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Abstract. We introduce the data fusion problem and carefully distinguish it from
a number of closely problems. Some of the considerations and knowledge that must
go into the development of a multi-source data fusion algorithm are described. We
discuss some features that help in expressing users requirements are also described.
We provide a general framework for data fusion based on a voting like process that
tries to adjudicate conflict among the data. We discuss various of compatibility
relations and introduce several examples of these relationships. We consider the
case in which the sources have different credibility weight. We introduce the idea
of reasonableness as a means for including in the fusion process any information
available other than that provided by the sources.
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1 Introduction

An important aspect of data mining is the coherent merging of information
from multiple sources [1, 2, 3, 4]. This problem has many manifestation rang-
ing from data mining to information retrieval to decision making. One type of
problem from this class involves the situation in which we have some variable,
whose value we are interested in supplying to a user, and we have multiple
sources providing data values for this variable. Before we proceed we want to
carefully distinguish our particular problem from some closely related prob-
lems that are also important in data mining. We first introduce some useful
notation. Let Y be some class of objects. By an attribute A we mean some
feature or property that can be associated with the elements in the set Y . If
Y is a set of people then examples of attributes are age, height, income and
mother’s name. Attributes are closely related to the column headings used in
a table in a relational data base [3]. Typically an attribute has a domain X in
which the values of the attribute can lie. If Y is an element from Y we denote
the value of the attribute A for object Y as A[y]. We refer to A[y] as a variable.
Thus if John is a member of Y the Age [John] is a variable. The value of the
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variable A[y] is generally a unique element from the domain X. If A[y] takes
on the value x we denote this as A[y] = x. One problem commonly occurring
in data mining is the following. We have the value of an attribute for a number
of elements in the class Y, (A[y1] = x1, A[y2] = x2, A[y3] = x3, . . . , A[yq] = xq)
and we are interested in finding a value x∗ ∈ x as a representative or summary
value of this data. We note since each of the A[yk] is different variables there
is no inherent conflict in the fact the values associated with these variables
are different. We emphasize that the summarizing value x∗ is not associated
with any specific object in the class Y . It is a value associated with a con-
ceptual variable. At best we can consider x∗ the value of a variable A[Y ].
We shall refer to this problem of attaining x∗ as the data summarization
problem. A typical example of this would if Y are the collection of people
in a city neighbor and A is the attribute salary. Here then we are interested
in getting a representative value of the salary of the people in the neighbor-
hood. The main problem we are interested in here, while closely related, is
different. Here again we have some attribute A. However instead of being con-
cerned with the class Y we are focusing on one object from this class yq and
we are interested in the value of the variable A[yq]. For example if A is the
attribute age and yq is Osama bin Laden then our interest is in determin-
ing Osama bin Laden’s age. In our problem of concern the data consists of
(A[yq] = x1, A[yq] = x2, A[yq] = x2, . . . , A[yq] = xn). Here we have a number
of observations provided by different sources on the value of the variable A[yq]
and we are interested in using this to obtain “a value of the variable A[yq].”
We shall call this the data fusion problem. While closely related there ex-
ists differences. One difference between these problems is that in the fusion
problem we are seeking the value of the attribute of a real object rather than
the attribute value of some conceptual object. If our attribute is the number of
children then determining then the summarizing value over a community is 2.6
may not be a problem, however if we are interested in the number of children
that bin Laden has, 2.6 may be inappropriate. Another distinction between
these two situations relates to the idea of conflict. In the first situation since
A[y1] and A[y2] are different variables the fact that x1 �= x2 is not a conflict.
On the other hand in the second situation, the data fusion problem, since all
observations in our data set are about the same variable A[yq] the fact that
xa �= xb can be seen as constituting a conflict. One implication of this relates
to the issue of combining values. For example consider the situation in which
A is the attribute salary in trying to find the representative (summarizing)
value of salaries within a community averaging two salaries such as $5,000,000
and $10,000 poses no conceptual dilemma. On the hand if these values are
said by different sources to be the salary of some specific individual averaging
them would be questionable.

Another problem very closely related to our problem is the following. Again
let A be some attribute, yq be some object and let A[yq] be a variable whose
value we are trying to ascertain. However in this problem A[yq] is some vari-
able whose value has not yet been determined. Examples of this would be
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tomorrow’s opening price for Microsoft stock or the location of the next ter-
rorist attack or how many nuclear devices North Korea will have in two years.
Here our collection of data (A[yq] = x1, A[yq] = x2, A[yq] = x2, . . . , A[yq] =
xn) is such that A[yq] = xj indicates the jth source or experts conjecture as to
the value of A[yq]. Here we are interested in using this data to predict the value
of the future variable A[yq]. While formally almost the same as our problem
we believe the indeterminate nature of the future variable introduces some as-
pects which can effect the mechanism we use to fuse the individual data. For
example our tolerance for conflict between A[yq] = x1 and A[yq] = x2 where
x1 �= x2 may become greater. This greater tolerance may be a result of the
fact that each source may be basing their predictions on different assumptions
about the future world.

Let us now focus on our problem the multi-source data fusion problem.
The process of data fusion is initiated by a users request to our sources of
information for information about the value of the variable A[yq]. In the fol-
lowing instead using A[yq] to indicate our variable of interest we shall more
simply refer to the variable as V . We assume the value of V lies in the set X.
We assume a collection S1, S2, . . . , Sq of information sources. Each source pro-
vides a value which we call our data. The problem here becomes the fusion of
these pieces of data to obtain a value appropriate for the user’s requirements.
The approaches and methodologies available for solving this problem depend
upon various considerations some of which we shall outline in the following
sections. In Fig. 1 we provide a schematic framework of this multi-source data
fusion problem which we use as a basis for our discussion.

Our fusion engine combines the data provided by the information sources
using various types of knowledge it has available to it. We emphasize that the
fusion process involves use of both the data provided by the sources as well as
other knowledge. This other knowledge includes both context knowledge and
user requirements.

