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Abstract Rising demands for biopharmaceuticals and the need to reduce
manufacturing costs increase the pressure to develop productive and efficient
bioprocesses. Among others, a major hurdle during process development and opti-
mization studies is the huge experimental effort in conventional design of experi-
ments (DoE) methods. As being an explorative approach, DoE requires extensive
expert knowledge about the investigated factors and their boundary values and often
leads to multiple rounds of time-consuming and costly experiments. The combina-
tion of DoE with a virtual representation of the bioprocess, called digital twin, in
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model-assisted DoE (mDoE) can be used as an alternative to decrease the number of
experiments significantly. mDoE enables a knowledge-driven bioprocess develop-
ment including the definition of a mathematical process model in the early devel-
opment stages. In this chapter, digital twins and their role in mDoE are discussed.
First, statistical DoE methods are introduced as the basis of mDoE. Second, the
combination of a mathematical process model and DoE into mDoE is examined.
This includes mathematical model structures and a selection scheme for the choice of
DoE designs. Finally, the application of mDoE is discussed in a case study for the
medium optimization in an antibody-producing Chinese hamster ovary cell culture
process.
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Abbreviations

A Average
Amm Ammonium
ANOVA Analysis of variance
BBD Box-Behnken design
CCC Central composite circumscribed
CCD Central composite designs
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CCF Central composite face centered
CCI Central composite inscribed
CHO Chinese hamster ovary
D Determinant
DoE Design of experiments
E Eigenvalue
G Global
Glc Glucose
Gln Glutamine
GMP Good Manufacturing Practice
I Variance
Lac Lactate
LHSD Latin hypercube sampling design
mAb Antibody
max Maximum
MBDoE Model-based design of experiments
mDoE Model-assisted design of experiments
min Minimum
PAT Process analytical technology
QbD Quality by design
VPA Valproic acid

Nomenclature

α Distance to center point (-)
βi Unknown constants (-)
εi Random error (-)
γ Constant antibody production rate (mg cell�1 h�1)
μ Cell-specific growth rate (h�1)
μd,max Maximum death rate (h�1)
μd,min Minimum death rate (h�1)
μmax Maximum growth rate (h�1)
ci Concentration of component i (mmol L�1)
di Desirability function (�)
D Overall desirability function (�)
i Index (�)
k Factors (�)
kLys Cell lysis constant (h�1)
KS,i Monod kinetic constant for component i (mmol L�1)
Li Lower acceptable response (�)
n Steps (�)
qAmm Ammonium formation rate (mmol cell�1 h�1)
qGlc Glucose formation rate (mmol cell�1 h�1)
qGln Glutamine formation rate (mmol cell�1 h�1)
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qi,max Maximum uptake rate of component i (mmol cell�1 h�1)
qLac Lactate formation rate (mmol cell�1 h�1)
qLac,uptake Uptake rate of lactate (mmol cell�1 h�1)
qLac,uptake,max Maximum uptake rate of lactate (mmol cell�1 h�1)
qmAb Antibody formation rate (mmol cell�1 h�1)
R2 Coefficient of determination (�)
Ui Upper acceptable response (�)
xi Independent variables (�)
Xt Total cell density (cells mL�1)
Xv Viable cell density (cells mL�1)
Vi Viability (�)
YAmm/Gln Yield coefficient of ammonium formation to glutamine uptake (�)
yi Response (�)
YLac/Glc Yield coefficient of lactate formation to glucose uptake (�)

1 Introduction

The demand for highly effective pharmaceuticals has risen continuously over the
past decades [1, 2]. From 2015 to 2018, 129 different biopharmaceuticals have been
approved by the EU and the US government, representing the highest number of
approvals in a 4-year period since the first biopharmaceuticals were introduced in the
end of the twentieth century [3]. In 2018, a total of 374 approved biopharmaceuticals
were available, including 316 with different individual active ingredients and current
active registrations [4]. Trends for the future indicate a growing market share of up to
50% of the top 100 pharmaceuticals to be bio-based [5], predominantly monoclonal
antibody-derived medicinal substances, followed by hormones and blood-related
drugs [4]. Simultaneously, the development costs of biopharmaceuticals have
increased drastically (620% from 1980 to 2013) [6]. As a result, processes become
more complex and intensified, which is further increased by, e.g., changing from
simple batch to more complex fed-batch or perfusion processes. The number of
process variables to be monitored and their complexity have also increased. Finally,
the requirements for quality management and documentation (good manufacturing
practice –GMP) have also increased to guarantee quality [7]. For the design of novel
bioprocesses, the process analytical technology (PAT) initiative and quality by
design (QbD) philosophy require an improved understanding of the drug
manufacturing processes [8].

