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Abstract In the era of technology and digitalization, the process industries are
undergoing a digital transformation. The available process models, advance sensor
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techniques enable solid bases for digital transformation in the biopharmaceutical
industry.

Among various data analytical techniques, the Kalman filter and its non-linear
extensions are powerful tools for prediction of reliable process information. The
combination of the Kalman filter with a virtual representation of the bioprocess,
called digital twin, can provide real-time available process information. Incorpora-
tion of such variables in process operation can provide improved control perfor-
mance with enhanced productivity.

In this chapter the linear discrete Kalman filter, the extended Kalman filter and the
unscented Kalman filters are described and a brief overview of applications of the
Kalman filter and its non-linear extensions to bioreactors are presented. Furthermore,
in a case study an example of the digital twin of the backer’s yeast batch cultivation
process is presented.

Graphical Abstract A digital twin of a bioreactor mirrors the processes of the real
bioreactor. It contains the physical parts, the process model and prediction algorithm
to predict the bioprocess variables. These values could be used for optimization and
control of the process.
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Abbreviations

A State transition matrix
B Process input transition matrix
C Measurement model
CKF Cubature Kalman filter
EKF Extended Kalman filter
EnKF Ensemble Kalman filter
F Jacoby matrix of f()
f() Non-linear function describing the process change
FIA Flow injection analysis
H Jacoby matrix of measurement model
h() Measurement model
KF Kalman filter
P Estimation error covariance matrix
p Model parameter vector for estimation
Q Process noise covariance matrix
R Measurement noise covariance matrix
t Time
UKF Unscented Kalman filter
v Measurement noise vector
w Process noise vector
x State variables vector
x(t) State variable at continuous time k
x[k] State variable at discrete time k
xf,[k] Filtered state variable at discrete time k
z Measurement vector

1 Introduction

Bioprocesses are described as biological systems that are non-linear, complex and
unsteady; thus development of precise control systems in order to achieve robust
product quality and productivity can be challenging. The control of these processes
can be significantly improved by online process monitoring followed by corrective
actions. In this context, bioprocess digital twins are helpful tools.

Digital twins are virtual representations of the production process which enable
pre-emptive process control by using online data to predict the process outcome in
advance. They convert the physical process to a smart process and thus achieve the
ultimate goal of the digital transformation. This enables unprecedented possibilities
for timely and automated intervention to provide critical decision support during
process development [1].
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Digital twins mainly consist of a mathematical model which describes the
dynamic behaviour observed in a biochemical reactor and a prediction or self-
learning algorithm which estimates the cellular component concentrations and the
process parameters that cannot be described mechanistically [2, 3].

Bioprocess mathematical models may generally be categorized into algebraic
equations and dynamic models. Algebraic equations are developed from mass and
component balances, from mass or heat transfer laws or even from elemental
balances. Dynamic models usually consist of dynamic balances of conserved quan-
tities in combination with kinetics to describe rate expressions as functions of the
state variables. Detailed description of mathematical modelling of bioprocesses is
covered by previous authors in greater details than space allows here [4–7]. The goal
of this chapter is to highlight state estimation methods with a specific focus on the
Kalman filter and its non-linear extensions.

For linear systems, the Luenberger observer and the Kalman filter, whose 60th
anniversary occurred in 2020 [8], are the most applied methods for estimating
parameters and process variables that cannot be measured directly. In the area of
non-linear systems, particle filtering (PF), high gain observers, non-linear extensions
of the Kalman filter such as the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) and many others have been proposed. However, due to the
simple structure and low computational effort of non-linear extensions of the
Kalman filter, these methods have gained more interest, and many research studies
have been dedicated to the implementation of such filters for state and parameter
estimation in bioprocess technologies. The main objective of this chapter is to
discuss the applications of different Kalman filter algorithms in bioprocess technol-
ogies. Therefore, this chapter is organized as follows: in the next section, a brief
overview of the Kalman filtering theory and its non-linear extensions will be
discussed. Applications of the Kalman filter for the supervision of cultivation
processes will be given in the third section, followed by a case study evaluating
the implementation of an extended Kalman filter for developing a digital twin of the
backer’s yeast batch cultivation process. In the last section, a conclusion is
presented.

2 Kalman Filtering Theory and Its Non-linear Extensions

The Kalman filter is a set of mathematical equations that provides an efficient
computational solution of the least-squares method when the considered system is
linear and the uncertainties are modelled by Gaussian random variables. When the
system state dynamics is non-linear, then certain linearization methods are applied.
The most prominent of these algorithms are the extended Kalman filter (EKF) and
the unscented Kalman filter (UKF), invented independently by several research
groups. Different extensions of the Kalman filters differ in the way the estimation
error is calculated. A brief overview of these methods are as follows.
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2.1 The Kalman Filter

The Kalman filter is used to provide optimal estimates of unmeasured states for time
varying linear systems in the presence of noise by combining information from a
process mathematical model with online process measurements. The process model
defines the evaluation of the state from time k�1 to time k as:

x k½ � ¼ Ax k�1½ � þ Bu k�1½ � þ w k�1½ � ð1Þ

where x is the state vector, u is the process input and w is the Gaussian process noise
vector that is assumed to be zero-mean with the covariance Q. Matrix A relates the
state at the previous time step k�1 to the state at the current step k, matrix B relates
the control input to the state variables x.

The process model is paired with the measurement model that describes the
relationship between the state and the measurement at the current time step k as:

z k½ � ¼ Cx k½ � þ v k½ � ð2Þ

where z is the measurement vector and v is the Gaussian measurement noise vector
which is assumed to be zero-mean with the covariance R. Matrix C relates the state to
the measurement z[k]. Since the measurements does not exhaustively inform on the
current situation of the process, the KF aims to provide an estimate of the process
state at time k, given the initial state of x0, the measurements and the information of
the system.

