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Abstract Typically, bioprocesses on an industrial scale are dynamic systems with a
certain degree of variability, system inhomogeneities, and even population hetero-
geneities. Therefore, the scaling of such processes from laboratory to industrial scale
and vice versa is not a trivial task. Traditional scale-down methodologies consider
several technical parameters, so that systems on the laboratory scale tend to quali-
tatively reflect large-scale effects, but not the dynamic situation in an industrial
bioreactor over the entire process, from the perspective of a cell. Supported by the
enormous increase in computing power, the latest scientific focus is on the
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application of dynamic models, in combination with computational fluid dynamics
to quantitatively describe cell behavior. These models allow the description of
possible cellular lifelines which in turn can be used to derive a regime analysis for
scale-down experiments. However, the approaches described so far, which were for
a very few process examples, are very labor- and time-intensive and cannot be
validated easily. In parallel, alternatives have been developed based on the descrip-
tion of the industrial process with hybrid process models, which describe a process
mechanistically as far as possible in order to determine the essential process param-
eters with their respective variances. On-line analytical methods allow the charac-
terization of population heterogeneity directly in the process. This detailed
information from the industrial process can be used in laboratory screening systems
to select relevant conditions in which the cell and process related parameters reflect
the situation in the industrial scale. In our opinion, these technologies, which are
available in research for modeling biological systems, in combination with process
analytical techniques are so far developed that they can be implemented in industrial
routines for faster development of new processes and optimization of existing ones.

Graphical Abstract

Keywords Bioprocess scale-up, Process analytical techniques, Process modeling,
Scale-down

1 Status of Bioprocess Scale-Down: The Need
for a Model-Based Design

Studies on the scale-down of bioprocesses have received much attention in recent
years. On the one side, this is due to an increasing implementation of the concept of a
circular bio-economy. Within this framework there is a boost in new processes and
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strategies. In the field of biotechnological production of basic chemicals and
biocatalysts, the reactor volumes are getting steadily larger to ensure the necessary
yields. Newly conceived processes must be robustly feasible on a large scale [1]. On
the other side, in the field of biopharmaceutical production, product yields in the
reactor originally had a lower priority for originator products compared to the costs
incurred in downstream processing. The expiry of many patents and the develop-
ment of generic or biosimilar products has led to a price pressure that companies can
only counteract with very efficient and less variable bioprocesses. Additionally, the
implementation of single-use strategies, especially in connection with the lower
power input in single-use bioreactors, introduces scaling phenomena, i.e. imperfect
mixing issues already at much smaller scales, i.e. in reactors with 1–5 m3 [2]. Still,
the main reason for the increased interest in scale-down investigations are failures,
lower yields, higher batch-to-batch variability, or even changes in the product
quality of processes performed in industrial scale. The difficulties to predict the
outcomes at this scale, the large number of unexpected responses of cells to different
environments, and the impossibility of computer based tools to foresee the changes
on the phenotype throughout scales based on laboratory data are the driving forces
behind scale-down popularity [1].

The discrepancy between laboratory- and industrial-scale fermentation processes
results from heterogeneous environments in large-scale bioreactors due to the
limited volumetric power input and geometric issues, which result in longer mixing
times associated with the increasing volumes at industrial scale, compared to
laboratory scale bioreactors [3]. The effects of such process inhomogeneity on
microbial physiology and product syntheses, including the quantity and quality of
recombinant products, have attracted much attention in the bioprocess research
community, due to the mostly unforeseeable impacts of the heterogeneities on
process efficiency, e.g. by the accidental incorporation of non-canonical amino
acids into the product [4].

In the past three decades, various forms of single-compartment and multi-
compartment scale-down bioreactors have been developed to study scale-up effects
in fermentation processes [3]. This development, however, is accompanied by a
constant discussion about the extent, to which these systems really reflect the
conditions at an industrial scale. Concrete proposals for procedures for scaling
down a process to laboratory scale have only been developed in recent years, see,
e.g. [5], but are generally very sophisticated and therefore unsuitable for broad
application.

In parallel, during the last years, there has been a phenomenal increase in the use
of high-throughput (HT) miniaturized bioreactor systems for strain screening and
bioprocess development, which has significantly reduced the times required for early
bioprocess development. These new powerful laboratory tools require, however,
new methods for planning, performing, and evaluating these highly parallel exper-
iments. The systems are no longer treatable by manual methods – therefore, standard
methods of design, mathematics and statistics, modeling and process engineering as
they have been used in other disciplines for a long time have to be implemented and
adapted in the field of bioprocessing. Intuitively, when dealing with large data sets,
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highly automated systems and closely interconnected devices, concepts like Internet
of Things (IoT) and Digital Twin come to mind. Beyond the hype around Digital
Twins, its history and modern definition are closely related to High-Throughput
Bioprocess Development. The term Digital Twin emerged in the field of Product
Lifecycle Management to increase the efficiency in product and process develop-
ment [6]. Mathematical models, used for process monitoring (observers) in feedback
loops, for approximate optimal control applications (MPC), or even in real-time
optimization have existed for quite some time now [7]. Yet, the extension of these
methods including IoT, big data, and fully autonomous systems might require a new
terminology [8].

The Digital Twin, envisioned as a mirror image (an exact copy) of the physical
system that follows the complete lifecycle of the product from idea to manufactur-
ing, is possible only if (1) an exact representation of the system in mathematical
equations is at hand and (2) the current state of all relevant elements of the real
system can be fully monitored through real-time data. In bioprocess development,
building a Digital Twin implies joining High Throughput, Omics, PAT, Machine
Learning, Bioprocess Automation, and Bioprocess Systems Engineering tools to
enable the development and operation of a biomanufacturing plant with a perfect
copy of all units from the molecular/intracellular level up to large-scale dynamics.
Such a Digital Twin is clearly far beyond the capabilities of current technologies.
Still, it defines a clear roadmap that shows the relevance of the integration of
different fields and tools to maximize the efficiency of bioprocess development.
Mathematical models, which form the basis of digital twins, support all fields of
biotechnology and bioprocess engineering [9]. This includes biochemical systems
[10], systems biology [11], metabolic engineering [12], flux balance analysis [13],
synthetic biology [14], and bioinformatics [15]. A good overview of applications of
mathematical models, as well as a proof of their slow advance in bioprocess
engineering is given by Jay Bailey [16]. Nevertheless, the complexity of biological
systems poses difficult challenges to the direct use of advanced mathematical
techniques in bioprocess development [17].