Statistical design of experiments (DoE) methods have become common practice
in process development within QbD [9]. However, induced by the explorative
approach of DoE, the selection of the experimental design as well as the definition
of the boundaries of factors is user-dependent. Furthermore, the definition of the
parameter space is particularly critical. This is usually done heuristically, suggesting
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that non-ideal experimental settings are not necessarily identified and the parameter
space has to be iteratively reduced step by step. Narrowing down the design space by
using statistical DoE requires a lot of time and experimental effort, especially in
cases where a high number of relevant factors are targeted. At the same time, the
experiments can be limited in their information content, constraining the outcome of
the optimization studies [8–10]. This generally results in a small increase in process
knowledge only.

To reduce the number of experiments and increase the process understanding
during the design and optimization of bioprocesses, a novel model-assisted design of
experiments (mDoE) concept was recently introduced [11–13]. It combines the
benefits of statistical DoE with a mathematical process model as a virtual represen-
tation of the bioprocess, called a digital twin. Although the term “digital twin” has
not yet been defined across different parts of the industry, in bioprocesses they are
intended to be a virtual counterpart of the bioprocess for the entire life cycle of the
biopharmaceutical production process. In the context of mDoE, digital twins consist
of a mathematical process model, which have gained increased importance in the last
decades. They can be applied to design [14–16], control [17–19], and optimize
[20, 21] biopharmaceutical production processes. The main intention of a mathe-
matical model is to find solutions by analyzing the model in order to propose targeted
experiments [22]. As they contribute to a scientific understanding of the process
variables and their impact on the final product, mathematical process models in the
field of biopharmaceutical production processes are now considered to be a sustain-
able part of QbD [7, 12, 23, 24].

2 Design of Experiments Methods

Even if traditional trial-and-error and one-factor-at-a-time methods are still used,
advanced statistical DoE methods are applied more frequently in the field of
biopharmaceutical process development [25–27]. They can be used for the statistical
and systematic planning of experiments for hypothesis testing and/or the optimiza-
tion of process variables (namely, “factors”) with regard to the desired outcome,
called “response” (e.g., product titer, product quality) [7, 28, 29]. In general, the
process development based on DoE methods leads to a certain reduction in the
number of experiments to be done in practice compared to one-factor-at-a-time
approaches. In the context of designing biopharmaceutical production processes,
they were used in the upstream as well as in the downstream part. As an example for
the design of a bioprocess, Zhang et al. (2013) implemented a screening design to
identify active parameters for the development of a serum-free medium for the
cultivation of a recombinant CHO cell line. Afterward, the process parameters
were optimized, and a fed-batch strategy was designed [30]. As an example for the
part of product purification, Horvath et al. (2010) used a screening design with eight
experiments to determine the effect of different process parameters on the isoelectric
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point of a therapeutic antibody expressed in CHO cell culture. The pH, temperature,
and the time of the temperature shift were significant. These factors were evaluated
in three levels in a concluding response surface design to optimize the isoelectric
point [31].

Statistical DoE methods are solely based on user-defined selections of the exper-
imental design and the definition of factor limits, including the definition of exper-
imental variables and their evaluated levels [8, 32, 33]. This can lead to error-prone
decisions, iterative re-adjustments of the experimental space with several rounds of
costly and time-intensive experiments, and even to a design that simply cannot be
implemented [7]. Expert knowledge is required to select suitable boundary values
for process development and optimization using DoE [7, 34–36]. Therefore, the
combination of digital twins with DoE in mDoE offers a novel tool for the
knowledge-driven development of bioprocesses.

2.1 Screening Designs

Screening designs are intended to identify the significantly influencing factors from a
list of many potential factors [33, 37]. Therefore, different experimental designs can
be used. The most commonly used designs, called full factorial, factorial fractional,
as well as Plackett-Burman designs, are discussed.