The Kalman filter algorithm consists of two steps which are summarized as
follows:

• Prediction step (time update): Using the initial condition, the process model is
used to predict the state variables and the estimation error covariance’s until the
first measurement is available.

x k½ � ¼ Ax k�1½ � þ Bu k�1½ � ð3Þ
P k½ � ¼ AP k�1½ �AT þ Q ð4Þ

In the above equations, x[k] is the state variables estimate at time k which is
deduced from a previous estimation of the state x[k 2 1] at time k�1. The new term
P is called the state error covariance matrix which encrypts the error covariance of
the predicted state values. P[k] is the new prediction error covariance matrix at time
k and P[k 2 1] is the previous estimated error covariance matrix at time k�1.
Whenever a measurement is available, a correction step is performed:

• Correction step (measurement update): In this step the predicted model estimates
are combined with the measured values to provide corrected estimates.
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x f , k½ � ¼ x k½ � þ K k½ � z k½ � � Cx k½ �
� � ð5Þ

P f , k½ � ¼ P k½ � 1� K k½ �C
� �2 þ K2R ð6Þ

K k½ � ¼ P k½ �CT Rþ CP k½ �CT
� ��1 ð7Þ

The measurement prediction error, reflects the discrepancy between the true
measurements z[k] and the predicted measurements Cx[k]. The difference of both is
multiplied by the so called Kalman gain and used to update the estimated state
variables. Therefore the filtered state variables xf, [k] are obtained. In the similar
manner, the filtered estimation error covariance Pf, [k] is obtained. K[k] is chosen to
minimizes the estimated error covariance

dP f

dK
¼ 0 ð8Þ

The measurement error variance must be compared with the estimation error
variance to see how the filter is acting. For this purpose, a very rough treatment is
necessary:

If R � CP[k]C
T then K � C�1 and xf, [k] � C�1z[k]; so the filtered is almost

determined by the measured.
If R� CP[k]C

T then xf, [k]� x[k]; the filtered value is almost the estimated one and
no influence of the measurement will be obtained.

With the filtered values as initial condition the simulation of the process as well as
the estimation error covariance’s can be carried out until the next measurement is
obtained and everything repeats again. The flow chart of the Kalman filter algorithm
is presented in Fig. 1.
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Fig. 1 The flow chart of the Kalman filter algorithm
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2.2 Continuous-Discrete Extended Kalman Filter

As described in the previous section, the Kalman filter addresses the general problem
of trying to estimate the state of a process that is governed by a linear differential
equation system. In non-linear dynamic systems, the process model or the measure-
ment model cannot be determined with multiplication of vectors and matrices. For
such systems, a linearization should be performed. The linearization can be
performed by different methods. The essential difference among different versions
of the Kalman filters (extended Kalman filter, unscented Kalman filter and ensemble
Kalman filter) consists in how they calculate the estimation error. A Kalman filter
that linearizes about the current mean and covariance is referred to as an extended
Kalman filter (EKF). A non-linear dynamic system can be described by the follow-
ing differential equation:

dx tð Þ
dt

¼ f x tð Þ, u tð Þð Þ þ w tð Þ ð9Þ

With discrete measurements that are:

z k½ � ¼ h x t k½ �
� �� �þ v k½ � ð10Þ

The differential equation provide the continuous part, the measurements are the
discrete part, where f is a non-linear function of the state variables x and the control
input u. The non-linear function h in the measurement equation relates the current
state to the measurement z[k]. w and v are, respectively, the process noise vector and
the measurement noise vector. These noises are assumed to be zero mean, white, and
independent of each other, with respective covariance matrices Q and R.

To calculate the estimation error covariance matrix, the following differential
equations have to be solved in parallel to the state differential equation.

dP tð Þ
dt

¼ F tð ÞP tð Þ þ P tð ÞFT tð Þ þ Q ð11Þ

Here the Jacobian matrix is used, which is given by the following equation:

F ¼ ∂f
∂x

����
x tð Þ, u tð Þ

ð12Þ

The filtering is performed as follows:

K k½ � ¼ P tkð ÞHT tkð Þ H tkð ÞP tkð ÞHT tkð Þ þ R
� ��1 ð13Þ
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x f t k½ �
� � ¼ x t k½ �

� �þ K k½ � z k½ � � h x t k½ �
� �� �� � ð14Þ

P f t k½ �
� � ¼ I � K k½ �H k½ �

� �
P t k½ �
� �

I � K k½ �H k½ �
� �T þ K k½ �RKT

k½ � ð15Þ

where H[k] is the Jacoby matrix of h[]:

H k½ � ¼ ∂h
∂x

����
x k½ �

ð16Þ

Correspondingly to the KF algorithm, the EKF algorithm consists of two main
parts including prediction step and the correction step.

As mentioned above, the basic framework for the EKF involves state estimation
of a non-linear dynamic system. However, in some cases, prediction of xk requires
coupling both state estimation and parameter estimation [9]. Here a process model
parameter p(t) is considered to be time dependent and can be estimated by adding the
parameter as an additional state variable whose differential equation is then given as

dp tð Þ
dt

¼ 0 ð17Þ

At every time step, the current estimate of the parameter p(t) is used in the
measurement filter. In the joint estimation method, model state variables and
model parameters are included in a single joint state vector. Parameter estimation
evolves in time along with state estimation, as observations are assimilated [10].

Other alternatives for parameter estimation with the KF include calibrating
parameters outside the KF calculation with an outer optimisation routine [11–13],
and parameter estimation in steady-state KF calculations where observations are
climatological averages over the entire time period of interest [14], but in both of
these two approaches the parameter estimation part of the calculation considers all
observations at once rather than sequentially.

2.3 Other Non-linear Extensions of the Kalman Filter

As mentioned previously, when the system is non-linear and can be well approxi-
mated by linearization, then the EKF is a good option for state estimation; however
EKF is not optimal if the system is highly non-linear, this is because only the mean is
propagated through the non-linearity [15]. The unscented Kalman filter (UKF) is
another non-linear extension of the Kalman filter which is a discrete time filtering
algorithm. The UKF utilizes the unscented transformation for computing approxi-
mate solutions to the filtering problems.

A general framework for state estimation based on the UKF for this state space
model is presented as follows:
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In the first step, the initial values for the state and covariance estimation have to be
set. Following this, the recursive estimation is performed by the prediction and
correction steps. Within the prediction step, a priori state and covariance estimation
utilizing the process model is performed. Using the unscented transformation, a set
of sigma points are chosen. These sigma points characterize the current probability
density function. Each point from the sigma matrix is propagated through the
process model to calculate the estimations of state variables and the error covariance.
Following this, a correction step is preformed when a measurement is received. This
leads to the estimations of the filtered state variables and the filtered error covariance
by calculating the Kalman gain.