The complexity of the underlying metabolic and physiological phenomena
demands large nonlinear equation systems with a large number of unknown and
often time-variant parameters. The existing methods are too complex and computa-
tionally expensive for application in biotechnology [18–20]. Compared to general
applications in engineering [21–24], biotechnological applications typically lack
sufficient data, as well as process understanding [25–27].

Finally, the advances in artificial intelligence, especially in data-driven learning
tools, offer incredible possibilities, but need to be adapted to the specific needs of
bioprocesses, which have peculiarities (e.g., evolution of the biological system [28]),
broad population distributions, very complex chemical composition and complicated
(metabolic) reaction networks that are not present in mechanical or chemical pro-
cesses [12]. Nevertheless, such mathematical tools have greatly contributed to our
understanding of the interactions between the organism and the constraints of growth
in bioreactors, as well as the elucidation of otherwise obscure intracellular
processes [13].
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The problem is, however, that these tools and concepts, namely scale-down
bioreactors, high-throughput mini bioreactors, and model-based tools, have mainly
developed in parallel, with little or no interaction among them. In fact, scale-down
bioreactors are still operated as standalone, low-throughput devices [3]; and the
benefits of mathematical models are not fully exploited in both scale-down and high-
throughput systems [29]. Therefore, the actual challenge is to combine these very
special techniques such that they can work together efficiently.

In this work, we discuss the current state of process development focusing on
scale-down, the typically underestimated milestone. We discuss existing experimen-
tal tools, sensor technologies, and latest advances in computational methods for
the design of scale-down investigations. Next, we demonstrate the issues related to
the current decoupled efforts to address process development. Finally, we describe
the required steps to reach a proper integration of all tools to create a digital twin of
the bioprocess development procedure together with its potential and future
applications.

2 The Digital Twin in Bioprocess Development

The answer to the current challenges in advanced bioprocess development (see
Fig. 1) is a digital twin that covers all developmental stages and allows an efficient
and effortless transfer of knowledge and information throughout the complete
process [30]. Thus, the term “digital twin” covers more than just the mathematical
model of a single component of the process. With regard to industrial bioprocesses,
“digital twins” can describe the biological system itself or parts of the system,
e.g. the three-dimensional structure of the protein product. They can also describe
phases of process development, such as strain screening, different scales of the
fermentation process and downstream operations, and in final production they can
be used for the design or installation of a production plan, as well as for the control of
the actual manufacturing process including its optimization.

The required advances in automation, process analytical technologies (PAT), and
computer-aided tools for bioprocess monitoring and control are available [31]. The
main challenge in building a functional digital twin is the difficulty in harmonizing
these existing technologies through standardized communication protocols and data
management systems. Such a digital framework tightly embedded into the highly
automated experimental systems and production facilities through PAT and
advanced mathematical modeling tools can build the path for knowledge transfer
between the whole bioprocess development workflow.

Scale-up and scale-down present arguably the most descriptive examples for the
challenges of knowledge transfer as well as its relevance in bioprocess development
[32, 33]. Scaling is basically an effort to transfer the information generated in one
stage to another aiming to maximize the generation of relevant knowledge for the
industrial process [17].
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In biotechnology, scale-down is eminent to assure the generation of relevant-to-
process knowledge in lab scale. As discussed further below, the variation to the
cellular response caused by the bioreactor stresses cannot be predicted without
extensive experimental information under proper conditions. That is, the experi-
ments at lab scale must create the proper environment, to emulate industrial condi-
tions which are unfortunately difficult to predict beforehand due to the highly
complex interaction between the organism(s) and the bioreactor. Scale-up is the art
of extracting knowledge from experimental data to translate it into an efficient
manufacturing strategy. This process is as challenging as scale-down for the same
reasons: insufficient data on the underlying dynamics of the bioprocess and the lack
of a proper mathematical translation of the information throughout scales. In both
cases (scale-up and scale-down), purely data-driven methods fail to understand the
complex interactions between the organism(s) and the distinct bioreactor environ-
ment, generating unrealistic predictions for the next scales and corroborating the
risks of extrapolating black-box models [34, 35]. On the other side, highly complex

Fig. 1 The role of the digital twin in advanced bioprocess development. Integration of scales, units,
and disciplines. From bottom to top, automated hardware (the physical system), device integration,
data transfer and handling, and model-based optimization tools for scale-up and scale-down
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mechanistic models offer important insights into the system [36, 37], but require
process data that is very expensive, if at all obtainable.

There is no doubt that the high complexity of living organisms, especially in
connection with their flexible information networks, which have been developed in
millions of years of evolution, is the main challenge in modeling biological pro-
cesses, and hence the reason why purely in silico development methodologies are
doomed to fail [17]. Natural organisms have been so successful in surviving
unfavorable conditions as they are characterized by genetic and metabolic hetero-
geneity between the individuals in a population. This increases especially under
stress conditions in an effort to maximize the chance for some to survive
[38]. Bioprocesses on an industrial scale (1) contain highly heterogeneous cell
populations and (2) induce a constantly changing environment that sets the organ-
isms under a high stress due to the inhomogeneities in the reactor. It is for this reason
that advanced experimental facilities, sensor technologies, and mathematical model-
ing must be tightly integrated into a digital twin framework to finally achieve
development times comparable to other industries [39–43]. The predictions at the
digital level require a continuous re-calibration and evolving mathematical descrip-
tion to cope with the unpredictable behavior of living systems as well as efficient
strategies to design and operate the experimental campaigns [29]. Most importantly,
these models also reflect the dynamic development of the heterogeneity of the
population and take statistical uncertainties into account in order to account for
possible batch-to-batch variations on an industrial scale and be robust in terms of
their prediction.