Output

Source
Credibility

Knowledge of
Reasonableness

Proximity
Knowledge

Base

User Requirements

S
1

S
2

Sq

FUSION   ENGINE 

Fig. 1. Schematic of Data Fusion
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2 Considerations in Data Fusion

Here we discuss some considerations that effect the mechanism used by the
fusion engine. One important consideration in the implementation of the fu-
sion process is related to the form, with respect to its certainty, with which
the source provides its information. Consider the problem of trying to deter-
mine the age of John. The most certain situation is when a source reports
a value that is a member of X, John’s age is 23. Alternatively the reported
value can include some uncertainty. It could be a linguistic value such as
John is “young.” It could involve a probabilistic expression of the knowledge.
Other forms of uncertainty can be associated with the information provided.
We note that fuzzy measures [5, 6] and Dempster-Shafer belief functions [7, 8]
provide two general frameworks for representing uncertainty information. Here
we shall assume the information provided by a source is a specific value in the
space X.

An important of the fusion process is the inclusion of source credibility
information. Source credibility is a user generated or sanctioned knowledge
base. It associates with the data provided by a source a weight indicating
its credibility. The mechanism of assignment of credibility weight to the data
reported by a source can be involve various degrees of sophistication. For
example, degrees of credibility can be assigned globally to each of the sources.
Alternatively source credibility can be dependent upon the type of variable
involved. For example, one source may be very reliable with information about
ages while not very good with information about a person’s income. Even
more sophisticated distinctions can be made, for example, a source could be
good with information about high income people but bad about income of
low people.

The information about source credibility must be at least ordered. It may
or may not be expressed using a well defined bounded scale. Generally when
the credibility is selected from a well defined bounded scale the assignment
of the highest value to a source indicates give the data full weight. The as-
signment of the lowest value on the scale generally means don’t use it. This
implies the information should have no influence in the fusion process.

There exists an interesting special situation, with respect to credibility
where some sources may be considered as disinformative or misleading. Here
the lowest value on the credibility scale can be used to correspond to some
idea of taking the “opposite” of the value provided by the source rather than
assuming the data provided is of no use. This somewhat akin to the relation-
ship between false and complementation in logic. This situation may require
the use of a bipolar scale [9, 10]. Such a scale is divided into two regions sepa-
rated by a neutral element. Generally the type of operations performed using
values from these bipolar depend on from portion of the scale which it was
drawn.
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Central to the multi-source data fusion problem is the issue of conflict and
its resolution. The proximity and reasonableness knowledge bases shown in
Fig. 1 play important roles in the handling of this issue.

One form of conflict arises when we have multiple values of a variable
which are not the same or even compatible. For example one source may say
the age of Osama Bin Laden is 25 another may say he is 45 and another may
say he is 85. We shall refer to this as data conflict. As we shall subsequently
see the proximity knowledge base plays an important role in issues related to
the adjudication of this kind of conflict.

There exists another kind of conflict, one that can occur even when we only
have a single reading for a variable. This happens when a sources reported
value conflicts with what we know to be the case, what is reasonable. For
example, if in searching for the age of Osama Bin Laden, one of the sources
reports that he is eighty years old. This conflicts with what we know to be
reasonable. This is information which we consider to have a higher priority
than any information provided by any of the sources. In this case our action
is clear: we discount this observation. We shall call this a context conflict, it
relates to a conflict with information available to the fusion process external
to the data provided by the sources. The repository of this higher priority
information what we have indicated as the knowledge of reasonableness in
Fig. 1. This type of a priori context or domain knowledge can take many
forms and be represented in different ways.

As an illustration of one method of handling this type of domain knowl-
edge we shall assume our reasonableness knowledge base in the form of a
mapping over the domain of V . More specifically a mapping R : X → T
called the reasonableness mapping. We allow this to capture the infor-
mation we have, external to the data, about the possibilities of the different
values in X being the actual value of V . Thus for any x ∈ X,R(x) indicates
the degree of reasonableness of x. T can be the unit interval I = [0, 1] where
R(x) = 1 indicates that x is a completely reasonable value while R(x) = 0
means x is completely unreasonable. More generally T can be an ordered set
T = {t1, . . . , tn]. We should point out that the information contained in the
reasonableness knowledge base can come from a number of modes. It can be
directly related to object of interest. For example from picture of bin Laden
in a newspaper dated 1980, given that we are now in 2004, it would clearly
be unreasonable to assume that he is less than 24. Historical observations of
human life expectancy would make it unreasonable to assume that bin Laden
is over 120 years old. Commonsense knowledge applied to recent pictures of
him can also provide information regarding the idea reasonableness regarding
bin Laden’s age. In human agents their use of a knowledge of reasonableness
plays fundamental role in distinguishing high performers from lesser. With
this in mind it is noted that the need for tools for simply developing and
applying these types of reasonableness knowledge bases is paramount.

The reasonableness mapping R provides for the inclusion of information
about the context in which we are performing the fusion process. Any data
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provided by a source should be acceptable given our external knowledge about
the situation. The use of the reasonableness type of relationship clearly pro-
vides a very useful vehicle for including intelligence in the process.

In the data fusion process, this knowledge of reasonableness often interacts
with the source credibility in an operation which we shall call reasonableness
qualification. A typical application of this is described in the following. Assume
we have a source that provides a data value ai and it has credibility ti. Here
we use the mapping R to inject the reasonableness, R(ai), associated with
the value ai and then use it to modify ti to give us zi, the support for data value
ai that came from source Si. The process of obtaining zi from ti and R(ai) is
denoted zi = g(ti, R(ai)), and is called reasonableness qualification. In the
following we shall suppress the indices and denote this operator as z = g(t, r)
where r = R(a). For simplicity we shall assume t and r are from the same
scale.

Let us indicate some of the properties that should be associated with this
operation. A first property universally required of this operation is monotonic-
ity, g(t1, r1) ≥ g(t2, r2) if t1 ≥ t2 and r1 ≥ r2. A second property that is
required is that if either t or r is zero, the lowest value on the scale, then
g(t, r) = 0. Thus if we have no confidence in the source or the value it pro-
vides is not reasonable, then the support is zero. Another property that may
be associated with this operation is symmetry, g(t, r) = g(r, t). Although we
may necessarily require this of all manifestations of the operation.

The essential semantic interpretation of this operation is one of saying that
in order to support a value we desire it to be reasonable and emanating from a
source in which we have confidence. This essentially indicates this operation is
an “anding” of the two requirements. Under this situation a natural condition
to impose is the g(t, r) ≤ Min[t, r]. More generally we can use a t-norm [11] for
g. Thus we can have g(t, r) = Min[t, r] or using the product t-norm g(t, r) = tr.