The UKF has been used in various fields for non-linear sate estimations. However
a couple of alternative approaches have emerged over the last few years, namely, the
ensemble Kalman filter (EnKF) and the cubature Kalman filter (CKF) which are
widely used when the process model is of extremely high order and non-linear, the
initial states are highly uncertain and a large number of measurements are available
[16, 17].

Similar to the UKF, the EnKF and CKF select a set of sample points (sigma
points) in order to deal with the non-linearity of the system. In high-dimension
systems, the weights of the sigma points in the UKF are prone to be negative, leading
to low estimation accuracy.

In EnKF the error covariances are estimated approximately using an ensemble of
model forecasts. The main concept behind the formulation of the EnKF is that if the
dynamical model is expressed as a stochastic differential equation, the prediction
error statistics, which are described by the Fokker–Plank equation, can be estimated
using ensemble integrations, and the error covariance matrices can be calculated by
integrating the ensemble of model states [16].

The cubature Kalman filter uses the spherical–radial cubature rule to generate
some weighted sampling points to approximate integral in Bayesian estimation. A
brief overview of the unscented Kalman filtering and sigma point filtering in general
are given by van der Merwe [18].

3 Application of Kalman Filters in Bioprocess Monitoring

Here 41 recent published articles [19–60] in the period of 1991–2020 on application
of the Kalman filter and its extensions for state and parameter estimation in
bioprocesses are discussed. Due to space limitation, only some of the reported
articles are presented in Table 1. The table is organized by classifying the articles
into different categories, which include the type of the Kalman filter and the applied
process model, the type of microorganism and the cultivation process mode, the
measured process variable(s) and the objective of the filtering algorithm. This table
would help understanding how the Kalman filter was explored chronologically to
date. It should be mentioned that in some works more than one Kalman filter
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Table 1 Extended Kalman filter application for cultivation processes

Estimator/
application
type

Cultivation
type/
microorganism

Process
model Objective Measured state Reference

Extended
Kalman fil-
ter/experi-
mental
application

Batch cultiva-
tion/E. coli

Dissolved
oxygen mass
balance

Noise filtering
from
dissolved
oxygen
measurements

Dissolved
oxygen

Lee et al.
[19]

Extended
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
S. cerevisiae

Material bal-
ance equation
with Monod
growth rate
kinetics

Parameter
estimation and
substrate
prediction

Glucose con-
centration with
FIA

Hitzman
et al. [32]

Kalman fil-
ter/experi-
mental
application

Batch cultiva-
tion/
S. cerevisiae

Ideal stirred
tank reactor
model with
Monod
growth kinet-
ics (glucose
and ethanol as
limiting
substrates)

Noise filtering
from
predicted
bioprocess
variables

Biomass, glu-
cose, and eth-
anol (with
ultrasonic
velocity)

Cha and
Hitzmann
[36]

Extended
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
S. cerevisiae

A model for
an ideal
stirred tank
reactor in
combination
with Monod
growth
kinetics

Noise filtering
from
predicted
glucose

Glucose con-
centration with
flow injection
analyses (FIA)

Arndt and
Hitzmann
[37]

Extended
Kalman fil-
ter/
simulation

Fed-batch cul-
tivation/
S. cerevisiae

Cybernetic
model of
Jones and
Kompala

Filtering out
noise from the
feed stream

Dilution rate
or the gas–liq-
uid mass
transfer coeffi-
cient for
oxygen

Patnaik
[39]

Extended
Kalman fil-
ter/
simulation

Fed-batch cul-
tivation/E. coli

General
dynamic
model of bio-
reactors with
Monod
growth
kinetics

Parameter
estimation and
biomass
prediction

Dissolved and
exhaust oxy-
gen and car-
bon dioxide

Rocha
et al. [40]

Extended
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
Bordetella
pertussis

A model with
two parame-
ters which are
calculated
using separate
experiments

Estimation of
specific
growth rate,
biomass, and
oxygen mass
transfer

Dissolved
oxygen

Soons
et al. [42]

(continued)
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Table 1 (continued)

Estimator/
application
type

Cultivation
type/
microorganism

Process
model Objective Measured state Reference

Unscented
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
hybridoma cell
culture

Overflow
metabolism
model

Noise reduc-
tion from
predicted
values

Predicted spe-
cific uptake
and produc-
tion rate

Henry
et al. [41]

Extended
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
S. cerevisiae

Ideal stirred
tank reactor
model with
Monod
growth
kinetics

Parameter,
biomass, and
glucose
prediction

Glucose con-
centration with
FIA

Klockow
et al. [43]

Extended
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/E. coli

General
dynamic
model of bio-
reactors with
Monod
growth
kinetics

Estimation of
biomass, glu-
cose, and
acetate

Dissolved
oxygen and
carbon dioxide

Veloso
et al. [44]

Unscented
Kalman fil-
ter/
simulation

Fed-batch cul-
tivation/
S. cerevisiae

Mass balance
of substrate
and biomass
in the head-
space with
Monod
growth
kinetics

Estimation of
biomass and
substrate
concentrations

Dissolved
oxygen and
carbon dioxide

Jianlin
et al. [46]

Unscented
Kalman fil-
ter/
simulation

Fed-batch/
hybridoma cell

Material bal-
ance equation
with Monod
growth
kinetic

Prediction of
acetate and
glucose
concentration

Biomass and
dissolved
oxygen

Dewasme
et al. [48]

Extended
Kalman fil-
ter/
simulation

Batch cultiva-
tion/
S. cerevisiae

Unstructured
model for
alcoholic fer-
mentation
with
immobilized
cells using
Monod
growth
kinetics

Estimation of
product, sub-
strate, and
biomass
concentrations

Glucose and
ethanol

Popova
et al. [49]

Extended
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
S. cerevisiae

Mass balance
of substrate
and biomass
in the head-
space with
Monod

Estimation of
substrate and
biomass
concentrations

Substrate and
biomass con-
centration with
NIR
spectrometer

Krämer
and King
[54]

(continued)
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algorithm are examined. More detailed description of each category for all publica-
tions is presented in the following part of this section.