3 Inhomogeneities in Industrial-Scale Bioreactors
and Their Influence on the Biological System

Bioprocess development is usually started in shaken cultures, traditionally in shake
flasks, or more recently in parallel microwell plates where only a few endpoint
measurements are possible [44]. Nowadays there is a great interest in implementing
the final strategy, the fed-batch method, very early in the development process. For
this purpose, various methods have been developed in the past years, which make
this possible despite the small volumes [45].

Although this represents a significant advance on the traditional approach, the
methodologies can vary greatly depending on the applied system. Substrate feeding
can be either continuous or intermittent (pulse-based), and the controllers for the
continuously measured parameters (e.g., pH value and dissolved oxygen) can be set
differently, if these parameters are adjusted at all. If, as discussed above, we assume
that the culture is highly sensitive to the process conditions – and thus the product
formation is influenced accordingly – it is necessary to set these parameters so that
the conditions are similar to those on an industrial scale.
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This is important, especially for the development of biopharmaceuticals, where
drug substance for clinical trials may be produced as early as the laboratory
development phase, or in early pilot plant phase under cGMP guidelines. Once
regulatory clearance is obtained, the process is then scaled up to industrial condi-
tions. Two important points must be considered here: (1) the product quality
characteristics affecting the efficacy of the biopharmaceutical candidate must com-
ply with the specifications defined during clinical trials and (2) the process must be
economically feasible whilst producing sufficient quantities to supply the market.
Unfortunately, the increase in size has many implications for the process conditions
inside the bioreactor. That is, if an 80 L bioreactor is scaled up to 10,000 L whilst
maintaining a constant power input per unit volume, the mixing time increases
3 times, the impeller tip speed doubles, and the shear forces increase almost
10 times [46]. Oldshue showed that a scale-up design to satisfy mass transfer
(constant Kla criterion) from a 75 L pilot scale process to a 95,000 L production
scale would increase the shear rate by 180%, whereas maintaining a constant shear
rate between the two scales could only produce 40% of the mass transfer require-
ments of the culture in the large scale [47]. The most common consequence is an
inevitable increase in mixing times of up to 200 s in larger-scale bioreactors (since
scale-up is mostly based on Kla, P/V, impeller tip speed) [48].

In addition to the increased mixing times, fed-batch processes are fed with
concentrated substrates at localized feeding points, which are mechanically fixed.
The longer mixing times and the localized addition of highly concentrated viscous
substrates lead to the formation of concentration gradients in the bioreactor
[49, 50]. Cells that are traversing these gradients respond in many ways, by the
varied distribution of metabolic fluxes due to the changed uptake rates in different
positions of the bioreactor, and by specific gene expression profiles which include
both specific responses and general stress adaptation. The specific reaction of an
individual cell depends not only on its metabolic state and the current phase in the
cell cycle, but also on its specific historical situation, i.e. what conditions it has
experienced previously in the dynamic course of time [51]. This is currently being
investigated using fluid dynamic models by simulating cell lifelines. The sum of all
of these affects the fermentation efficiency in terms of yields and overall process
robustness.

When the characteristic time of relevant cellular processes (translation, cell
division) is close to the mixing time in large-scale bioreactors, there is a measurable
influence of gradients on the growth and metabolic behavior of the culture
[46, 52]. The inefficient mixing in large-scale bioreactors leads to the creation of
spatial concentration pockets of relevant process parameters, such as substrate
(glucose), dissolved oxygen, acidity, and temperature. Furthermore, GMP
manufacturing processes suffer from the rigidity of the process due to the difficulty
in using validated equipment for such studies, especially when the characterization
study requires minor retrofitting of the bioreactor, such as installing extra sensors. In
cases where bioreactor characterization has been done, companies consider the data
as confidential; therefore, the information is not available to the scientific research
community.
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Substrate Gradients In fed-batch cultures, the existence of excess substrate zones
in the broth defeats the purpose of this tight control for the fraction of the culture that
comes into contact with these zones. The exposure of the culture to zones of higher
substrate concentrations has direct consequences on the uptake capacities of the cells
for this substrate [51, 53]. As a result, the excess substrate zones may cause the cells
to grow at the maximum specific growth rate, which may plunge organisms such as
E. coli and Saccharomyces cerevisiae into overflow metabolic states as reported in
numerous studies [51, 54–56]. The high metabolic flux of glucose through the
glycolysis which is favored by high affinity uptake systems, i.e. low KS values,
also leads to the accumulation of NADH-H+, and thus to a higher rate of respiration.

As a consequence, the high metabolic activity in the feeding zone can also lead to
oxygen limitation if the biochemical reduction of oxygen by the cells is faster than
the limited diffusion of oxygen into the cultivation medium. It is likely that the
uneven distribution of the substrate due to feeding is the main cause for the dissolved
oxygen gradients, besides the uneven fluid-dynamic distribution of the gas bubbles.
The dissolved oxygen problem which is basically caused by the inherently low
solubility of oxygen in fermentation broths [49] becomes even greater in processes
with pellet forming organisms (oxygen gradient in the pellet) or shear-sensitive cells
(limited sparging to prevent shear stress caused by the bursting of gas bubbles) [57].

Temperature Gradients Temperature gradients are among the least studied scale-
up effects in bioprocess development. Although it is clear from a microbiological
point of view that small temperature fluctuations of a few degrees have a major
impact on cellular reactions and that, from a process engineering perspective, precise
temperature control in industrial bioreactors is a serious problem, to the best of our
knowledge, there is no information about local temperature profiles in industrial
bioreactors, nor have experiments been performed in scale-down simulators to
simulate the effect of perturbing temperatures on a process.

pH Gradients pH gradients are recently gaining attention in the bioprocess
research community. Simen et al. investigated the effect of ammonia pulses (shifts
in pH) in E. coli cultivations and observed a higher maintenance energy and the
activation of over 400 genes in response to the pH gradients [58]. pH gradients are
also relevant in industrial-scale batch cultivations of lactic acid bacteria. This has
been revealed by combined approach by the use of multiple pH probes and a
computational fluid dynamic model coupled with a kinetic model for a process of
Streptococcus thermophilus in a 700 L pilot scale bioreactor [59]. Recently, we also
could demonstrate by two- and three-compartment bioreactor cultivations that such
pH oscillations affect the cocci chain length and decrease the growth rate in
S. thermophilus cultures (manuscript in preparation). Also in CHO fed-batch
bioprocesses pH perturbations decrease the cell viability and increase lactate accu-
mulation [60]. Also pH oscillations have been recently demonstrated to affect
product accumulation in a cell line specific manner [61].