Relationships conveying information about the congeniality1 between val-
ues in the universe X in the context of their being the value of V play an
important role in the development of data fusion systems. Generally these
types of relationships convey information about the compatibility and inter-
changeability between elements in X and as such are fundamental to the
resolution and adjudication of internal conflict. Without these relationships
conflict can’t be resolved. In many applications underlying congeniality rela-
tionships are implicitly assumed, a most common example is the use of least
squared based methods. The use of linguistic concepts and other granulation
techniques are based on these relationships [12, 13]. Clustering operations
require these relationships. These relationships are related to equivalence re-
lationships and metrics.

The proximity relationship [14, 15] is an important example of these
relations. Formally a proximity relationship on a space X is a mapping Prox:
1 We use this term to indicate relationships like proximity, similarity, equivalence

or distance.
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X × X → T having the properties: 1. Prox(x, x) = 1 (reflexive) and 2.
Prox(y, x) = Prox(x, y) (symmetric). Here T is an ordered space having a
largest and smallest element denoted 1 and 0. Often T is the unit interval.
Intuitively the value Prox(x, y) is some measure of degree to which the values
x and y are compatible and non-conflicting with respect to context in which
the user is seeking the value of V . The concept of metric or distance is related
in an inverse way to the concept of proximity.

A closely related and stronger idea is the concept of similarity relation-
ship as introduced by Zadeh [16, 17]. A similarity relationship on a space
X is a mapping Sim:X × X → T having the properties: 1) Sim(x, x) = 1,
2) Sim(x, y) = Sim(y, x) & 3) Sim(x, z) ≥ Sim(x, y) ∧ Sim(y, z). A similarity
relationship adds the additional requirement of transitivity. Similarity rela-
tionships provide a generalization of the concept of equivalent relationships.

A fundamental distinction between proximity and similarity relationships
is the following. In a proximity relationship x and y can be related and y
and z can be related without having x and z being related. In a similarity
relationship under the stated premise a relationship must also exist between
x and z.

In situations in which V takes its value on a numeric scale then the bases
of the proximity relationship is the absolute difference |x − y|. However the
mapping of |x− y| into Prox(x, y) may be highly non-linear.

For variables having non-numeric values a relationship of proximity can be
based on relevant features associated with the elements in the variables uni-
verse. Here we can envision a variable having multiple proximity relationships.
As an example let V be the country in which John was born, its domain X is
the collection of all the countries of the world. Let us see what types of prox-
imity relationship can be introduced on X in this context. One can consider
the continent in which a country lies as the basis of a proximity relationship,
this would actually generate an equivalence relationship. More generally, the
physical distance between the country can be the basis of a proximity rela-
tionship. The spelling of the country’s name can be the basis of a proximity
relationship. The primary language spoken in a country can be the basis of
a proximity relationship. We can even envision notable topographic or geo-
graphic features as the basis of proximity relationships. Thus many different
proximity relationships may occur. The important point here is that the asso-
ciation of a proximity relationship over the domain over a variable can be seen
as a very creative activity. More importantly the choice of proximity relation-
ship can play a significant role in the resolution of conflicting information.

A primary consideration that effects the process used by the fusion engine
is what we shall call the compositional nature of the elements in the domain X
of V . This characteristic plays an important role in determining the types of
operations that are available in the fusion process. It determines what types of
aggregations we can perform with the data provided by the sources. We shall
distinguish between three types of variables with respect to this characteristic.
The first type of variable is what we shall call celibate or nominal. These
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are variables for which the composition of multiple values is meaningless.
An example of this type of variable is a person’s name. Here the process of
combining names is completely inappropriate. Here fusion can be based on
matching and counting. A next more structured type of variable is an ordinal
variable. For these types of variables these exists some kind of meaningful
ordering of the members of the universe. An example of this is a variable
corresponding to size which has as its universe {small, medium, large}. For
these variables some kind of compositional process is meaning, combining
small and large to obtain medium is meaningful. Here composition operations
must be based on ordering. The most structured type of variable is a numeric
variable. For these variables in addition to ordering we have the availability of
all the arithmetic operators. This of course allows us a great degree of freedom
and we have a large body of compositional operators.

3 Expressing User Requirements

The output of any fusion process must be guided by the needs, requirements
and desires of the user. In the following we shall describe some considerations
and features that can be used to define or express the requirements of the
user.

An important consideration in the presentation of the output of the fusion
process is the users level of conflict tolerance. Conflict tolerance is related to
the multiplicity of possible values presented to the user. Does the user desire
one unique value or is it appropriate to provide him with a few solutions or
is the presentation of all the multi source data appropriate?

Another different, although closely related, issue focuses on the level of
granulation of the information provided to the user. As described by Zadeh
[18] a granule is a collection of values drawn together by proximity of various
types. Linguistic terms such as cold and old are granules corresponding to a
collection of values whose proximity is based on the underlying temperature
scale. In providing information we must satisfy the user’s required level of
granularity for the task for which he is requiring the information. Here we
are not referring to the number of solutions provided but the nature of each
solution object. One situation is that in which each solution presented to the
user must be any element from the domain X. Another possibility is one in
which we can provide, as a single solution, a subset of closely related values.
Presenting ranges of values is an example of this. Another situation is where
use a vocabulary of linguistic terms to express solutions. For example if the
task is to determine what jacket to wear being told that it is cold is sufficient.
Using a > b to indicate that a has larger granularity than b if we consider
providing information where somebody lives we see

country > region > state > city.> building address > floor in building
> apartment on floor.
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Recent interest in ontologies [19] involves many aspects related to granulation.
Another issue related to the form of the output is whether output values

presented to the user are required to be values that correspond to one supplied
by a source as the input or can we blend source values using techniques such as
averaging to construct new values that didn’t appear in the input. A closely
related issue is the reasonableness of the output. For example consider the
attempt to determine the number of children that John has. Assume one
source says 8 and another says 7, taking the average gives us 7.5. Well, clearly
it is impossible for our John to have 7.5 children. For some purposes this may
be an appropriate figure. In addition we should note the that sometimes the
requirement for reasonableness may be different for the output than input.