3.1 Type of Kalman Filter

According to the type of Kalman filter algorithm, the literature presented indicates
there exist a considerable number of articles on implementation of EKF for state and
parameter estimation. More than 60% of the applications (28 articles) have
implemented EKF algorithms for their process. This is due to the fact that the
cultivation process of microorganisms is a complex non-linear biochemical process
and the EKF is a well-known state estimation method for non-linear systems. The
linear Kalman filter which is almost exclusively used for state estimation in linear
systems have also been used by some authors (3 articles). Although the EKF shows
good prediction results and is widely used in literature, it presents some disadvan-
tages. It is reliable for systems which are almost linear on the time scale of the update
intervals; it requires the calculation of Jacobians at each time step, which may be
difficult to obtain for higher order systems; it does linear approximations of the
system at a given time instant, which may introduce errors in the estimation, leading
then the state to diverge over time [9, 15]. For instance, in continuous or fed-batch

Table 1 (continued)

Estimator/
application
type

Cultivation
type/
microorganism

Process
model Objective Measured state Reference

growth
kinetics

Unscented
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
S. cerevisiae

Mass balance
of substrate
and biomass
with Monod
growth
kinetics

Biomass and
specific bio-
mass growth
rat estimation

Oxygen
uptake and
CO2formation
rate

Simutis
and
Lübert
[55]

Sigma point
Kalman fil-
ter/experi-
mental
application

Fed-batch cul-
tivation/
S. cerevisiae

Mass balance
of substrate
and biomass
in the head-
space with
Monod
growth
kinetics

Estimation of
substrate and
biomass
concentrations

Substrate and
biomass con-
centration with
NIR
spectrometer

Krämer
and King
[57]

Extended
Kalman fil-
ter/
simulation

Fed-batch cul-
tivation/
S. cerevisiae

Material bal-
ance equation
with Monod
growth rate
kinetics

Ethanol pre-
diction and
state
estimation

Temperature,
do and sub-
strate
concentration

Lisci and
Tronci
et al. [60]
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cultivations, despite continuous supply by a feed, the substrate concentration can
drop to zero as the cell takes it up very fast. In such cultivations, linearization in the
time and measurement update can lead to significant inaccuracies in the process,
while the EKF assumes a certain probability for substrate concentrations below zero,
even though this is physically impossible [54]. Therefore in recent years, application
of other non-linear extensions of the Kalman filter is used. For example, Fernandes
et al. [54] have implemented an UKF algorithm in order to estimate glucose and
glutamine from biomass, lactate and ammonia measurement during fed-batch culti-
vation of hybridoma cells. The predictions were compared to the ones obtained with
an EKF; they have reported the UKF achieves better level of accuracy. Krämer and
King [57] have implemented a UKF in fed-batch cultivation of S. cerevisiae for
noise filtering from predicted biomass values with NIR spectrometer. In another
study, the same authors [54] have implemented an EKF for the same process. The
authors have reported accurate predicted values in both studies; however there is no
comparison between the two methods. Other types of the non-linear Kalman filtering
method have also been reported in literature. Zhao et al. [53] have implemented a
CKF for incorporating delayed measurements of biomass, substrate, and product
concentration in fed-batch cultivation for penicillin production. Bavdekar et al. [47]
have implemented an EnKF for overcoming delayed measurements of biomass,
substrate and ethanol concentration in fed-batch cultivation of S. cerevisiae.
Addressing the same delay problem Klockow et al. [43] complemented a ring buffer
by an EKF and got satisfied results.

In order to indicate which Kalman filter extension describes the process better,
numerical simulation runs are required. According to this perspective, a closer look
to the presented articles indicates that most studies (31 articles) had relied on
practical applications and simulation studies have been reported only 12 times.

3.2 Microorganism

Regarding the type of microorganism, the articles show that the majority of the
research has focused on applying the Kalman filter or its extensions for state or
parameter estimation during the cultivation of S. cerevisiae (19 articles) and E. coli
(7 articles). The importance of these microorganisms for the biopharmaceutical
industry is widely recognized, as E. coli and S. cerevisiae are the most important
host microorganism used to produce recombinant proteins [58]. In addition,
S. cerevisiae is also widely used for the production of the backers yeast as well as
wine and beer. Only a few articles demonstrate state estimation in the cultivation
process of other microorganisms. For instance, some authors have implemented state
estimation methods for prediction of substrate and product concentration during
cultivations of Candida utilis [30], Penicillium chrysogenum [46, 53] and
Kluyveromyces marxianus [34].
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3.3 Cultivation Mode

From an operational point of view, cultivation of microorganisms can be performed
in batch, fed-batch and continuous modes. In fed-batch cultivation modes, set point
control of the substrate concentration by manipulating the input flow rate is a matter
of particular economic and scientific interest. In order to have an efficient control
system, sufficient knowledge about the process state variables is required, which can
be achieved by the state estimation methods such as the Kalman filter or its
extensions. Therefore, previous studies have almost exclusively focused on the
application of state estimation methods for fed-batch cultivations (34 publications).
However, online monitoring and estimation of state variables in batch cultivations is
also crucial in order to monitor the state and if necessary may improve it to achieve
high productivity over the process. For instance, controlling the level of dissolved
oxygen (DO) in the fermentation broth, effects the rate of microbial metabolism.
Accordingly, Lee et al. [19] have implemented an EKF for noise filtering of
dissolved oxygen measurements which were used for controlling the DO levels in
batch cultivation of E. coli. This approach and, more generally, online monitoring
and state estimation of variables in batch cultivations remain briefly addressed in the
literature.

3.4 Bioprocess Phase

Mixing of medium and pre-cultures are performed during upstream processing phase
and separation and purification of the product from biomass is performed during the
downstream processing phase. In order to optimize cell growth and maximize the
product yield, online monitoring and a tight control is required during both phases.
The presented articles show there have been numerous studies to investigate the
application of state estimation methods during the cultivation phase (39 papers).
However, the articles indicate that only two authors had examined the application of
Kalman filtering methods for state and variable estimation in downstream
processing. For efficient and robust process development in the downstream
processing phase, knowledge of the location and concentration of the product and
key contaminants is also crucial. Holwill et al. [28] have used a low technology
detection system involving the measurement of rate of change of absorbance at a
single wavelength after addition of reagent to a representative sample stream. This
provided online data detailing the performance of a continuous precipitation process.
This information as well as a mathematical model which describes the fractional
protein perception were fed into a control algorithm which was programmed to
maintain predefined set points by feedback control through adjustments to the
overall feed saturation. The Kalman filter was used for estimating the parameters
of the model. Feidl et al. [59] developed a state estimation procedure for estimation
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of antibody concentration by combining information coming from kinetic model and
a Raman analyser, in the frame of an extended Kalman filter approach (EKF).

