in-control”. If a fuzzy sample is
totally excluded by the fuzzy control limits, the process is said to be “out of
control”. Otherwise, a sample is partially included by the fuzzy control limits.
In this case, if the percentage area which remains inside the fuzzy control limits
(βj) is equal or greater than a predefined acceptable percentage (β), then the
process can be accepted as “rather in-control”; otherwise it can be stated as
“rather out of control”. Possible decisions resulting from DFA are illustrated
in Fig. 8. Parameters for determination of the sample area outside the control
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a
b
c
d

†UCL

t t2 t1 1

†LCL

Type U1 Type U2 Type U3 Type U4 Type U5 Type U6 Type U7

Type L1 Type L2 Type L3 Type L7Type L6Type L4 Type L5

Fig. 8. Illustration of all possible sample areas outside the fuzzv control limits at
α-level cut

limits for α-level fuzzy cut are LCL1, LCL2, UCL3, UCL4, a, b, c, d, and α.
The shape of the control limits and fuzzy sample are formed by the lines
of LCL1LCL2, and UCL1UCL2, ab, cd. A flowchart to calculate area of the
fuzzy sample outside the control limits is given in Fig. 9. Sample area above
the upper control limits, AU

out, and sample area falling below the lower control
limits, AL

out, are calculated. Equations to compute AU
out and AL

out are given in
Appendix A. Then, total sample area outside the fuzzy control limits, Aout,
is the sum of the areas below fuzzy lower control limit and above fuzzy upper
control limit. Percentage sample area within the control limits is calculated
as given in (25).

βα
j =

Sα
j − Aα

out,j

Sα
j

(25)

where Sα
j is the sample area at α-level cut.

DFA provides the possibility of obtaining linguistic decisions like “rather
in control” or “rather out of control”. Further intermediate levels of process
control decisions are also possible by defining in stages. For instance, it may
be defined as given below which is more distinguished.

Process Control =

⎧
⎪⎪⎨

⎪⎪⎩

in control, 0.85 ≤ βj ≤ 1
rather in control, 0.60 ≤ βj < 0.85
rather out of control, 0.10 ≤ βj < 0.60
out of control, 0 ≤ βj < 0.10

(26)
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Fig. 9. Flowchart to cumpute the area outside the fuzzy control limits

4 Fuzzy Process Control with Intelligent Data Mining

Analysis of fuzzy unnatural patterns for fuzzy control charts is necessary to
develop. Run rules are based on the premise that a specific run of data has
a low probability of occurrence in a completely random stream of data. If a
run occurs, then this must mean that something has changed in the process
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to produce a nonrandom or unnatural pattern. Based on the expected per-
centages in each zone, sensitive run tests can be developed for analyzing the
patterns of variation in the various zones. The formula for calculating the
probability of a fuzzy event A is a generalization of the probability theory:

P (A) =
{∫

µA(x)Px(x)dx, if X is continuous∑
i

∫
µA(xi)Px(xi), if X is discrete (27)

where PX denotes the probability distribution function of X. The membership
degree of a sample to belong to a region is directly related to its percentage
area falling in that region, and therefore, it is continuous. For example, a fuzzy
sample may be in zone B with a membership degree of 0.4 and in zone C with
a membership degree of 0.6. While counting points in zone B, that point is
counted as 0.4.

Based on the Western Electric rules, the following fuzzy unnatural pattern
rules can be defined.

Rule 1: Any fuzzy data falling outside the three-sigma control limits with
a ratio (25) of more than predefined percentage (β) of sample area at desired
α-level:

µ1 =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0.85 ≤ x ≤ 1
(x − 0.60)/0.25, 0.60 ≤ x ≤ 0.85
(x − 0.10)/0.50, 0.10 ≤ x ≤ 0.60
1, 0 ≤ x ≤ 0.10

(28)

where x is the ratio of fuzzy data falling outside the three-sigma control limits.
Rule 2: A total membership degree around 2 from 3 consecutive points

in zone A or beyond. Probability of a sample being in zone A (0.0214) or
beyond (0.00135) is 0.02275. Let membership function for this rule be defined
as follows:

µ2 =

⎧
⎨

⎩

0, 0 ≤ x ≤ 0.59
(x − 0.59)/1.41, 0.59 ≤ x ≤ 2
1, 2 ≤ x ≤ 3

(29)

Using the membership function above, fuzzy probability given in (27) can
be rewritten as follows:

3∫

0

µ2(x)P2(x) =

x1∫

0

µ2(x)P2(x) +

x2∫

x1

µ2(x)P2(x) +

3∫

x2

µ2(x)P2(x)

=

x2∫

x1

µ2(x)P2(x) +

3∫

x2

µ2(x)P2(x) (30)

where,

Px(x) = Px

(
z ≥ x − np

√
npq

)
(31)
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To integrate the (30), membership function is divided into sections, each
with a 0.05 width, and µ2(x)Px(x) values for each section are summed. For
x1 = 0.59 and x2 = 2, the probability of the fuzzy event, rule 2, is determined
as 0.0015, which corresponds to the crisp case of this rule. In the following
rules, the membership functions are set in the same way.

Rule 3: A total membership degree around 4 from 5 consecutive points in
zone C or beyond with the membership function (degree of unnaturalness)
given below:

µ3 =

⎧
⎨

⎩

0, 0 ≤ x ≤ 2.42
(x − 2.42)/1.58, 2.42 ≤ x ≤ 4
1, 4 ≤ x ≤ 5

(32)

The fuzzy probability for this rule is calculated as 0.0027.
Rule 4: A total membership degree around 8 from 8 consecutive points on

the same side of the centerline:

µ4 =
{

0, 0 ≤ x ≤ 2.54
(x − 2.54)/5.46, 2.54 ≤ x ≤ 8 (33)

The fuzzy probability for the rule above is then determined as 0.0039.
Probability of each fuzzy rule (event) above depends on the definition of the
membership function which is subjectively defined with respect to the classical
probabilities for unnatural patterns.

5 A Numerical Example for Fuzzy c Control Charts

Samples of 200 units are taken every 4 hours to control number of nonconfor-
mities. Data collected from 30 subgroups shown in Table 2 are linguistic such
as “approximately 30” or “between 25 and 30”.

The linguistic expressions in Table 1 are represented by fuzzy numbers as
shown in Table 3. These numbers are subjectively identified by the quality
control expert who also sets α = 0.60 and minimum acceptable ratio as β =
0.70. Quality control expert also set the acceptable membership degree of
unnaturalness as 0.95, that is, when a sample refers to an unnatural sample
with respect to any rule, it should refer a membership degree of unnaturalness
more than 0.95 with respect to the membership function defined for that rule.

Using (5–7), C̃L, ˜LCL, and ˜UCL are determined as follows:

C̃L = (18.13, 22.67, 26.93, 32.07)
˜LCL = (1.15, 7.10, 12.65, 19.29)
˜UCL = (30.91, 36.95, 42.50, 49.05)
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Table 1. Number of nonconformities for 30 subgroups

No Approximately Between No Approximately Between

1 30 16 40
2 20–30 17 32–50
3 5–12 18 39
4 6 19 15–21
5 38 20 28
6 20–24 21 32–35
7 4–8 22 10–25
8 36–44 23 30
9 11–15 24 25

10 10–13 25 31–41
11 6 26 10–25
12 32 27 5–14
13 13 28 28-35
14 50–52 29 20–25
15 38–41 30 8

Table 2. Fuzzy number (a, b, c, d) representation of 30 subgroups

No a b c d No a b c d

1 25 30 30 35 16 33 40 40 44
2 15 20 30 35 17 28 32 50 60
3 4 5 12 15 18 33 39 39 43
4 3 6 6 8 19 12 15 21 38
5 32 38 38 45 20 23 28 28 36
6 16 20 24 28 21 28 32 35 42
7 3 4 8 12 22 14 18 28 33
8 27 36 44 50 23 24 30 30 34
9 9 11 15 20 24 20 25 25 31

10 7 10 13 15 25 25 31 41 46
11 3 6 6 10 26 7 10 25 28
12 27 32 32 37 27 3 5 14 20
13 11 13 13 15 28 23 28 35 38
14 39 50 52 55 29 17 20 25 29
15 28 38 41 45 30 5 8 8 15