Another feature of the output revolves around the issue of qualification.
Does the user desire qualifications associated with suggested values or does
he prefer no qualification? As we indicated data values inputted to a fusion
system often have attached values of credibility, this being due to the credibil-
ity of the source and the reasonableness of the data provided. Considerations
related to the presentation of this credibility arise regarding the requirements
of the user. Are we to present weights of credibility with the output or present
it without these weights? In many techniques, such as weighted averaging, the
credibility weight gets subsumed in the fusion process.

In most cases the fusion process should be deterministic, a given informa-
tional situation should always result in the same fused value. In some cases we
may allow for a non-deterministic, random mechanism in the fusion process.
For example in situations in which some adversary may have some role in
effecting the information used in the fusion process we may want to use ran-
domization to blur and confuse the influence of their information.

4 A Framework for Multi-Source Data Fusion

Here we shall provide a basic framework in which to view and implement the
data fusion process. We shall see that this framework imposes a number of
properties that should be satisfied by a rational data fusion technology.

Consider a variable of interest V having an underlying universe X. Assume
we have as data a collection of q assessment of this variable, {V = a1, V =
a2, V = a3, . . . , V = aq} Each assessment is information supplied by one of
our sources. Let ai be the value provided by the source Si. Our desire here is
to fuse these values to obtain some value ã ∈ X as the fused value. We denote
this as a ã = Agg(a1, . . . , an). The issue then becomes that of obtaining the
operator Agg that fuses these pieces of data. One obvious requirement of such
an aggregation operator is idempotency, if all ai = a then ã = a.

In order to obtain acceptable forms for Agg we must conceptually look at
the fusion process. At a meta level multi-source data fusion is a process in
which the individual sources must agree on a solution that is acceptable to
each of them, that is compatible with the data they each have provided.
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Let a be a proposed solution, some element from X. Each source can be
seen as “voting” whether to accept this solution. Let us denote Supi(a) as the
support for solution a from source i. We then need some process of combining
the support for a from each of the sources. We let

Sup(a) = F (Sup1(a),Sup2(a), . . . ,Supq(a))

be the total support for a . Thus F is some function that combines the support
from each of the sources. The fused value ã is then obtained as the value a ∈ X
that maximizes Sup(a). Thus ã is such that Sup(ã) = Maxa∈X [Sup(a)]. In
some situations we may not have to search through the whole space X to find
an element ã having the property Sup(ã) = Maxa∈X [Sup(a)].

We now introduce the ideas of solution set and minimal solution set which
may be useful We say that a subset G of X is a solution set if all a s.t.
Sup(a) = Maxa∈X [Sup(a)] are contained in G. The determination of G is
useful in describing the nature of the type of solution we can expect from a
fusion process. We shall say that a subset H of X is a minimal solution
set if there always exists one element a ∈ H s.t. Sup(a) = Maxa∈X [Sup(a)].
Thus a minimal solution set is a set in which we can always find an acceptable
fused value. The determination of a minimal solution set can help reduce the
task of searching.

Let us consider some properties of F . One natural property associated
with F is that the more support from the individual sources the more overall
support for a . Formally if a and b are two values and if Supi(a) ≥ Supi(b) for
all i then Sup(a) ≥ Sup(b). This requires that F be a monotonic function,
F (x1, x2, . . . , xq) ≥ F (y1, y2, . . . , yq) if xi ≥ yi for all i. A slightly stronger
requirement is strict monotonicity. This requires that F be such that if xi ≥
yi for all i and there exists at least one i such that xi > yi then F (xi, . . . , xq) >
F (y1, . . . , yq).

Another condition we can associate with F is a symmetry with respect to
the arguments. That is the indexing of the arguments should not affect the
answer. This symmetry implies a more expansive situation with respect to
monotonicity. Assume t1, . . . , tq and t̂1, . . . , t̂q are two sets of arguments of F ,
Supi(a) = ti and Supi(â) = t̂i. Let perm indicate a permutation of the argu-
ments, where perm(i) is the index of the ith element under the permutation.
Then if there exists some permutation such that ti ≥ t̂perm(i) for all i we get

F (t1, . . . , tq) ≥ F (t̂1, . . . , t̂q) .

Let us look further into this framework. A source’s support for a solu-
tion, Supi(a), should depend upon the degree of compatibility between the
proposed solution a and the value provided by the source, ai. Let us de-
note Comp(a , ai) as this compatibility. Thus Supi(a) is some function of the
compatibility between ai and a . Furthermore, we have a monotonic type of
relationship. For any two values a and b if Comp(a , ai) ≥ Comp(b, ai) then
Supi(a)≥ Supi(b).
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The compatibility between two objects in X is based upon some underly-
ing proximity relationship. The concept of a proximity relationship, which we
introduced earlier, has been studied is the fuzzy set literature [20]. Here then
we shall assume a relationship Comp, called the compatibility relationship,
which has at least the properties of a proximity relationship. Thus Comp:
X × X → T in which T is an ordered space with greatest and least ele-
ments denoted 1 and 0 and having the properties: 1) Comp(x, x) = 1 and 2)
Comp(x, y) = Comp(y, x). A suitable although not necessary, choice for T is
the unit interval.

We see that this framework imposes an idempotency type condition on
the aggregation process. Assume ai = a for all i. In this case Comp(a , ai) =
1 for all i. From this it follows that for any b ∈ X Comp(a , ai) ≤ Comp(b,
ai) hence Supi(a) ≥ Supi(b) for all b thus Sup(a) ≥ Sup(b) for all a . Thus
there can never be a better solution than a . Furthermore, if F is assumed
strictly monotonic and Comp is such that Comp(a, b) �= 1 for a �= b then we
get a strict idempotency.