2.1.1 Full Factorial Designs

A full factorial design can be used to examine the main effects and interactions of
one or more factors on the respective response. The design consists of two or more
factor levels and k-factors, resulting in at least a 2k-design [38, 39]. Exemplary, the
full factorial design for three factors is given by a 23-design plan, shown in Fig. 1a.

2.1.2 Reduced Full Factorial Designs

In order to reduce time-consuming and costly experiments in the case of a large
number of factors, incomplete designs, like fractional factorial and Plackett-Burman
designs, can be chosen. The fractional factorial designs, representing a reduced form
of the two-level factorial design, are based on the assumption that higher-value
interactions are irrelevant. This results in a 2k-n-design, whereby the 2k-design is
reduced by n steps [38, 40, 41]. A reduced form of the previously mentioned 23-
design plan, a fractional factorial 23-1-design, is shown in Fig. 1b. Plackett-Burman
designs, a special form of the two-level fractional factorial designs, are suitable if the
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focus is on the investigation of the main effects and interactions can be disregarded
[40]. However, a mixing of the effects can occur [38, 41].

2.2 Optimization Designs

In order to maximize a response, the levels of the influencing factors are optimized in
so-called optimization designs. Therefore, the most known designs, like the central
composite, Box-Behnken, optimal, and space-filling designs, are briefly introduced
in the following.

FFactor A

Factor C

Factor B

---

--+

++-

+--

+-+

+++-++

-+-

23-factorial 23-1-fractional factorial

Central Composite Face CenteredCentral Composite Inscribed

Box-Behnken D-Optimal Latin-Hypercube-Sample

Central Composite Circumscribed

A B

C D E

F G H

Fig. 1 Geometrical representation for screening (a, b) and optimization designs (c–h) and optimi-
zation designs with three factors (Factor a, Factor b, and Factor c). Dots represent the recommended
experiments. The gray dots are the star points, and the black dots are the central points. All designs
are examined at two levels (+ and -)
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2.2.1 Central Composite Designs

Central composite designs (CCDs) are built from factorial 2k- or fractional factorial
2k-n-designs. Additionally, center and star points (marked gray) are augmented,
allowing the estimation of curvature. In general, three variations of CCD exist,
which differ in range settings of their factors. Figure 1 C–E illustrates the relation-
ships among these variants. Depending on the variant, the design is spherical,
orthogonal, rotatable, or face centered [28, 38, 42].

2.2.2 Box-Behnken Designs

Box-Behnken designs (BBDs; see Fig. 1f) are based on the combination of a
two-level factorial design with a balanced incomplete or partial block design
[43]. They are nearly rotatable and require an examination on three levels for each
factor, resulting in a field with distinct resolution of interactions and quadratic effects
[44]. However, for a large number of factors, this implies a poor estimation of the
two-factor interactions [43].

2.2.3 Optimal Designs

With optimal experimental designs, the experimental space can be restricted, and
user-specific settings can be made. There are a large number of optimization criteria
to distribute points in the experimental space. The most frequent representatives are
average (A)-, determinant (D)- (shown in Fig. 1g), eigenvalue (E)-, global (G)-, and
variance (I)-optimality. If the coefficients of the regression model are of interest, then
A-, D-, and E-optimal plans are used. G- and I-optimality, however, refer to the fitted
regression model [38].

2.2.4 Space-Filling Designs

Traditional experimental designs, such as the CCDs, BBDs, and the optimal exper-
imental designs, often create experiments close to the factor boundaries. This can
cause areas of free space, which are not examined and only minimize noise
[45]. However, to minimize bias, space-filling designs can be used. In this case,
possible experiments are randomly distributed in the individual spaces. An example
of such designs is the Latin Hypercube Sample Design (LHSD), which fills the room
evenly, allowing for a large number of factors and levels to be used (Fig. 1h). The
experimental space is filled in such a way that there is an even distribution in the
entire factor space or the maximum distance between the design points is minimized.
However, the corners of the factor space are left out obtaining this information would
only be possible by extrapolation [41, 46].
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2.3 Examples and Challenges of Conventional DoE

In this part, challenges of conventional DoE are discussed focusing on specific
studies. A number of possible applications of screening and optimization designs
are shown in Table 1.