3.5 Measurement Device

An overview of measurement devices that are appropriate for the operation of
bioprocesses is presented by Sonnleitner [61]. More specific details of different
types of sensors and their measurement principles can be found in literature
[62, 63]. The literature presented indicate that in E. coli cultivation, most authors
have employed DO and CO2 measurements from the exit gas or glucose measure-
ments using flow injection analysis as the measurement in the Kalman filter algo-
rithm. On the other hand, in S. cerevisiae cultivations, besides DO, CO2 and glucose
measurements, biomass measurements have also been widely applied. For example,
Dewasme et al. [48] applied biomass measurements for their KF during an E. coli
cultivation.

3.6 Process Model

According to the articles presented, the general mass balance equations are the most
common mathematical approach used for describing the process in state observing
algorithms. An overview of typical models applied to bioprocesses is presented by
Chhatre [64]. A wide variety of growth kinetics are developed for modelling of
particular bioprocesses. The Monod growth model [65] is the most applied method
for calculating the growth kinetics of microorganisms; it corresponds to a rational
function in which the specific growth rate μ is only a function of a single limiting
substrate concentration and is subjected to substrate saturation when S � Ks.

μ ¼ μmax
S

Ks þ S
ð18Þ

where μmax is the maximum specific growth rate, Ks is the Monod half-saturation
constant, and S is the concentration of the limiting substrate. In the mentioned
articles, all of the authors, which were growing S. cerevisiae and E. coli, have
implemented the Monod growth kinetics. A modified Monod model was applied
by Patnaik [35, 38] which is described in detail by Henson and Seborg [66] or Jones
and Kompala [67]. Application of other methods for calculating the growth kinetics
such as the Contois growth model [68] has also been reported. A feature of the
Contois growth model is that growth rate depends upon the concentrations of both
substrate and cell mass with the consequence that an inhibition is present at high cell
concentrations. This growth kinetic has been implemented in a process model
describing the growth behaviour of Penicillium chrysogenum in fed-batch
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cultivations. A modified Contois model was applied by Jianlin et al. [48] and Zhao
et al. [53] in an UKF and CKF algorithm for biomass and substrate prediction,
respectively. The growth rate can also be represented by artificial neural networks.
However this kind of models is not applied often in combination with a KF. Zorzetto
and Wilson [27] have applied a hybrid model in an EKF algorithm which is based on
the theory of limited respiratory with using artificial neural network for predicting
the growth rates during fed-batch cultivation of S. cerevisiae.

Most of the process models which are reported in literature and are used in the
Kalman filter algorithms are considered to be ideal stirred tank reactors, whereas
production-scale operations are corrupted by noise. This problem is more sever in
large-scale operations than in laboratory-scale fermentations [35]. This can describe
why all applications of state estimation methods presented in Table 1 are performed
in laboratory-scale bioreactors (most cultivations are performed in a 2–5 L bioreactor
and one cultivation [57] have been performed in a 22 L bioreactor).

4 An Extended Kalman Filter for the Monitoring of a Yeast
Cultivation

The integration of gas sensor array data in a non-linear state estimator has not been
discussed previously in the literature. Yousefi-Darani et al. [69] have designed and
implemented a model-based calibrated gas sensor array for online measurement of
ethanol concentration in batch cultivation with the yeast S. cerevisiae. However the
predicted values are only available every 5 min. Therefore in this work, in order to
have continues values of ethanol concentration as well as the values of biomass,
glucose and the maximal growth rates, we have implemented an EKF. In addition,
the whole estimation producer could be considered as a digital twin of the baker’s
yeast batch cultivation process, which could be used for process optimization and
control.

4.1 The Cultivation Process

The cultivation of Saccharomyces cerevisiae (fresh baker’s yeast, Oma’s Ur-Hefe)
was carried out in a 2.5 L bioreactor (Minifors, Infors HT, Bottmingen, Switzerland)
with a vessel of stainless steel working volume of 1.35 L equipped with a temper-
ature (set point of 30�C) and pH (set point pH ¼ 5) control unit. The aeration and
agitation rates were kept constant at 3.5 L min�1 and 500 rpm, respectively. For the
pre-culture, 5 g of the baker’s yeast was suspended into 100 mL medium containing
0.34 g L�1 MgSO4�7H2O, 0.42 g L

�1 CaCl2�2H2O, 4.5 g L
�1 (NH4)2SO4, 1.9 g L

�1

(NH4)2HPO4, 0.9 g L�1 KCl. The inoculation was performed after 10 min of
shaking. The same medium supplemented with glucose to a final concentration of
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5 g L�1 as well as 1 mL L�1 trace elements solution (0.015 g L�1 FeCl3�6H2O,
9 mg L�1 ZnSO4�7H2O, 10.5 mg L�1 MnSO4�2H2O, and 2.4 mg L�1 CuSO4 5H2O)
and 1 mL L�1 vitamin solution (0.06 g L�1 myoinositol, 0.03 g L�1

Ca-pantothenate, 6 mg L�1 thiamine HCl, 1.5 mg L�1 pyridoxine HCl, and
0.03 mg L�1 biotin) was used for the cultivation. The experimental setup is
presented in Fig. 2.

4.2 EKF Algorithm

The EKF uses discrete measurements of ethanol from the gas sensor array and
estimates continuous online values of ethanol, biomass and glucose concentrations
as well as the maximal growth rates in S. cerevisiae batch cultivation. A detailed
description of the working principle of the EKF is presented in Sect. 2.2.

The EKF was implemented using the software Matlab® 2019a (version 9.6.0); the
“Symbolic Math” toolbox (version 8.3) was used to calculate the estimation error
covariance differential equation matrix (25 equations). For all calculations, a normal
office PC (Intel Core® i5 8,500 with 8 GiB of RAM) with Window 10 was used. For
the simulation, the system of in total 30 (5 + 25) differential equations was solved
numerically using the explicit, Runge–Kutta-based ode45 method from Matlab. The
Matlab code can be found in the appendix.