Carbon Dioxide Gradients In microbial cultivations, a recent study of CO2/
HCO3

� gradients in Corynebacterium glutamicum showed no significant impact
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of these stresses in the physiological response of the organism, although there was a
marked increase in the expression of certain genes, upon genomic analysis [62]. In a
recent report, E. coli cells exposed to CO2 levels above 70 mbar CO2 partial pressure
in the inlet gas led to reduced biomass yields and rapid accumulation of acetate, even
under non-overflow and fully aerobic conditions [63].

Interaction Between Multiple Gradients Finally, the results of Limberg and
colleagues show that when pH gradients are coupled to oxygen limitation,
C. glutamicum loses its robustness against dissolved oxygen fluctuations [64],
leading to yield losses of up to 40%. This implies that the study of concentration
gradients in fermentation should be conducted in a multi-faceted manner, to consider
all possible gradients and the necessary combinations among them to arrive at a more
holistic conclusion for each strain. There is also a close correlation between pCO2

levels, pH, base addition, and osmolality in large-scale CHO cell cultures which
affect the metabolic lactate shift (transition from lactate production to lactate con-
sumption) [65, 66].

4 Framework for Bioprocess Scale-Down Studies

4.1 Characterization of the Large Scale

A good characterization of the large-scale bioprocess is important to conclude proper
scale-down experiments which really imitate the large scale (see Fig. 2). Since the
scale-down data is only as good as the environment it mimicked, it is absolutely
necessary to characterize both the cellular state and specific heterogeneity (gradient
profiles) in the larger scale. Standard analytical methods of the medium and gas
composition and the derivation of cell specific rates need to be complemented by
direct monitoring of the physiological state of the cells. A proper scale-down
methodology should be based on the similarity of cellular responses, all at the
level of metabolism, protein expression, and population heterogeneity between
laboratory and industrial scale. In order to avoid false conclusions and to reduce
the risk of scale-up, robustness analyses must be used to assess the final batch-to-
batch variability. This complex problem can only be solved if digital approaches
(digital twin) can be coupled with a large number of experiments.

In the past, there were a large number of approaches to simulate these gradients
occurring in the industrial bioprocess in scale-down systems, see reviews by
Neubauer and Junne [3], Lara et al. [46], Delvigne and Noorman [67]. All these
systems achieve oscillating conditions regarding the specifically investigated param-
eters, i.e. the specific parameters which were the focus of the investigators. Different
priorities were set depending on the specific approach. In multi-compartment reac-
tors, the dominant parameter is the residence time distribution in different compart-
ments where cells are located within a defined period of time. In more-compartment
stirred tank systems, the zones are characterized by a previously defined state, e.g. in
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which a defined pH value is set in each of the reactors [68]. When using plug-flow
reactors, a gradient is established within the system. Then, the sampling in different
positions along the plug-flow reactor also allows an insight into the time course of
the cellular reactions [69, 70]. In contrast to multi-compartment systems, scale-down
simulators with a pulse-based feeding are easier to establish and to run in parallel.
Parameter control, however, may be more difficult to achieve due to the restriction of
the feeding profiles. Since the feeding profile is easy to change (e.g., distance
between the feed pulses), pulse-based systems also seem to be well applicable for
robustness analyses. Alternative approaches, in which installations (e.g., plates
between the different stirrers to restrict the tangential flow [71]) are realized in a
laboratory reactor to extend the mixing time to the order as it is measured in the large
reactor, can, in individual cases, reproduce the industrial process quite well, but are
technically more complex.

4.1.1 Monitoring of the Cellular State Across Different Scales

The most successful scale-down methodology will maintain the physiological state
of cells across lab and industrial scales. Naturally, it is the most suitable pre-requisite
to obtain similar results, and should be considered as scaling parameter, although the
examination of the physiological cell status is not easy to quantify with suitable
measures. The impact of gradient formation on physiology has to be investigated
with the measurement of sensitive parameters, e.g. the energy charge, stress response
factors, and the respiratory activity, among others [68, 72–74]. Additionally, the
physiological state may vary from cell to cell, which demands the consideration of
population heterogeneity. It has been observed several times that gradient formation
in fed-batch cultivation mode has an impact on population heterogeneity [75]. It
adds additional parameters that lead to different phenotypes in culture (Fig. 3).

In natural habitats, mainly the cell cycle, cell ageing, and epigenetic regulation are
known to have a great impact on the evolvement of phenotype diversity [77]. Sto-
chastically asymmetric growth and mutation events drive the formation of sub-
populations, which might be even better adapted to a previous change in an
environment. Nevertheless, these events usually lead to lower yields in processes,
which are conducted in bioreactors [78]. The role of cell cycling on the development
of subpopulations in industrial bioprocesses, however, is not clear yet, while it was
found out that the dominant driver for different protein concentrations, and thus
various metabolic activity, is the growth rate in Pseudomonas putida [79].

In particular, singe-cell based and sensitive volumetric measurement techniques
can provide new information about the impact of gradients on the cellular viability
and metabolic activity and the formation of subpopulations independently of the
scale-down system. Suitable monitoring technologies in combination with a physi-
ological understanding of stress responses support the identification of the suitable
scale-down conditions, as it puts the cell in the center of the investigation of
consequences of gradient formation in the liquid phase. Such technologies, including
proper accompanying off-line measurements, allow one to properly model the stress
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response and provide a basis for systems biology interpretation, which deepens the
methodological understanding of cellular responses in the large-scale environment.