Plackett-Burman designs are common designs for screening experiments. They
are used, e.g., to identify the effects of amino acids and other components in
conventional cell culture media formulations. Lee et al. [47] developed a serum-
free medium for the production of erythropoietin by suspension culture of recombi-
nant CHO cells, identifying six active determinants (glutamate, serine, methionine,
phosphatidycholine, hydrocortisone, and pluronic F68) for cell growth. 79% of the
erythropoietin titer achievable in the medium supplemented with 5% dialyzed fetal
bovine serum were reached in the serum-free medium. However, 80% confidence
levels were used to achieve useful statements, and some of the significant variables
are obscure (e.g., pluronic F68) [47]. Chun et al. [48] used a full factorial design to
identify effective growth factors in culture medium. Four growth factors were
investigated on 2 levels, resulting in the implementation of 16 experiments. Impor-
tant growth factors were identified. However, no center points were investigated;
thus no curvatures could be detected [48]. Rouiller et al. [49] investigated six CHO
cell lines in two different cultivation media to which six components were added in
three different levels to develop a process for the production of monoclonal

Table 1 Different designs for screening and optimization of CHO cultivation processes

Design Opportunities Challenges Reference

Plackett-
Burman

Development of a serum-free medium
for the production of erythropoietin by
suspension culture of recombinant
Chinese hamster ovary cells

Confidence levels of 80%
and obscure significant
factors

[47]

Factorial Identification of the demand for growth
factors in the initial medium design,
serum-free adaptation, stability analysis,
and scale-up

No investigation of center
points

[48]

Fractional
factorial

Investigation of the effect of medium
and feeding components on the main
quality characteristics of a monoclonal
antibody

Variation in statistical
variance and different
regression models

[49]

Optimal
(D-optimal)

Development of a cultivation feeding
protocol (feeding volume, starting point,
time of shift in temperature, and
osmolality)

High number of experi-
ments to be performed
experimentally

[34]

CCD Optimization of the concentration and
temporal addition of valproic acid
(VPA) in three different CHO cell lines

[50]

BBD Optimization of the amino acid combi-
nations to determine the most effective
concentration in the feed

[51]
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antibodies. A two-stage fractionated factorial design with six factors was
implemented, and various regression models were used to identify the active vari-
ables [49]. This resulted in 384 experiments to be performed, which was only
possible by using a deep well plate system. Nevertheless, there were variations in
statistical significance, and possible active variables have to be tested on a larger
scale [49].

The amount of experiments to be performed can be seen as the main challenge in
using optimization designs as well. The most commonly used optimization design is
CCD. Yang et al. (2014) used a CCD to optimize the concentration and timing of
valproic acid (VPA) addition to the cultivation of three different CHO cell lines
[50]. Even the investigation of two factors for one cell line results in eight experi-
ments. Torkashvand et al. (2015) optimized the concentrations of four amino acids
(aspartic acid, glutamic acid, arginine, and glycine) in the feed using a BBD. The
factors were investigated at 3 levels, resulting in 29 experiments to be implemented
[51]. Duvar et al. (2013) developed a feeding protocol for a fed-batch CHO culti-
vation. The choice of a D-optimal experimental design resulted in 18 experiments
with 4 factors (feeding volume, starting point, time of shift in temperature, and
osmolality) [34].

For the previously mentioned studies, the planned experiments in statistical DoE
result in identifying active parameters and optimization of the bioprocess. However,
there are still challenges, and the implementation of statistical DoE can lead to time-
consuming and costly rounds of experiments, especially if they are implemented in
fed-batch mode. Furthermore, the heuristic selection of, e.g., the parameter settings
or the design selection is seen critically. These rely on user-defined settings and
mostly require a lot of time and experimental effort. But, as the investigation of
various studies has shown, no adequate justification for the choice of an experimen-
tal design is provided. In addition, in conventional DoE only the experimental
endpoints are examined, and therefore only the integral of it is judged. The entire
time trajectory, with, e.g., metabolite formation or substrate uptake, is hardly
reflected.