Gas sensor array 
and sampling
system

On-line gas
sampling outlet

H2SO4

off-line
sampling port

Temperature
probe

NaOH

Air inlet

Bioreactor 
control unit

Bioreactor 

PH probe

S�rrer

Fig. 2 Overview of the experimental setup
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4.3 Online Ethanol Measurements

The online ethanol measurements were performed in a self-developed system
equipped with commercially available metal oxide semiconductor (MOS) gas sen-
sors (TGS 822, TGS 813 and MQ3). The sensors were located in a measuring
chamber with a volume of 250 mL and operated in two cycles: a measurement
cycle and a washing cycle. During the measurement cycle, the headspace gas was
pumped into the measurement chamber for 10 s at a flow rate of 400 mL min�1 with
a diaphragm pump (Schwarzer Precision, Essen, Germany). Then the chamber was
flushed by pure oxygen for regeneration. A peak-shaped measurement signal is
obtained, which was evaluated by using a chemometric model, which is described
in detail in the literature [69]. Therefore, every 5 min a new ethanol measurement
value is used by the Kalman filter. Figure 3 presents a schematic diagram of the
online ethanol measurement system and the EKF for continuous state variables and
parameter estimation.

Note that the EKF was carried out after the experiments were performed. The
results, however, carry over to a true online application where the data is not
analysed or modified in retrospect.

Con�nues predicted process 
state & parameters

Ethanol [g L-1] (every 5 min)

State variables 
Es�ma�on error covariances

Filtered

values

Estimated

values

if no measurment

is avalable

if new measur ment

is avalable

Raw 
signals

Flow meter

Micro controller
(ADC)

Oxygen

signal
pre-processing

PCAchemometric 
model

feature 
extrac�on

Pre-processed signal

Peak height & area

First principle component

Extended Kalman filter

On-line ethanol predic�onSampling system and gas sensor array

Off gas

Pump Gas out

Biomass [g L
-1

]

Ethanol [g L
-1

] 

Glucose [g L
-1

] 

max, G [h
-1

]

max, E [h
-1

]

Bioreactor

Fig. 3 Schematic diagram of the online ethanol measurement system and the EKF for continuous
state variables and parameter estimation

112 A. Yousefi-Darani et al.



4.4 Offline Measurements

For offline analysis, samples were regularly taken from the bioreactor and placed in
pre-weighed and pre-dried micro centrifuge tubes. For biomass determination, the
sample without supernatant were dried for 24 h at 103�C and after cooling for 30 min
weighed. Using the filtrated supernatant (pore size filter, 0.45 μm, polypropylene
membrane, VWR, Darmstadt, Germany), glucose and ethanol were determined by
HPLC (ProStar, Variant, Walnut Creek, CA, USA); injection of 20 μL into a Rezex
ROA-organic acid H+ (8%) column (Phenomenex, Aschaffenburg, Germany) and
operated at 70�C with 5 mM H2SO4 as an eluent at 0.6 mL min�1

flow rate; software
GalaxieTM Chromatography (Varian, Walnut Creek, CA, USA). The offline values
were not used during the estimation of the state variables and are only taken to show
that the estimates are accurate.

4.5 State Equations of the Cultivation Process

As bioreactor an ideal stirred tank reactor was assumed. As state variables, the
biomass, glucose and ethanol concentrations as well as the maximal specific growth
rate on glucose and ethanol were applied. Therefore, the following state equations
are obtained:

d
dt

X

G

E

μmax ,G

μmax ,E

2
6666664

3
7777775
¼

μG þ μEð ÞX
� μG
YGX

X

μG
YGE

� μE
YEX

� �
X

0

0

2
6666666664

3
7777777775

ð19Þ

were μG and μE are given as

μG ¼ μmax ,G ∙G
KG þ G

ð20Þ

μE ¼ μmax ,E ∙E
KE þ E

∙ 1� μG
μmax ,G

� �2

ð21Þ

As one can see from the state equation, the Kalman filter is used to estimate the
maximum specific growth rate on glucose μmax, G and on ethanol μmax, E. The
importance of the specific growth rate for the assessment of a cultivation is discussed
by Galvanauskas et al. [70].
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The extension to the ordinary Monod model for μE is applied, so that the
transformation from glucose consumption to ethanol consumption is modelled. In
Tables 2, 3, and 4 the parameters of the model as well as the initial values for the
state equations and the initial values of the estimation error covariance are presented.

The Matlab code as well as the measured off- and online data of this example can
be found in the appendix.

4.6 Results

In Fig. 4 the online and offline measured values of ethanol, the offline measured
values of biomass and glucose as well as all the Kalman filter estimated values of all
three bioprocess variables can be seen.

Figure 4 indicates the typical diauxic growth pattern of baker’s yeast on glucose
is obtained. First the glucose is consumed and biomass and ethanol are produced,

Table 2 Parameter values used for the simulation model

Parameter Value Description

KG 0.1 gL�1 Monod constant glucose

KE 0.1 gL�1 Monod constant ethanol

YGX 0.17 gg�1 Conversion factor glucose to biomass

YGE 0.46 gg�1 Conversion factor glucose to ethanol

YEX 0.6 gg�1 Conversion factor ethanol to biomass

Table 3 Initial conditions for the extended Kalman filter

Parameter Value Description

Xt ¼ 0 2.4 gL�1 Initial biomass
concentration

Gt ¼ 0 5.0 gL�1 Initial glucose
concentration

Et ¼ 0 0.1 gL�1 Initial ethanol
concentration

μmax, G 0.14 h�1 Initial maximal
growth rate on
glucose

μmax, E 0.07 h�1 Initial maximal
growth rate on
ethanol

Pt ¼ 0 0:02 g2L2 0 0 0 0

0 0:02 g2L2 0 0 0

0 0 0:02 g2L�2 0 0

0 0 0 0:02 h�2 0

0 0 0 0 0:02 h�2

0
BBBBBB@

1
CCCCCCA

Initial estimation
error covariance
matrix
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then ethanol is converted to biomass. The offline measurements and its
corresponding estimated values fit quite well together as can be seen in Table 5.