So far, investigations have shown that the exposure of cells to gradients leads to a
higher population heterogeneity under scale-down conditions. This was examined in
particular for protein concentrations in E. coli [80]. It was found that the dynamics of
glycolysis might play an important role in the development of non-growing sub-
populations [81]. One way to observe this evolution of subpopulations with suffi-
cient accuracy and time-resolution is the creation of a strain with a reporter protein
that can be quantified by fluorescence, which enables the application of
fluorescence-assisted characterization of single cells, and eventually cell sorting
[38, 76]. For example, the green fluorescence protein can be used, if coupled to
automated sampling, eventually coupled with a multiplexer, and spectroscopic
methods like flow cytometry, for a statistically proven detection of subpopulations
[82]. In P. putida cultivations, the change in DNA content in individual cells was
investigated under different environmental growth conditions with flow cytometric
analysis at various dilution rates in chemostat experiments. The impact of oxygen
deprivation, solvent exposure, and iron availability on DNA replication was also
investigated [83]. The application of flow cytometry and cell staining to characterize
population subgroups was described in several other studies as well [76, 84]. Never-
theless, this is a challenging technique to apply in bacteria due to their size. In
bacteria, the quantification based on fluorescence is subject to genetic noise [75],
which in this case might not be predominantly affected by large-scale cultivation

Fig. 3 Parameters that are putative effectors on the formation of subpopulations. Examples for
microbial cultivations are own observations, further described in [76]
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conditions, but constantly present across scales. The results, however, would be
biased by the noise, if the samples measured are not enough to ensure a statistically
valid distribution. Nevertheless, the methodology is suitable to understand the
effects of gradients on cell viability and vitality while a large amount of cells can
be examined in a considerably short time. While the possibility of the application of
fluorescent markers represents an approach mostly on the expression level, cell
staining can be used to investigate several cellular components, including the
quantification of metabolite concentrations. If accumulated intracellularly, metabo-
lite concentrations can be used to assess population heterogeneity as well, if the
metabolite can be quantified with sufficient accuracy in individual cells. Flow
cytometry is able to quantify the accumulation of intracellular lipids in microbial
cells, and thus identify subpopulations of different lipid contents [85], e.g. with Nile
Red or Bodipy® stains. The accumulation of lipids and also other components might
correlate with changes in macromorphology of organisms. The measurement of lipid
content with optical methods can lead to conclusions about metabolic activity of
individual cells. This has been shown for heterotrophic algae, which accumulate to
large extent polyunsaturated fatty acids in lipid droplets. While using light micros-
copy and 3-dimensional holographic microscopy, the individual lipid storage in cells
was measured based on their individual cell size [86]. With rapid image analysis
using trained software, image acquisition can be performed in flow cells that are
connected to a cultivation. Automated workflows that offer considerably fast anal-
ysis of populations similar to flow cytometry are feasible, without the requirement of
staining.

Besides intracellular product accumulation, the macromorphology can provide
suitable information about the cell status and the impact of gradient formation on
it. It was examined that the cell size of S. cerevisiae cultures changed with the degree
of environmental heterogeneity in a three-compartment scale-down reactor
[87]. This happened in parallel to growth reduction and side metabolite
accumulation with a concomitant change of the sterol content, in comparison with
homogeneous growth conditions. Cells showed a diverse macromorphology under
scale-down cultivations, which supports the hypothesis that population heterogene-
ity is rather increased under growth in gradients. A morphologic response of cells to
scale-down cultivation conditions can also lead to agglomeration due to stress
response. Although the macromorphology of individual cells may stay unchanged,
the secretion of side products or proteins supports the agglomeration of cells.
Observations with laser-light back-reflection for cell particle size measurement
indicated the formation of clumps of C. glutamicum, when exposed to oscillatory
oxygen supply, either in a scale-down reactor concept (three-compartment reactor)
or in shake flask cultures with interrupted shaking [88]. Agglomeration under
fluctuating oxygen availability was postulated to be a result of increased secretion
of biofilm forming metabolites, e.g. in Mycobacterium tuberculosis and E. coli
cultures in connection with oxidative stress response [89, 90].

In case of filamentous organisms, macromorphological similarity across scales is
often achieved only if the shear force regime is maintained. Mechanical shear forces
as they appear close to the stirrer can lead to filament disruption, with consequences
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on growth and secretion profiles. Up to now, however, the change of
macromorphology due to scaling effects, e.g. an oscillating shear force regime, has
not been investigated thoroughly. Nevertheless, it can be assumed that the
macromorphology of filamentous organisms will change in comparison with the
lab scale if the exposure time to high-shear forces is diminished, like it most
probably is in large-scale cultivations at high cell densities and elevated viscosities,
where large residence times exist in different compartments. The knowledge that
exists so far about how a changed shear force regime influences the process
performance [91, 92] leads to the assumption that macromorphology is an important
parameter to consider while choosing a suitable scale-down system. Alternating
shear forces can be achieved by interrupted stirring, which usually couples low-shear
stress to oxygen limitation in stirred tank reactors, or in multi-compartment reactors,
in which low-shear and high-shear regimes are applied at similar gas mass transfer
rates. The application of other reactor systems beyond stirred tanks can support the
investigation of consequences of low-shear forces on the macromorphology, phys-
iology, and overall process performance as recently described for clavulanic acid
production with Streptomyces clavuligerus in shaken bioreactors. Secretion of
clavulanic acid was strongly diminished while thicker filaments were observed
[93]. Consequently, morphological monitoring in an automated manner [94] is a
promising technique to identify crucial characteristics for growth and product
formation under specific environmental regimes.

Finally, macromorphological heterogeneity can be modeled to describe the
response of a cell to environmental perturbations. In silico prediction of physiolog-
ical population heterogeneity was conducted by a combination of computational
fluid dynamics (CFD) and a cell cycle model of P. putida [95]. It was observed that
72% of the cells switched between standard and multifork replication and 52.9%
showed higher than average adenosine triphosphate (ATP) maintenance demands
(12.2%, up to 1.5 fold). Such an approach, however, requires sufficient knowledge
of the interaction between gradient formation and consequences for the
macromorphology of a population. This still represents a bottleneck as the time
frequency with which morphological changes are measured might be inadequate to
achieve a sufficient accuracy while correlating the response to specific regulatory
events in a cell. In recent years, however, many more techniques like in situ
microscopy and others are being developed rapidly. It is hoped that they become
more applicable in biotechnological processes operating at elevated cell densities.
The impact of gradients in the liquid phase on the formation of phenotypic hetero-
geneity can be investigated also if spectroscopic methods are coupled to microfluidic
devices, when the growth of single cells can be monitored constantly [96]. The
aforementioned methodologies will increase the possibility for the consideration of
heterogeneity in population balance models and their integration in the description of
consequences of gradient formation. So far, the few attempts rely on physiological
measures, e.g. the adaptation to substrate excess [97, 98], but investigations will
benefit from the additional consideration of macromorphological characterization
data in future.
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4.1.2 Combination of CFD Approaches with Mechanistic Models
(Euler–Lagrange) to Describe the Large Scale