3 Model-Assisted Design of Experiments

The combination of statistical DoE with mathematical process models is a novel
tool – enabling a knowledge-driven bioprocess development in the context of QbD.
Using this method, the abovementioned limitations of DoE methods can be avoided,
and the design as well as the optimization of bioprocesses can be improved.
However, in contrast to the chemical industry, bioprocess design on the basis of
mathematical models is not yet well established in biopharmaceutical manufacturing
processes with mammalian cells [52]. According to experiences of the authors from
discussions and projects, the use of model-based innovative methods for process
development has so far failed due to different reasons:
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• It is based on the lack of knowledge of the potential and limits of model-based/
model-assisted methods and “bad experiences” with them (e.g., due to unrealistic
expectations).

• There is a lack of method integration for a consistent development strategy, which
can be adapted to existing work processes, a suspected high (modeling) effort and
doubts about the transferability of methods and models to other processes.

• The qualification profile of the involved personnel does often not fit (required:
biotechnology, process technology, modeling, and statistics).

An additional challenge is the application of models on complex metabolic
pathways of mammalian cells regarding cell growth and product formation. In
addition, models targeting the metabolism of cell cultures demand more effort than
those applied in chemical or microbial processes. Even if mathematical models are a
promising tool for the development of stable processes that comply with the princi-
ples of QbD, examples have so far only been published in the field of product
purification and polishing [8]. Nevertheless, Möller et al. (2018) and Abt et al.
(2018) showed that model-assisted and model-based DoE methods have great
potential for the development of process strategies and makes the process develop-
ment more knowledge-based [7].

General differences between model-based and model-assisted DoE methods are
due to the aim of the recommended experiments. Model-based DoE (MBDoE) [53–
55] is used to supply valid experimental data for a precise model structure and model
parameter identification, where the conventional statistical DoE could fail
[56]. Uncertainties are key information in MBDoE, as model and data imperfections
cause undesirable variations in model parameters and simulation results. This
variation drives the MBDoE methodology, where it manifests itself as optimal
experimental settings (e.g., measurement principle, sampling rate, inputs/stimuli)
and informative data [55, 57]. However, uncertainties cause a discrepancy between
computed and experimental outputs leading to suboptimal or even meaningless
experimental designs for model parameter adaptation. To overcome these problems,
a sequential approach, as shown in [7], has proven to be very effective by increasing
the robustness of the MBDoE against parametric uncertainties [58–60].

In model-assisted DoE, a process-related target (i.e., product titer) is optimized,
and the model supports in the evaluation and recommendation of DoE designs. A
structure for a model-assisted DoE concept is shown in Fig. 2. At first, a mathemat-
ical process model is used to describe, e.g., the growth, the substrate, and metabolite
concentrations as well as the productivity of a specific cell line. Therefore, the model
is adapted to first cultivation data (Fig. 2, Box 1), e.g., based on literature and/or
existing knowledge. The evaluated data should be used to cover typical known
effects, e.g., inhibitions or limitations. Certainly, the number of experiments that can
be performed at this stage, preferably in small scale, such as shaking flasks or deep
well plates [11–13], is usually limited. However, only a few experiments are
required to generate the mathematical model, as shown in the case study (see Sect.
4). Accordingly, the number of experiments in mDoE is still less than the number of
experiments to be performed in statistical DoE. Based on these data, model
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parameters are adapted (Fig. 2, Box 2). Afterward, a statistical DoE design (see Sect.
2) is chosen (Fig. 2, Box 3). A scheme to select a design is explained in Sect. 3.2. The
model is then used to simulate the responses for each previously planned experiment
(Fig. 2, Box 4). Subsequently, the initial DoE is evaluated with respect to the defined
factor boundaries as well as the experimental design (see Fig. 2, Box 5). This enables
the testing of different designs, boundary conditions, optimization criteria, and factor
as well as response combinations in silico before experiments are experimentally
performed. This can be used to evaluate the mDoE method as well as boundary
conditions and significantly reduce the number of experiments. Additionally, differ-
ent designs can be chosen and computationally evaluated using the model
simulations.

25

2. Adaptation of model parameters
Definition of initial parameter values

Adaptation of model parameters

Calculation of goodness of fit

1. Mathematical process modeling

•Prior knowledge about strain/cell line

•Kinetic linkage of metabolic pathways

• Incorporate into targeted process model

3. Experimental design

•Definition of design (see scheme)

•Test of boundary values for factors

•Consideration of constraint

Simulation of planned experiments
4. Simulation of experiments

Calculation of responses

Recommendation of 
experiments

Experimental data, e.g., 
medium screening, test 

experiments

?