5 Compatibility Relationships

What is important to emphasize here is that by basing our fusion process on
the idea of the compatibility relationship we can handle, in a unified man-
ner, the fusion of variables whose values are drawn from sets (universes) hav-
ing widely different properties. Consider the variables John’s age and John’s
city of residence. These variables take their values from sets of a completely
different nature. Age is drawn from a purely mathematical set possessing all
the structure that this affords, we can add or subtract or multiply elements.
The city of residence has none of these properties. Its universe is of a com-
pletely different nature. What is also important to emphasize is that in order
to use this approach on a variable V we must be able to obtain an appro-
priate context sensitive compatibility relation over its domain X. It is in this
process of obtaining the compatibility relationship that we make use of the
nature, the features and properties, of the elements in X. The construction
of the compatibility relationship is often an extremely subjective task and
greatly effects the end result. While in the numeric variables the basic feature
used to form Comp(a, b) is related to the difference |a − b| this may be very
complicated. For example the compatibility between salaries of 20 million and
30 million may be greater then the compatibility between salaries of 30 thou-
sand and 50 thousand. While in the case numeric variables where the only
feature of the elements in the domain useful for constructing the compatibility
relationship is the numeric value in the case of other variables such as the coun-
try of residence the elements in the domain X have a number of features that
can be used as the basis of an underlying compatibility relationship. This leads
to the possibility of having multiple available compatibility relationships in our
fusion process. While in the remainder of our work we shall assume the fusion
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process is based on one well defined compatibility relationship we would like to
describe one generalization related to the situation of having the availability
of multiple compatibility relations over the domain of the variable of interest.
Earlier we indicated that the fused value is ã such Sup(ã) = Maxa∈X [Sup(a)].
In the case of multiple possible compatibility relations Ck for k = 1 to m then
if we let Sup(a)/k indicate the Sup for a under compatibility relation Ck the
process of obtaining the fused value may involve finding ã and compatibility
relation Ck∗ such that Sup(ã)/k∗ = Maxk[Maxa∈X [Sup(a)/k]].

At a formal level compatibility relations are mathematical structures that
well studied and characterized. We now look at some very important special
examples of compatibility relationships. We particularly focus on the proper-
ties of the solution sets that can be associated with relations. This helps us
understand the nature of the fused values we may obtain. In the following
discussion we shall let B be the set of all the values provided by the sources,
B = {aj | V = aj for some source}.

First we consider a very strict compatibility relation. We assume
Comp(a, b) = 1 if a = b and Comp(a, b) = 0 if a �= b. This is a very special
kind of equivalence relationship, elements are only equivalent to themselves.
It can be shown under the condition of monotonicity of F the minimal solu-
tion set is the set B. This means the fused value for this type of compatibility
relation must be one the data points provided by the sources.

Consider now the case where Comp is an equivalence relationship,
Comp(a, b) ∈ {0, 1} and Comp(a, a) = 1, Comp(a, b) = Comp(b, a) and if
Comp(a, b) = 1 and Comp(b, c) = 1 the Comp(a, c) = 1. It can be shown [21]
in this case that B also provides a minimal solution set, no solution can be
better than some element in B.

We turn to another type of compatibility relationship, one in which there
exists some linear ordering on the space X which underlies the compatibility
relation. Let L be a linear ordering on X where x >

L
y indicates that x is larger

than y in the ordering. Let Comp be a compatibility relationship on X which in
addition to being reflexive and symmetric is such that the closer two elements
are in the ordering L the more compatible they are. More formally we assume
that if x >

L
y >

L
z then Comp(x, y) ≥ Comp(x, z). We say this connection

between ordering and compatibility is strict if x >
L

y >
L

z implies Comp(x, y)
> Comp(x, z). Again let B be the set of data values provided by the sources.
Let a∗ be the largest element in B with respect to the underlying ordering
>
L

and let a∗ be the smallest element in B with respect to the ordering. It
can be shown that the subset H of H where H = {a | a∗ ≤

L
a ≤

L
a∗} is a

minimal solution set. Thus under this type of compatibility relationship only
requiring only that F is monotonic leads to the situation which our fused
value will be found in the “interval of X” bounded by a∗ and a∗. This is
a very interesting and deep result. Essentially this is telling us that if we
view the process of obtaining the fused value as an aggregation of the data,
a = Agg(a1, a2, . . . , aq} then Agg is a mean like operation.
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6 Additional Requirement on F

We described the process of determining the fused value to a data collection
〈a1, . . . , aq〉 as to be conceptually implemented by the following process:

(1) For any a ∈ X obtain Supi(a) = Comp(a, ai)
(2) Evaluate Sup(a) = F (Supi(a), . . . ,Supq(a))
(3) Select as fused value the ã such that Sup(ã) = Maxa∈X [Sup(a)]

We explicitly made two assumptions about the function F , we assumed
that F was symmetric the indexing of input information is not relevant and
F is monotonic. An implicit assumption we made about F was an assumption
of pointwiseness.

There exists another property we want to associate with F , it is closely
related to the idea of self-identity discussed by Yager and Rybalov [22]. As-
sume that we have a data set 〈a1, . . . , aq〉 and using our procedure we find
that ã is the best solution Sup(ã) ≥ Sup(x) for all x in X. Assume now that
we are provided an additional piece of data aq+1 such that aq+1 = ã, the new
data suggests ã as its value. Then clearly ã should still be the best solution.
We shall formalize this requirement. In the following we let ã and â be two
possible solutions and let c̃i = Comp(â, ai) and ĉi = Comp(â, ai). We note
that if aq+1 = ã then c̃q+1 ≥ ĉq+1 since

c̃q+1 = Comp(ã, aq+1) = Comp(ã, ã) = 1 ≥ Comp(â, ã)
≥ Comp(â, aq+1) = ĉq+1

Using this we can more formally express our additional requirement on F . If

F (c̃1, . . . , c̃q) ≥ F (ĉi, . . . , ĉq)

and if c̃q+1 ≥ ĉq+1 then we require that

F (c̃1, . . . , c̃q, c̃q+1) ≥ F (ĉi, . . . , ĉq, ĉq+1) .

We note that this last condition is not exactly a standard monotonicity
condition. We call this property stepwise monotonicity. We now have spec-
ified four conditions on F : pointwise, monotonicity, symmetry and stepwise
monotonicity.