Computational fluid dynamics has been traditionally used to describe the flow under
defined conditions, as a way of characterizing the heterogeneous conditions in large-
scale bioreactors. With the increasing computational power it is possible to imple-
ment in such CFD approaches cellular reaction kinetics. For the first time this
interaction between the intracellular state of the individual cells of the population
and the turbulent flow field in the bioreactor has been realized by Lapin et al.
[99]. This so-called Euler–Euler approach considers gas, liquid, and biophase as a
continuum and is an answer to the very complex simulation, which is dependent on
the definition and resolution of the reactor into flow cells. Later, the pioneering paper
by Lapin et al. [100] was the first approach to couple a CFD model of a bioreactor
with a Lagrangian approach for the combined solution of flow patterns and cellular
kinetics.

In this Lagrangian–Euler approach the liquid phase is treated as a continuum
(Euler) and the dispersed phase is tracked using Lagrangian representation. While
this modeling approach was first used in gas–liquid simulations, here cells with their
specific metabolic reaction network were described as discrete entities. With these
models, individual cells are monitored with respect to their experience of local
environments in relation to the fluid-dynamic distribution and pathways within the
bioreactor. This kind of structured-segregated approach realizes that the individual
history of a biological entity determines their reaction. With a big computational
power this can be realized also in a three-dimensional turbulent field. This approach
allows one to get an indication of the heterogeneity in the biotic and abiotic phases of
the reactor and it considers the individual history of the cells as important for its final
response. By tracking the pathway of a single particle over time it is possible to
derive lifelines of a big number of cells and thus draw conclusions for regimes,
i.e. conditions which should be represented in scale-down experiments.

In summary, the use of mathematical descriptions of large-scale bioreactors by
the combination of Euler–Lagrangian approaches is very illustrative and has made
major progress during the last years.

However, there are some limitations:

1. Due to calculation expense it is not possible to consider realistic amounts of cells.
Current computational approaches consider approx. 100,000 cells, which is
enough to see and follow the population dynamics. Currently this number of
cells is fixed. However, it would be interesting to consider growth and an increase
in cell number over time.

2. The cellular models and the parameters used in these studies are mostly derived
from continuous experiments (mostly chemostats), i.e. from experimental condi-
tions which do not reflect the large scale. Thus, as discussed above, the reactions
in a real reactor may be totally different. Therefore urgent approaches and
methods which describe how a cellular model can be derived and parameterized
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are needed. In our opinion, there is a need to look for alternative approaches
which are easily applicable and better reflect the large-scale situation.

3. Due to the very high computing power, which is needed to solve these Euler–
Lagrangian models with a reasonable resolution, the current models cannot
describe the process dynamics over time, but only represent a very narrow time
point of the cultivation. Nevertheless, this kind of simulations, e.g. if they are
performed at different time points of a cultivation can provide important infor-
mation to plan scale-down experiments.

4. Current models only consider the liquid phase. The implementation of the gas
phase would additionally need much computing power and in our opinion it
would be very laborious to validate these models.

5. An important characteristic of living systems in connection with their adaptation
to the environment is the heterogeneity in a population. Physiological (i.e.,
metabolic) and genetic heterogeneity ensure the survival of a population of
cells if environmental changes occur (stress phenomenon) and has been described
historically as the survival of the fittest. As growth in a bioreactor is related to
different stresses in different phases of a process and as additional perturbations
that occur in large-scale bioreactors add a further stress layer, the population
heterogeneity in a bioprocess is an important feature, which needs to be moni-
tored and can be used for a validation of similarity between different process
scales.

As a consequence, every scale-down approach needs to start with a good under-
standing of the large scale especially in view of the cellular response dynamics.
Furthermore, these cellular response dynamics must be reduced in mathematical
models, the so-called digital twins, to the characteristics essential for the process
scale-down. Finally, methods need to be implemented which help to validate the
quality of the scale-down – and this is only possible by measurements.

4.2 Execution of Scale-Down Experiments

4.2.1 Combination of Scale-Down Experiments with Model-Based
Approaches

As shown in the scale-down scheme in Fig. 1, the characterization of the larger-scale
bioreactor environment is followed by transferring the environmental blueprint to
the laboratory-scale simulator in which the actual scale-down experiments are
executed. To achieve this transfer, the digital twin of the bioprocess should contain
model units that adequately describe the physiology of the cells, as well as the
cultivation process and geometric analysis of the bioreactors involved. These details
should be digitally embedded into the definition of the scale-down model (Fig. 1).
Thereafter, the application of the modeling framework (digital twin) in the context of
scale-down experimentation can take two forms: (1) the design of the scale-down
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experiments and (2) the interpretation of the data from scale-down experiments.
These two branches of application are presented in the following sections, with
respect to the state of the art, as reported in current literature and future perspectives.

Model-Based Design of Scale-Down Experiments

The concept of scale-down experiments developed in the past 3 decades usually
involves creating one type of stress (e.g., dissolved oxygen limitation, excess
substrate, excess metabolite concentrations, and perturbations in pH) in the scale-
down simulator. However, considering an actual larger-scale bioreactor, concentra-
tion gradients arise from mixing effects in a 3-dimensional space, combined with the
uptake of substrates and release of metabolites by cells. Moreover, the type of
gradients are always coupled and may co-exist (e.g., pH-oxygen-substrate gradients)
in the larger bioreactor. Therefore, at best, the scale-down simulators are only a gross
estimate of the actual environments in large bioreactors. Additionally, the fraction of
cells exposed to a given gradient in a large-scale bioreactor has been variable in the
definition of the scale-down model. In multi-compartment scale-down simulators,
this has been in the range of 10%–30%, whereas in pulse-based single-compartment
simulators, the total population is subjected to the stresses, without population
subgroups. Notwithstanding these challenges, important physiological responses
have been reported by researchers using these physical approximations of larger
bioreactors. In this light, experimental set-ups for scale-down studies can improve
greatly when they are combined with the ideas of digitalization in the industry
4.0 era.