The root mean squared error of prediction (RMSEP) of glucose is 0.12 g L�1. The
ethanol offline values during glucose consumption are mostly higher than the online
measured and the predicted ones; in overall their RMSEP is 0.14 g L�1. All ethanol
online measurements seems to be a little bit shifted in time compared to the offline
values, which might indicate the time delay due to gas transport from the fermen-
tation broth through the headspace of the reactor to the measurement system. The
biomass has a RMSEP of 0.12 g L�1, but the highest deviation can be seen shortly
after ethanol is used as substrate. The values shortly before ethanol consumption
might not be predicted accurately, because the model describing the switching from
glucose to ethanol might be suboptimal.

In order to investigate the influence of the measurement frequency on the
performance of the EKF, we decreased the measurement frequency of the online
ethanol measurements to one per hour. The results of the estimated values with the
EKF are presented in Fig. 5.

Still the overall behaviour of the estimated values is the same. However, the
sampling frequency has an influence on the corrections of the estimated state during
filtering. Larger step changes are observed in the estimated values whenever a new
measurement is available. However, even if the sampling frequency is changed to
one per hour, the overall behaviour is predicted well.
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Fig. 4 Online and offline values for biomass, glucose and ethanol as well as EKF estimates for
these values

Table 5 Prediction error of
EKF values compared to
offline measurements

Glucose Ethanol Biomass

RMSEP 0.12 g L�1 0.14 g L�1 0.12 g L�1

Error 5.6% 2.8% 6.2%

R2 0.96 0.99 0.97
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Obviously with a higher sampling frequency, these step changes are smaller.
Nevertheless, with a 5 min sampling time, the EKF was able to follow the true states
of the system with a reasonably small error. More detailed information about the
influence of the sampling frequency on the accuracy of the Kalman filter estimates
can be found in literature [71, 72].

The EKF was also used for predicting the specific growth rates and their maxi-
mum values.

In Fig. 6 the estimated maximum specific growth rates with respect to glucose
μmax, G and ethanol μmax, E as well as specific growth rates itself (μG and μE for
glucose and ethanol respectively) are presented.

After inoculation, the specific growth rate and its maximum value with respect to
glucose are increasing from 0.14 h�1 to more than 0.18 h�1. However shortly
thereafter they decrease again. This indicates the high sensitivity of the estimation
values due to the measurement noise variance R and the process noise variance with
respect to μmax, G, which is Q [4]. The smaller the R and the higher the Q [4], the
more the estimated values will rely upon the measurements and as a consequence the
filtered values might be changed, if the measured and estimated values deviate from
each other. The more glucose is consumed, the larger will be the difference of μmax, G
and μG, due to the Monod growth kinetics. If the glucose is almost depleted, the
extension to the Monod model on ethanol contributes to increasing growth on
ethanol. Shortly after 2 h cultivation time, the transition from glucose to ethanol as
substrate takes place. The maximum specific growth rate on ethanol μmax, E, which
has not changed during the growth on glucose starts to increase. According to the
typical Monod behaviour, before ethanol is depleted, due to the low substrate
concentration, μmax,E should be almost constant while μE should be increasing.
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Fig. 5 Online (every 1 h) and offline values for biomass, glucose and ethanol as well as EKF
estimates for these values
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However this is not observed in Fig. 6 which is due to the fluctuation of the measured
and estimated ethanol concentration.

5 Conclusion

In this chapter, the working principles as well as an overview of Kalman filter
applications for state and parameter estimation in bioprocesses has been presented.
Regarding the type of the Kalman filter, since most biotechnical processes are
non-linear, non-linear versions of the Kalman filter, specifically the EKF, are
the most applied algorithm among other extensions of the Kalman filter. However
the UKF is getting attention in recent years. The results in literature indicate that the
UKF algorithms deliver more accurate estimates of the parameters and state vari-
ables compared to EKF algorithms.

In spite of the apparent success of Kalman filters for state and parameter estima-
tion in lab-scale bioreactors, the integration of Kalman filters into industrial systems
is not very widespread while most of the process models mentioned in literature
consider noise-free ideal fermentations, whereas production-scale operations are
corrupted by concentration gradients and disturbance. Accordingly, more efforts
are required towards performing simulation studies in order to model and validate
proper mathematical models associated with complex non-ideal bioprocesses.

Despite the numerous examples on state estimation methods for biotechnological
processes in literature, the research on implementing Kalman filters for state
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estimation in downstream processing remain rather limited. The advancement in
state and parameter estimation methods in downstream processes leads to better
knowledge of the location and concentration of the product and key contaminants,
which are essential for process optimization and control.

So far most of the Kalman filter algorithms are implemented for monitoring
fed-batch cultivations; however more attention is required for real-time implemen-
tation of the Kalman filter algorithms for controlling the feed rate and substrate
production in these cultivations. Further efforts are also required towards implemen-
tation of state estimation methods in batch and continuous cultivations.

From the presented literature, it could be concluded that the non-linear extensions
of the Kalman filter are powerful tools for state estimation in bioprocesses; therefore
they could be used for digitalization of bioprocesses. Accordingly, in a case study, a
digital twin of the baker’s yeast batch fermentation process was developed by using
a dynamic non-linear model of the process as well as an EKF algorithm. The
proposed method gives the possibility to predict glucose, ethanol and biomass
concentrations simultaneously from the only available infrequent online measure-
ments of ethanol concentration. The accuracy of the estimated biomass and substrate
production are in line with other studies which have also implemented an EKF
algorithm for monitoring the baker’s yeast cultivation [32, 49]. However, in our
application the maximal specific growth rates on glucose and ethanol are also
estimated. As a consequence, the rapid and precise estimation of these variables
could increase the overall knowledge integration in the digital twin of the process.

Overall, the unique advantage of online monitoring and in general digital twins of
bioprocesses is that they could play critical roles in bioprocess development such as
supporting problem solving in manufacturing, reducing effort in setting up a control
strategy and accelerating process performance by taking corrective actions automat-
ically and in real time.

Appendix

Extended Kalman filter Matlab code: Online state prediction of batch yeast cultiva-
tions based on ethanol gas sensors.