Let us now consider the issue of providing some formulations for F that
manifest the conditions we require. Before we do this we must address the mea-
surement of compatibility. In our work so far we have assumed a very general
formulation for this measurement. We have defined Comp: X × X → T in
which T is an ordered space with greatest and least elements denoted 1 and 0.
Let us consider the situation in which T has only an ordering. In this case one
form for F is that of a Max operator. Thus F (t1, t2, . . . , tq) = Maxi[Ci] satis-
fies all the conditions required. We also note that the Min operator satisfies
our conditions.
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If we consider the situation in which the compatibility relation takes its
values in the unit interval, [0, 1] one formulation for F that meets all our re-
quired conditions is the sum or totaling function, F (x1, x2, . . . xq) =

∑q
i=1 xi.

Using this we get Sup(a) =
∑q

i=1 Supi(a) =
∑q

i=1 Comp(a, ai). Thus our
fused value is the element that maximizes the sum of its compatibilities with
the input.

7 Credibility Weighted Sources

In the preceding we have implicitly assumed all the data had the same credi-
bility. Here we shall consider the situation in which each data has a credibility
weight wi. Thus now our input is q pairs of (wi, ai). We also note that the
weight wi must be drawn from a scale that has at least an ordering. In ad-
dition we assume this scale has minimal and maximal elements denoted 0
and 1.

Again in this situation for any a ∈ X we calculate Sup(a) = F (Sup1(a), . . . ,
Supq(a)) where Supi(a) is the support for a from the data supplied by source
i, (wi, ai). However in this case, Supi(a) depends upon two components. The
first being the compatibility of a with ai, Comp(a, ai) and the second being
the weight or strength of credibility source i. Thus in this case

Supi(a) = g(wi,Comp(a, ai))

Ideally we desire that both wi and Comp(a, ai) be drawn from the same
scale, which has at least an ordering. For the following discussion we shall
not implicitly make this assumption. However, we shall find it convenient
to use 0 and 1 to indicate the least and greatest element on each of the
scales. We now specify the properties that are required of the function g. A
first property we require of g is monotonicity with respect to both of the
arguments: g(x, y) ≥ g(z, y) if x > z and g(x, y) ≥ g(x,w) if y > w. Secondly
we assume that zero credibility or zero compatibility results in zero support:
g(x, 0) = g(0, y) = 0 for all x and y. We see that g has the character of an
“and” type operator. In particular at a semantic level we see that we are
essentially saying is “source i provides support for solution if the source is
credible and the solution is compatible with the sources data”.

With this we see that g(1, 1) = 1 and g(x, y) �= 0 if x �= 0 and y �= 0. We
must make one further observation about this process with respect to source
credibility. Any source that has zero credibility should in no way effect the
decision process. Thus if ((w1, a1), . . . , (wq, aq)) has as its fused value ã then
the data ((w1, a1), . . . , (wq, aq), (wq+1, aq+1)) where wq+1 = 0 should also have
the same result. With this understanding we can discard any source with zero
credibility. In the following we shall assume unless otherwise stated all sources
have non-zero credibility.
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8 Including Reasonableness

In an early part we introduced the idea of a Reasonableness Knowledge
Base (RKB) and indicated its importance in the data fusion process. For-
mally we use this structure to introduce into the fusion process any informa-
tion we have about the value of the variable exclusive of the data provided
by the sources. The information in the reasonableness knowledge base will
affect our proposed fusion process in at least two ways. First it will interact
with the data provided by the sources. In particular, the weight (credibility)
associated with a source providing an unreasonable input value should be di-
minished. This results in our giving the data less importance in the fusion
process. Secondly some mechanism should be included in the fusion process
to block unreasonable values from being provided as the fused value.

A complete discussion of the issues related to the construction of the RKB
and those related to formal methods for the interaction of the RKB with the
data fusion process is complex and beyond our immediate aim as well as well
being beyond our complete understanding at this time. In many ways the
issue of reasonableness goes to the very heart of intelligence. Here we shall
focus on the representation of a specific type of knowledge effecting what are
reasonable values for a variable and suggest a method for introducing this in
the fusion process.

We shall distinguish between two types of information about the value of
a variable with the terms intimate and collective knowledge. Before making
this distinction we recall a variable V is formally denoted as A(y) where
A is an attribute and y is a specific object. For example if the variable is
John’s age then age is the attribute and John is the object. By intimate
knowledge we mean information directly about the variable whose value we
are trying obtain. Knowing that John was born after Viet Nam war or that
Mary lives in Montana are examples of intimate knowledge. By collective
knowledge we mean information about the value of the attribute for a class
of objects in which our object of interest lies. Knowing that Singaporeans
typically are college graduates is collective knowledge while knowing that
Min-Sze has a PhD is intimate knowledge. Generally intimate knowledge has
a possibilistic nature while collective knowledge has a probabilistic nature.
(The preceding statement is an example of collective knowledge). Another
type of knowledge related to reasonableness is what has been called default
(commonsense) knowledge [23, 24]. This knowledge is such that while we have
not been given intimate knowledge that xyz is the value of a variable we can
act as if this is the case unless we have some overriding intimate knowledge
saying that this is not the case. One view of default knowledge is that it is
collective knowledge that is so pervasively true from a pragmatic point of view
it is more economical to act as if it is categorical, holds for all objects, and
deal with exceptions as they are pointed out.

Here we consider only the situation in which our knowledge about rea-
sonableness is intimate and can be expressed by fuzzy subset, a mapping
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R : X → T . As pointed out by Zadeh [25] this kind of knowledge induces
a constraint on the values of the variable and has a possibilistic nature [26].
Here for any x ∈ X,R(x) indicates the reasonableness (or possibility) that x
is the value of the variable V . For example, if our interest is to obtain John’s
age and before soliciting data from external sources we know from our per-
sonal interview that John is young then we can capture this information using
the fuzzy subset R corresponding to and thus constrain the values that are
reasonable.

Let us see how we can include this information into our data fusion process.
In the following we assume that T is a linear ordering having maximal and
minimal elements, usually denoted 1 and 0. Assume the data provided by
source i is denoted ai and wi is the credibility assigned to source i. We as-
sume these credibilities are measured on the same scale as the reasonableness,
T . In the fusion process the importance weight, ui, assigned to the data ai

should be a function of the credibility of the source, wi, and the reasonable-
ness of the data, R(ai). An unreasonable value, whatever the credibility of
the source, should not be given much significance in the fusion. Similarly a
piece of data coming from a source with low credibility, whatever the rea-
sonableness of its value, should not be given much significance in the fusion.
Using the Min to implement this “anding” we obtain ui = Min[R(ai), wi] as
the importance weight assigned to the data ai coming from this source. In
this environment the information that goes to the fusion mechanism is the
collection 〈(u1, a1), . . . , (uq, aq)〉.