The scale-down model, defined on the blueprint of the environmental heteroge-
neity of the larger scale, will contain process specifications such as the gradient
profiles, zone definitions with defined boundaries, residence time distributions,
magnitudes of gradients, frequencies and other experimental inputs that should be
implemented in the simulator. With such a scale-down model in hand, the scale-
down experiment can be designed on a computer, and results of the design sent to
intelligent equipment (pumps, pipettes, agitators, liquid handlers, etc.) to control a
small-scale bioreactor to mimic the blueprint of the larger-scale bioreactor. That is,
mixed-gradient zones, containing excess substrate with acidic pH, or limited oxygen
with high hydrodynamic stress, or any desired combination of gradients can be
created with the model, and the size of the zone and its frequency/duration can be
varied randomly to more closely resemble actual gradient dynamics in the larger
scale. A step in this direction is the work of Anane et al. [29] who used a mechanistic
model of E. coli [101], in combination with a mechanistic description of the gradient
profiles of a multi-compartment scale-down bioreactor [1] to calculate glucose
pulses in high-throughput scale-down experiments. The outputs of the two models
were integrated into the operation scheme of the high-throughput system to repro-
duce heterogenous glucose conditions in minibioreactors. The calculated glucose
pulses were commensurate with the physiology of the strain, as the pulse sizes were
derived from uptake capacities and physiological limits of the strain, as well as
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mixing effects in the scale-down bioreactor. The authors reported significant yield
losses, incorporation of non-conventional amino acids into the recombinant protein
product and accumulation of metabolites in response to the calculated gradients.

Although these results were similar to observations in other non-model-based
scale-down approaches [69, 102, 103], the added advantage of using the model was
the flexibility of stress definition, in which one parallel experimental set-up was used
to implement six different stress zones in the scale-down system, which otherwise
could not be done manually.

A further advancement of this concept is the application of models to design
intelligent scale-down experiments. In all the previously discussed scale-down
methods, the researcher sets out a prior design space, within which the stresses
and gradient profiles are pre-defined (manually or using a model) and executed
during the experiment. The use of digital twins to advance scale-down design should
involve designing the stresses as the experiment runs. In other words, the nature of
gradients to be imposed on the culture at time point t2 will depend on its state at time
point t1. This will prevent overestimating or underestimating the magnitude of
gradients, as well as the exposure time of the cells to a given gradient. Such an
adaptive re-design technique was employed by Cruz Bournazou and colleges in
designing optimal experiments to maximize information content for model param-
eter identification [40, 104]. Although no scale-down efforts were made in these
works, the authors demonstrated the ability to re-define feed regimes based on the
current state of the culture and model predictions for a given time window. Such a
model-based adaptive system can easily be employed to execute dynamic scale-
down experiments.

The addition of digital twin concepts to the definition of the scale-down model
offers flexibility of stress definition, automation, and a high turnover in experimental
throughput, to drive the digital revolution in bioprocess engineering, as discussed by
Neubauer et al. [30]. The few pioneering works published so far point in the future
direction where mathematical methods, in the form of digital twins, will help to
design more informative and smart (scale-down) experiments, to move away from
the traditional, commonly used static design of experiment (DoE) paradigm.

Model-Based Interpretation of Scale-Down Data

Scale-down bioreactors offer important insights into cellular behavior under hetero-
geneous fermentation conditions of larger-scale bioreactors. The data is usually
interpreted at the macroscopic level, by comparing metabolite, substrate, and growth
profiles to cultivations under homogeneous conditions. In a few studies, derivative
indices (e.g., specific uptake rates, yield coefficients) have been calculated from the
raw scale-down data to support the interpretation of the data, e.g. in [105]. A few
extensions of the data space in scale-down experiments involve molecular level
analysis. For instance, Simen and co-workers used transcriptomics data from an
STR-PFR scale-down bioreactor to monitor different gene expression levels under
short-term and long-term substrate fluctuations in E. coli culture [58]. In another
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study, quantitative metabolomics was used to monitor the consumption of amino
acids in scale-down cultivations of Bacillus megaterium expressing green fluores-
cent protein. The metabolomics results from the scale-down conditions were then
used to design a better feed composition for the process [106].

It is important to note that a strain’s response to heterogenous environments in a
scale-down bioreactor is the total sum of its molecular level responses. What if a
particular response characteristic, such as accumulation of non-conventional amino
acids or de-activation of acetate cycling (accumulation of acetate) in E. coli could be
traced to particular metabolic pathways and mechanisms? What if data from a scale-
down bioreactor could be used to trace specific metabolic fluxes of a clone as it is
exposed to various concentration gradients? Such information would be useful, not
only in strain engineering, but also in designing efficient processes at industrial
scale. Advanced modeling of scale-down data, i.e. fitting mechanistic and dynamic
metabolic models to data from scale-down cultivations can reveal specific pathways
that are active under given heterogeneous conditions. This is offcourse assuming that
the parameterization of the model includes such metabolic and physiological indices.
The flux terms to be fitted to the scale-down data should be an integral part of the
building of the cell model (Fig. 1). Again, Anane et al. [29] fitted data from parallel
scale-down cultivations of E. coli under multiple glucose gradient conditions to a
mechanistic model describing the process and the strain. The authors found that the
different responses of the strain to the gradients translated directly into different
values of the parameters of the model. Therefore, the model expanded on the primary
data of the scale-down experiment, and expanded the interpretation of the available
data for better process and strain design. In a similar study, Janakiraman and
co-workers used multi-variate data analysis techniques to interpret scale-down data
[107]. Their aim was to establish comparability between scale-down cultivations in
Ambr15® minibioreactors and cultivations in 15,000 L manufacturing scale, by
applying principal component analysis to the scale-down datasets. By employing
this model-based approach, they were able to clearly identify that the runs in both
scales were statistically similar to each other, a conclusion that would have been
difficult to draw by looking at the raw scale-down data.