Average 18.13 22.67 26.93 32.07
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Table 3. Fuzzy zones calculated for the example problem

Zone a b c d

UCLα 34.53 36.95 42.50 45.12
+2 σ 29.97 32.19 37.31 39.74
+1 σ 25.41 27.43 32.12 34.37
CLα 20.85 22.67 26.93 28.99
−1 σ 15.47 17.48 22.17 24.43
−2 σ 10.10 12.29 17.41 19.87
LCLα 4.72 7.10 12.65 15.31

Applying α-cut of 0.60, values of C̃L
α=0.60

, ˜LCL
α=0.60

, and ˜UCL
α=0.60

are calculated. (10–12)

C̃L
α=0.60

= (20.85, 22.67, 26.93, 28.99)

˜LCL
α=0.60

= (4.72, 7.10, 12.65, 15.31)

˜UCL
α=0.60

= (34.53, 36.95, 42.50, 45.12)

Membership functions in (28, 29, 32), and (33) are used for the rules 1–4 as
µ1, µ2, µ3, and µ4, respectively. These membership functions set the degree of
unnaturalness for each rule. As an example, when a total membership degree
of 1.90 is calculated for the rule 2, its degree of unnaturalness is determined
from µ2 as 0.9291. Probabilities of these fuzzy events are calculated using
normal approach to binomial distribution.

In order to make calculations easy and mine our sample database for un-
naturalness a computer program is coded using Fortran 90 programming lan-
guage. Table 4 gives total membership degrees of the fuzzy samples and those
of unnaturalness in zones.

As can be seen from Table 4, sample 14 is beyond the ±3σ limits and
shows an out of control situation. Considering samples 14, 15, and 16 for the
rule 2, total membership degree is calculated as 2, which refers an unnatural
pattern with unnaturalness degree of 1. Then, only the last sample, sample
16, is marked as unnatural pattern and necessary actions should be taken at
this stage. The mining is the restarted with sample 17. With the sample 18,
total membership degree for rule 2 reaches to 1.61 and degree of unnaturalness
determined from µ2 is 0.72. Since minimum acceptable membership degree of
unnaturalness for this problem is set to 0.95, it is not treated as an unnatural
pattern. Sample 10 denotes unnaturalness with respect to the rule 2 applied to
the lower side of the control chart. There is no sample indicating unnaturalness
with a degree more than 0.95 according to the rules 3 and 4.



Fuzzy Process Control with Intelligent Data Mining 333

Table 4. Total membership degrees of the fuzzy samples and degree of unnaturalness
in zones

In or Above Fuzzy CL In or Below Fuzzy CL
Sample Beyond
No ±3σ Rule 2 Rule 3 Rule 4 Rule 2 Rule 3 Rule 4

1 0.00 0.24 1 1 0 0 0.06
2 0.00 0.04 0.38 0.77 0.03 0.36 0.75
3 0.14 0 0 0 0.86 0.86 0.86
4 0.32 0 0 0 0.68 0.68 0.68
5 0.00 1 1 1 0 0 0
6 0.00 0 0 0.54 0.05 0.73 1
7 0.42 0 0 0 0.58 0.58 0.58
8 0.13 0.87 0.87 0.87 0 0 0
9 0.00 0 0 0 1 1 1
10 0.00 0 0 0 1 (µ∗ = 1) 1 1
11 0.26 0 0 0 0.74 0.74 0.74
12 0.00 0.96 1 1 0 0 0
13 0.00 0 0 0 1 1 1
14 1.00 0 0 0 0 0 0
15 0.00 1 1 1 0 0 0
16 0.00 1 (µ∗=1) 1 1 0 0 0
17 0.39 0.61 0.61 0.61 0 0 0
18 0.00 1 (µ∗ = 0.72) 1 1 0 0 0
19 0.00 0 0.03 0.28 0.42 0.87 1
20 0.00 0.05 1 1 0 0 0.42
21 0.00 0.99 1 1 0 0 0
22 0.00 0 0.22 0.61 0.13 0.52 0.91
23 0.00 0.17 1 1 0 0 0.11
24 0.00 0 0.2 1 0 0.11 1
25 0.00 0.9 1 1 0 0 0
26 0.00 0 0.01 0.24 0.57 0.86 1
27 0.12 0 0 0 0.88 0.88 0.88
28 0.00 0.53 1 1 0 0 0.13
29 0.00 0 0.03 0.63 0.02 0.61 1
30 0.00 0 0 0 1 1 1

∗ unnatural sample with the corresponding degree of unnaturalness defined by
the membersip functions for each rule.