As in the preceding the overall support for a proposed fused value a should
be a function its support from each of the sources, Sup(a) = F (Supi(a), . . . ,
Supq(a)). The support provided from source i for solution a should depend
on the importance weight ui assigned to data supplied by source i as well as
the compatibility of the data ai and the proposed fused value, Comp(a , ai). In
addition we should also include information about the reasonableness of the
proposed solution a . Here then for a solution a to get support from source i it
should be compatible with the data ai and compatible with what we consider
to be reasonable, Comp(a , R). Here then we let Compi(a) = Comp(a , ai) ∧
Comp(a , R). Furthermore Comp(a , R) = R(a) hence Compi(a) = Comp(a ,
ai)∧R(a). In addition, as we have indicated, the support afforded any solution
by source i should be determined in part by the importance weight assigned i.
Taking these considerations into account we get Supi(a) = g(ui, Compi(a)).
Substituting our values we get

Supi(a) = g(wi ∧R(ai),Comp(a , ai) ∧R(a))

What is clear is that g should be monotonically increasing in both its argu-
ments and be such that if any of the arguments are 0 then Supi(a) = 0. In
the case where we interpret g as implementing an anding and using the Min
operator as our and we get Supi(a) = wi ∧R(ai)∧R(a)∧Comp(a , ai). Here
we observe that the support afforded from source i to any proposed fused
solution is related to the credibility of the source, the reasonableness of value
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provided by the source, the reasonableness of the proposed fusion solution and
the compatibility of the data and solution.

Earlier we looked at the form of solution set for the fused value under
different assumptions about the underling compatibility relationship. Let us
now investigate how the introduction of reasonableness affects our results
about boundedness and minimal solution sets. For simplicity neglect the issue
of source credibility, we assume all sources are fully credible.

Consider the case in which our underlying compatibility relationship is
very strict, Comp(x, y) = 1 iff x = y and Comp(x, y) = 0x �= y. Let B be the
set of data values and let B̂ be the subset of B such that b ∈ B̂ if R(b) �= 0, it
is the set of reasonable data values. If a �∈ B then Comp(a, ai) = 0 for all ai

and hence Supi(a) = 0 for all i. Let d ∈ B − B̂, here R(d) = 0 and again we
get that Supi(d) = 0 for all i. On the other hand for b ∈ B̂ then R(b) �= 0 and
b = aj for some j and hence Supj(b) > 0. Thus we see that we will always find
our solution in the space B̂, the set of data values that are not completely
unreasonable. Actually in this case for each b ∈ B̂ its overall support is the
number of sources that provided this value.

Consider now the case in which Prox is an ordinary equivalence relation.
Again let B̂ be our set of input data which have some degree of reasonableness.
Let Ei be the equivalence class of ai, for all y ∈ Ei, Prox(y, ai) = 1. Let
E = ∪

i
Ei, the union of all equivalence classes that have input value. If a �∈ E

then Prox(a, ai) = 0 for all i. From this we see that if a �∈ E then Supi(a) = 0
for all i and hence we can always find at least as good a solution in E. We can
obtain a further restriction on the minimal solutions. Let Di ⊆ Ei be such
that di ∈ Di if R(di) = Maxx∈Fi

(R(x)). Thus Di is the subset of elements
that are equivalent to ai and are most reasonable. For any di ∈ Di and any
ei ∈ Ei we have that for all input data aj Comp(ei, aj) = Comp(di, aj). Since
R(di) ≥ R(ei) we see that Supj(di) ≥ Supj(ei) for all j. Hence di is always at
least as good a fused value as any element in Ei. Thus we can always find a
fused solution in D = ∪

i
Di. Furthermore if x and y ∈ Di then R(x) = R(y)

and Comp(x, z) = Comp(y, z) for all z. Hence Supi(x) = Supi(y). Thus
Sup(x) = Sup(y). The result is that we can consider any element in Di. Thus
all we need consider is the set D̃ = ∪

i
{d̃i} where d̃i is any element from Di.

We note that if ai ∈ Di then this is of course the preferred element.
We now consider the case where the proximity relationship is based on a

linear ordering L over space X. Let B be the set of data values provided by
the sources. Let x∗ and x∗ be the maximal and minimal elements in B with
respect to the ordering L. Let H be the set of xj so that x∗ ≥

L
xj ≥

L
x∗. In the

preceding we showed that we can always find a fused value element a in H.
We now show that the introduction of reasonableness removes this property.

In the preceding we indicated that for any proposed fused value we get
that Supi(a) = g(ui,Compi(a)) where g monotonic in both the arguments,
ui = wi ∧R(ai) and Compi(a) = R(a)∧Comp(a, ai). We shall now show that
here we can have an element a �∈ H in which Supi(a) ≥ Supi(b) for all b ∈ H.
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This implies that we can’t be guaranteed of finding the fused value in H.
Consider now the case in which there exists b ∈ H for which R(b) ≤ α. In
this case Supi(b) = g(ui, R(b)∧Comp(b, ai)) ≤ g(ui, α). Let a �∈ H be such
that R(a) > α. For this element we get Supi(a) = g(ui, R(a)∧Comp(a, ai)).
If Comp(a, ai) > α then R(a)∧Comp(a, ai) = β then β > α and hence
Supi(a) = g(ui, β) ≥ g(ui, α) = Supi(b) and then it is not true we can elimi-
nate a as a solution. Thus we see that the introduction of this reasonableness
allows for the possibility of solutions not bounded by the largest and smallest
of input data.