For digital twins to be applicable in this sense, there are a few pre-requisites the
model of the bioprocess must fulfill: (1) the parameter estimates in the cell model
must be subjected to rigorous validity and uncertainty tests, as presented by Anane
et al. [18]. The reported parameter values should always be accompanied by
confidence intervals at valid significance levels, to be able to derive biological
meaning from the model results. (2) The model should be just as detailed as is
necessary for its application. As pointed out by Gábor and Banga [108], the
parsimony principle should always be applied in building the model: i.e., the number
of parameters should not be more than those required to describe the process in its
simplest form [108, 109], and (3) the model should be constantly updated to include
the most recent research findings in cell physiology and metabolism. The physio-
logical accuracy of the model should be ascertained by subject matter experts in the
field, which may not necessarily be the modeler (mathematician).
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4.2.2 High-Throughput Execution of Scale-Down Experiments
in Parallel Cultivation Systems

High-throughput experiments in parallel cultivation platforms have become com-
mon in bioprocess development laboratories. In the past decade, there has been an
exponential increase in the adoption of these systems for early bioprocess develop-
ment [45, 110, 111]. At the same time, due to Quality-by-Design (QbD) guidelines,
there has been an increasing demand to fully characterize bioprocesses at the
development phase, to forestall unforeseen consequences of the final process,
upon scale-up [112, 113]. This requirement demands that all conditions, including
actual large-scale process conditions are considered and tested in the early develop-
ment phases of the process. Therefore, the question of whether cultivations in
minibioreactors are adaptable to mimic concentration gradients and the heteroge-
neous environments that exist in large-scale bioreactors has become very important,
and should be addressed.

A few studies conducted in high-throughput cultivation systems that consider the
heterogeneous conditions of larger bioreactors are reported in the literature. As
described above, Janakiraman et al. [107] matched the volumetric aeration rates
(vvm) between parallel Ambr15® cultivations of CHO cells and a 15,000 L
production-scale bioreactor. They used this criterion to mimic the carbon dioxide
profile of the production bioreactor in the minibioreactor cultivations, which led to
similar productivity and product quality profiles in both the 15 ml bioreactors and the
15,000 L scale. In another study, Velez-Suberbie et al. [114] used the power per unit
volume (P/V) as a scale-down criterion to compare Ambr15 cultivations of E. coli
with 20 L bioreactor cultivations [114]. Perhaps the most comprehensive work in
this regard was reported by Anane et al. [29], who used model-calculated glucose
pulses to induce both dissolved oxygen and glucose gradient zones in 15 ml parallel
minibioreactors. A key aspect of their work was the use of robotic liquid handling
stations and mechanistic models in the operation of the scale-down set-up. These
smart equipment were interphased with the minibioreactors, such that model outputs
describing specific gradient conditions could be implemented in selected
minibioreactors by the robotic system. Their results in E. coli fermentation devel-
opment showed significant accumulation of non-conventional amino acids in the
recombinant protein product, as well as accumulation of acetate in the scale-down
cultivations, when compared to cultivations under homogeneous conditions.

The results of scale-down cultivations as performed in high-throughput
minibioreactor systems so far show that it is possible to mimic large-scale environ-
mental conditions in miniaturized bioreactors. Particularly, the physiological
responses of both E. coli and CHO cells to the induced heterogeneous conditions
in minibioreactors, as discussed above, is a proof of concept that gradient profiles
that are relevant in industrial-scale cultivations can be reproduced in milliliter scale
for scale-down studies. However, the adoption of enabling technological methods,
such as robotic liquid handling stations and mechanistic modeling is fundamental for
the successful operation of such minibioreactor facilities as scale-down platforms.
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The adoption of such parallel cultivation systems and their combination with robotic
liquid handling stations will ensure that a large number of gradient profiles, defined
in the scale-down model, can be tested in a single parallel run. Additionally, such
high-throughput systems can be used for strain screening under conditions that are
amenable to the larger scale, to select the most robust strain for further development
and scale-up.

5 General Conclusions and Perspectives

The lead times of biotechnological products, especially biopharmaceuticals, from
discovery to market, can be up to 15 years [30]. Although other issues such as
clinical trials may contribute to this time, bioprocess development and troubleshoot-
ing scale-up problems are key contributors to the lengthy lead times. The use of
parallel cultivation systems and robotics has, undoubtedly, reduced these process
development times significantly [45, 110]. Prior to screening, the development of
strains is nowadays performed in a high-throughput manner, e.g. with the use of
standardized genetic methods [115] and non-targeted high-throughput strain engi-
neering [116]. Thus, the bottleneck of a faster overall bioprocess development is
shifted from strain engineering to screening and cultivation development. The use of
parallelized minibioreactor systems for both screening and upstream process devel-
opment, as demonstrated in different studies [29, 107, 114], will greatly relieve this
bottleneck, and ensure that a potential bioprocess reaches production within the
earliest possible times. Additionally, the framework of screening under scale-down
conditions and the associated methods will not only facilitate rapid bioprocess
development, but also ensure a consistent and efficient cultivation process develop-
ment by taking into account all the possible cultivation conditions that would be
encountered upon process scale-up.

Digital twins have become an integral part of bioprocess development and
process control. Particularly, the high degree of parallelization and automation of
the development process, the integration of PAT and the requirements for a higher
robustness of the processes in connection with an improved process control could
only be realized through the comprehensive implementation of mathematical and
statistical methods. Thus, the current challenge lies especially in the fusion of the
individual tools into a uniform overall system.

The application of new possibilities that arose from the ongoing development of
sensor technology and the corresponding data processing allows a stronger consid-
eration of cell-to-cell variation and cellular features as scaling parameters. Such
technologies, including proper accompanying off-line measurements, allow one to
properly model stress responses and provide a basis for the integration of systems
biology knowledge to deepen the methodological understanding of cellular
responses in a large-scale environment. This can support the identification of suitable
scale-down systems with the cell status as scaling factor as it represents the central
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location for the product synthesis. It fosters the application of population balances
and their integration into model-based descriptions of scale-up effects.
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