6 Conclusions

In this chapter, fuzzy process control charts for attributes have been devel-
oped. Well-known Western Electric rules for examining unnaturalness are
fuzzified using probability of fuzzy events and searched with data mining.
A linguistic data of 30 samples have been used for illustration purposes. For
larger data sets, unnaturalness can be mined using the same procedure. There
are other unnatural pattern rules defined in the literature. These rules can also
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be examined under fuzziness. Some new rules can be added to the existing
rules. When rules for unnaturalness are defined for longer runs, the usage of
an intelligent data mining procedure is inevitable.

Appendix

Equations to compute sample area outside the control the limits.

AU
out =

1
2
[(

dα − UCLα
4

)
+
(
dt − UCLt

4

)]
(max(t − α, 0))

+
1
2
[(dz − az) + (c − b)

]
(min(1 − t, 1 − α)) (A-U1)

where,

t =
UCL4 − a

(b − a) + (c − b)
and z = max(t, α)

AU
out =

1
2
[(

dα − UCLα
4

)
+ (c − UCL3)

]
(1 − α) (A-U2)

AU
out =

1
2
(dα − UCLα

4 )(max(t − α, 0)) (A-U3)

AU
out =

1
2
[
(c − UCL3) +

(
dz − UCLz

4

)]
(max(1 − t, 1 − α)) (A-U4)

where

t =
UCL4 − d

(UCL4 − UCL3) − (d − c)
and z = max(t, α)

AU
out =

1
2
[(

dz2 − UCLz2
4

)
+
(
dt1 − UCLt1

4

)]

× (min(max(t1 − α, 0), t1 − t2))

+
1
2
[(

dz1 − az1
)

+ (c − b)
]
(min(1 − t1, 1 − α)) (A-U5)

where

t1 =
UCL4 − a

(b − a) + (UCL4 − UCL3)
,

t2 =
UCL4 − d

(UCL4 − UCL3) − (d − c)
z1 = max(α, t1), and z2 = max(α, t2)

AU
out = 0 (A-U6)

AU
out =

1
2
[(dα − aα) + (c − b)](1 − α) (A-U7)
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AL
out =

1
2
[(LCLα

1 − aα) + (LCLt
1 − at)](max(t − α, 0))

+
1
2
[(dz − az) + (c − b)](min(1 − t, 1 − α)) (A-L1)

where

t =
d − LCL1

(LCL2 − LCL1) + (d − c)
and z = max(α, t)

AL
out =

1
2
[(

dα − aα
)

+ (c − b)
]
(1 − α) (A-L2)

AL
out =

1
2
(LCLα

1 − aα) + (LCL2 − b)](1 − α) (A-L3)

AL
out =

1
2
[(

LCLz2
1 − az2

)
+
(
LCLt1

1 − at1
)]

× (min(max(t1 − α, 0), t1 − t2))

+
1
2
[(

dz1 − az1
)

+ (c − b)
]
(min(1 − t, 1 − α)) (A-L4)

where

t1 =
d − LCL1

(LCL2 − LCL1) + (d − c)
, t2 =

a − LCL1

(LCL2 − LCL1) + (b − a)
z1 = max(α, t1), and z2 = max(α, t2)

AL
out =

1
2
[(

LCLz
4 − az

)
+ (LCL2 − b)

]
(min(1 − t, 1 − α)) (A-L5)

where

t =
a − LCL1

(LCL2 − LCL1) − (b − a)
, and z = max(α, t)

AL
out = 0 (A-L6)

AL
out =

1
2
[(dα − aα) + (c − b)](1 − α) (A-L7)
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