An intuitive boundary condition can be found in this situation. Again
let H be the subset of X bounded by our data: H = {x | x∗ ≥

L
x ≥

L
x∗}

where let α∗ = R(x∗) and let α∗ = R(x∗). Let H∗ = {x | x >
L

x∗ and
R(x) > R(x∗)} and let H∗ = {x | x <

L
x∗ and R(x) > R(x∗)}. Here we can

restrict ourselves to looking for the fused value in the set Ĥ = H ∪ H∗ ∪
H∗. We see that as follows. For any x >

L
x∗ we have, since the proximity

relationship is induced by the ordering, that Comp(x, ai) ≤ Comp(x∗, ai)
for all data ai. If in addition we have that R(x) ≤ R(x∗) then Supi(x) =
g(ui, R(x)∧Comp(x, ai)) ≤ Supi(x∗) = g(ui, R(x∗)∧Comp(x∗, ai)) for all
i and hence Sup(x) ≤ Sup(x∗). Thus we can eliminate all x >

L
x∗ having

R(x) ≤ R(x∗). Using similar arguments we can eliminate x <
L

x∗ which have
R(x) ≤ R(x∗).

9 Conclusion

We presented a general view of the multi-source data fusion process and de-
scribed some of the considerations and information that must go into the
development of a data fusion algorithm. Features playing a role in expressing
users requirements were also discussed. We introduced a general framework
for data fusion based on a voting like process which made use of compatibil-
ity relationships. We described several important examples of compatibility
relationships. We showed that our formulation resulted in specific bounding
conditions on the fused value depending on the underlying compatibility re-
lationships. We noted the existence of these bounding conditions essentially
implied that the fusion process has the nature of a mean type aggregation. We
presented the concept of reasonableness as a means for including in the fusion
process any information available other then that provided by the sources. We
considered the situation in which we allowed our fused value to be granular
objects such as linguistic terms or subsets.

References

1. Berry, M. J. A. and Linoff, G., Data Mining Techniques, John Wiley & Sons:
New York, 1997. 3



Some Considerations in Multi-Source Data Fusion 21

2. Dunham, M., Data Mining, Prentice Hall: Upper Saddle River, NJ, 2003. 3
3. Han, J. and Kamber, M., Data Mining: Concepts and Techniques, Morgan Kauf-

mann: San Francisco, 2001. 3
4. Mitra, S. and Acharya, T., Data Mining: Multimedia. Soft Computing and

Bioinformatics, New York: Wiley, 2003. 3
5. Murofushi, T. and Sugeno, M., “Fuzzy measures and fuzzy integrals,” in Fuzzy

Measures and Integrals, edited by Grabisch, M., Murofushi, T. and Sugeno, M.,
Physica-Verlag: Heidelberg, 3–41, 2000. 6

6. Yager, R. R., “Uncertainty representation using fuzzy measures,” IEEE Trans-
action on Systems, Man and Cybernetics 32, 13–20, 2002. 6

7. Shafer, G., A Mathematical Theory of Evidence, Princeton University Press:
Princeton, N.J., 1976. 6

8. Yager, R. R., Kacprzyk, J. and Fedrizzi, M., Advances in the Dempster-Shafer
Theory of Evidence, John Wiley & Sons: New York, 1994. 6

9. Yager, R. R. and Rybalov, A., “Uninorm aggregation operators,” Fuzzy Sets
and Systems 80, 111–120, 1996. 6

10. Yager, R. R., “Using a notion of acceptable in uncertain ordinal decision mak-
ing,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems 10, 241–256, 2002. 6

11. Klement, E. P., Mesiar, R. and Pap, E., Triangular Norms, Kluwer Academic
Publishers: Dordrecht, 2000. 8

12. Zadeh, L. A., “Toward a theory of fuzzy information granulation and its central-
ity in human reasoning and fuzzy logic,” Fuzzy Sets and Systems 90, 111–127,
1997. 8

13. Lin, T. S., Yao, Y. Y. and Zadeh, L. A., Data Mining, Rough Sets and Granular
Computing, Physica-Verlag: Heidelberg, 2002. 8

14. Kaufmann, A., Introduction to the Theory of Fuzzy Subsets: Volume I, Acad-
emic Press: New York, 1975. 8

15. Bouchon-Meunier, B., Rifqi, M. and Bothorol, S., “Towards general measures
of comparison of objects,” Fuzzy Sets and Systems 84, 143–153, 1996. 8

16. Zadeh, L. A., “Similarity relations and fuzzy orderings,” Information Sciences
3, 177–200, 1971. 9

17. Yager, R. R., Ovchinnikov, S., Tong, R. and Nguyen, H., Fuzzy Sets and Ap-
plications: Selected Papers by L. A. Zadeh, John Wiley & Sons: New York,
1987. 9

18. Zadeh, L. A., “Toward a logic of perceptions based on fuzzy logic,” in Discovering
the World with Fuzzy Logic, edited by Novak, W. and Perfilieva, I., Physica-
Verlag: Heidelberg, 4–28, 2001. 10

19. Gomez-Perez, A., Fernandez-Lopez, M. and Corcho, O., Ontological Engineer-
ing, Springer: Heidelberg, 2004. 11

20. Shenoi, S. and Melton, A., “Proximity relations in fuzzy relational databases,”
Fuzzy Sets and Systems 31, 287–298, 1989. 13

21. Yager, R. R., “A framework for multi-source data fusion,” Information Sciences
163, 175–200, 2004. 14

22. Yager, R. R. and Rybalov, A., “Noncommutative self-identity aggregation,”
Fuzzy Sets and Systems 85, 73–82, 1997. 15

23. Reiter, R., “A logic for default reasoning,” Artificial Intelligence 13, 81–132,
1980. 17

24. McCarthy, J., “Applications of circumscription to formalizing common sense
knowledge,” Artificial Intelligence 28, 89–116, 1986. 17



22 R.R. Yager

25. Zadeh, L. A., “Outline of a computational theory of perceptions based on com-
puting with words,” in Soft Computing and Intelligent Systems, edited by Sinha,
N. K. and Gupta, M. M., Academic Press: Boston, 3–22, 1999. 18

26. Zadeh, L. A., “Fuzzy sets as a basis for a theory of possibility,” Fuzzy Sets and
Systems 1, 3–28, 1978. 18


	Part I Intelligent Systems and Data Mining
	Some Considerations in Multi-Source Data Fusion
	Ronald R. Yager
	1 Introduction
	2 Considerations in Data Fusion
	3 Expressing User Requirements
	4 A Framework for Multi-Source Data Fusion
	5 Compatibility Relationships
	6 Additional Requirement on F
	7 Credibility Weighted Sources
	8 Including Reasonableness
	9 Conclusion
	References