%Initialization
clear; close all; clc;
sympref('AbbreviateOutput', false);
%Variable and parameter definition
%Symbols for symbolic math calculations
syms G E X P t real
syms Y_gx Y_ge Y_ex mu1 mu2 K_M_G K_M_E real
%Variables / Parameters
initX = [2.5; 6; 0.2; 0.15; 0.08]; % initial state (Biomass,
% Glucose, Ethanol)
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initP = diag([0.1,0.02, 0.02,0.2,0.02]); % initial process estimation
% covariance matrix
init = [initX; initP(:)]; % combined initial value
%vector
% for the odesolver
H = [0 0 1 0 0] % observation matrix
H = 1	5

0 0 1 0 0
Q = diag([0.001,0.001,0.001,0.001,0.001]) % process noise covariance
%matrix

R = 0.05 % measurement noise
%covariance matrix
K1 = 0.1; % Monod konstant glucose
K2 = 0.1; % Monod konstant ethanol

%estimated parameter values
Ygx =0.15; % Yield glucose -> biomass
Yge =0.34; % Yield glucose -> ethanol
Yex =0.43; % Yield ethanol -> biomass
%Process model
%Monod terms
mue1 = mu1*G / (G+K_M_G);
mue2 = mu2*E / (E+K_M_E) * (1 - mue1/mu1);
%Model OD
dS = sym(X * [...

( mue1 + mue2) ;... % Biomass
-mue1/Y_gx ;... % Glucose
( mue1/Y_gx*Y_ge - mue2/Y_ex) ;... % Ethanol
0; % mue1
0; % mue2
]);

%Jacobian of Model with respect to state variables
F = jacobian(dS,[X,G,E,mu1,mu2])
P matrix
P = sym('P',[5,5])
dP = F * P + P*F'+Q
%Simulation / State prediction and filtering
%Replace all symbolic parameters with their respective numeric values
F = subs(F, [Y_gx Y_ge Y_ex K_M_G K_M_E], [Ygx Yge Yex K1 K2]);
dS = subs(dS, [Y_gx Y_ge Y_ex K_M_G K_M_E], [Ygx Yge Yex K1 K2]);
dP = subs(dP, [Y_gx Y_ge Y_ex K_M_G K_M_E], [Ygx Yge Yex K1 K2]);
%Assemble all differential equations into a vector of 12 elements
%(3x state, 9x P)
OdeSys = matlabFunction([dS(:);dP(:)],'Vars',{t,[X; G; E; mu1; mu2;
P(:)]});
%load measurement values from file:

load BC2_eth_pred.mat % Ethanol sensor
%measurements
load BC2.mat % Offline values for

%Simulate the process from one ethanol gas measurement time to the next:
t0 = 0;
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MC = zeros(0,5); %store filtered states in these variables
SimState = zeros(0,5);
SimTime = [];
for i = 1:numel(timeE)

tspan = [t0 timeE(i)];
[T,state] = ode45(OdeSys, tspan, init); % simulate / solve model

PS = state(end,1:5)'; % predicted state

MS = ME(i); % measured state
P = reshape(state(end,6:end),5,5); % process covariance

% matrix
K = P*H'/(H*P*H'+R); % kalman gain matrix
FS = PS + K * (MS-PS(3)); % filtered state
Pfilt = P-K*H*P ; % filtered process

% covariance matrix
init = [FS; Pfilt(:)]; % new initial condition
t0 = timeE(i); % new starting time for

% next iteration
% Save intermediate states for plotting

MC = [MC;FS'];
state(end,1:3) = NaN;
SimState = [SimState; state(:,1:5)];
SimTime = [SimTime; T];

end
%Results
%Plot the results in a presentable figure and save file to disk
f = figure("Position",[0,0,1600,640]);
subplot(1,2,1);
h = plot([0,time'],[initX(1:3)';M],'.','MarkerSize',20); % Plot
%measurements
set(h, {'color'},{'r'; 'g';'b'}); hold on;
h = plot(SimTime,SimState(:,1:3)); % Plot simulated values
set(h, {'color'}, {'r'; 'g';'b'});
plot(timeE,ME,'+b','MarkerSize',8); hold off; % Plot ethanol gas sensor
%values
ax = gca;
ax.FontSize = 14;
ax.FontName = 'Times';
ax.Position = [.05 .1 .4 .85];
ax.ActivePositionProperty = 'outerposition';
ax.GridLineStyle =':';
ax.GridAlpha = .7;
xlabel('time $/h$','interpreter','Latex',"FontSize",16);
ylabel('concentration $/\frac{g}{L}
$','interpreter','Latex',"FontSize",16); ylim([0 8]);
grid on; box off; grid(gca,'minor');
legend('Biomass offline','Glucose offline','Ethanol offline','Biomass
Kalman','Glucose Kalman','Ethanol Kalman','Ethanol gas
sensor','interpreter','Latex',"FontSize",12,"Color",[.9 .9 1 .9]);
subplot(1,2,2);
h = plot(SimTime,SimState(:,4:5)); % Plot mu values over time
ax = gca;
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ax.FontSize = 14;
ax.FontName = 'Times';
ax.Position = [.55 .1 .4 .85];
ax.ActivePositionProperty = 'outerposition';
ax.GridLineStyle =':';
ax.GridAlpha = .7;
ytickformat('%.2f')
set(h, {'color'}, {'r'; 'k'});
xlabel('time $/h$','interpreter','Latex',"FontSize",16);
ylabel('$\mu$ value $/\frac{1}{h}
$','interpreter','Latex',"FontSize",16);
grid on; box off; grid(gca,'minor');
legend('$\mu_1$','$\mu_2
$','interpreter','Latex',"FontSize",12,"Color",[.9 .9 1]);
annotation("arrow",[.55 .97],[.1 .1])
annotation("arrow",[.05 .47],[.1 .1])
annotation("arrow",[.05 .05],[.1 .98])
annotation("arrow",[.55 .55],[.1 .98])
saveas(f,'KalmanPred.svg','svg'); % save copy of figure to file

%Calculate Errors
SimTime = SimTime + ((1:numel(SimTime))*1e-10)';
SimValues = interp1(SimTime,SimState(:,1:3),time);
SSE = sum((SimValues - M).^2);
RMSE = sqrt(SSE/numel(time));
SQT = sum((M-mean(M)).^2);
RSq = 1-SSE./SQT;
T1 = table('Size',[3,3],'VariableTypes',
{'double','double','double'},'VariableNames',
{'Biomass','Glucose','Ethanol'},'RowNames',{'RMSEP','Error
%','R²'});
T1(1,:) = num2cell(RMSE);
T1(2,:) = num2cell(SSE./(max(M)-min(M))*100);
T1(3,:) = num2cell(RSq)
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