Determination of response surface plots

5. Evaluation of planned design

Data analysis as in statistical DoE

Adjustment of factor boundary levels and
recommendation of few experiments

Definiton of optimization criteria

Fig. 2 Structure of the model-assisted design of experiments concept [11, 61]
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3.1 Digital Twins in Model-Assisted Design of Experiments

As already discussed, the term “digital twin” is still not sufficiently defined and has
different meanings in different parts of industry. Historically, it is a computational
model of a machine tool or a mechanical manufacturing site, and it is used to handle
the increased complexity [8]. In the bioprocess industry, digital twins progressively
include multiple parts of the manufacturing steps and their interaction [9]. They are
intended to be a universal tool for the entire life cycle of a bioprocess, whereby the
digital twins are virtual counterparts to the processes. They enable predictive
manufacturing, meaning that bioprocesses can be analyzed, optimized, forecasted,
and controlled [62]. The complexity of digital twins highly depends on the desired
focus of application, and they can be based on a variety of complex structures as
data-driven models, artificial neural network, or mathematical process models
[22, 24].

With respect to the application of mDoE, the mathematical modeling in the initial
phase of process development is, in the author’s opinion, the starting point for
knowledge integration into a digital twin for the entire life cycle of the bioprocess.
The mathematical process model in the digital twin incorporates the process under-
standing, for which the degree of model complexity can be increased stepwise
throughout the performed studies, as represented in Fig. 3. In this context, the

Bioprocess design and op za with mDoE

+

Improvement of a digital twin

Simula  and 
evalua on of DoE

Defin on of 
DoE

Mathema cal 
model

Ini al 
va on

Recommenda on of
experimental se

Digital twin

Fig. 3 Usage of the mDoE in bioprocess design and optimization as well as the development of a
digital twin from a mathematical model

Digital Twins and Their Role in Model-Assisted Design of Experiments 41



model structure should be kept as simple as possible in the initial process design
phase and should then be extended if more data becomes available or novel
biological effects are identified.

In the application of digital twins within mDoE (see Fig. 3) during process design
and optimization with only a low number of available data, they structurally include
rather simple mathematical process models. These are based on the formulation of
mathematical links (i.e., equations) between cell growth, metabolism, and
corresponding product formation [63]. If partial mechanistics are unknown, they
can be modeled to gain a systematic understanding, although they might not be
measurable (e.g., in systems biology) [17, 41]. Such a mathematical process model
mainly works as an initial starting point to obtain a deeper process understanding
during the bioprocess life cycle.

3.1.1 Mathematical Model Structures

Mathematical modeling has already been the subject of controversial discussions in
recent years, and several models of varying complexity have been described in
literature [64–66]. In the early phases of bioprocess development, the mathematical
models used in mDoE mainly consist of simple model structures and should then be
extended stepwise. The model parameters considered should be determinable by
simple experiments since these include known mechanistics (e.g., ammonia forma-
tion based on glutamine uptake). It is favorable if models used for process optimi-
zation are applicable to a broad range of bioreactor scales [12, 64, 67]. Although the
application of mathematical process models for the development of sophisticated
processes has many advantages, it is still not commonly applied in bioprocess
development. Reasons for this include the variety and complexity of mathematical
models, e.g., different mechanistics and quality of predictions (recently reviewed in
[64]). Due to the complexity of biological processes, simple models might be
unsuitable for representing real phenomena. However, it has been suggested that
the growth of a cell line follows the same kinetics regardless of the cultivation
method, such as batch and fed-batch processes [65]. Nevertheless, even with com-
plex models, the behavior of cells may change, and predictions can differ from
observed behavior. Reasons are the inadequate precision of the approximated model
coefficients and the complexity during the determination of the model parameters.
Therefore, a compromise between the accuracy of the model and the required
experimental effort for the determination of the parameters needs to be agreed on
for each application [68].

Bioprocess-related mathematical models are either classified according to the
description of the biophase, which is seen as an engineering-type approach or
based on the implemented model structure (e.g., neural networks, fuzzy logic).
This chapter focuses on biophase-classified models, which are historically sorted
according to their structural complexity, as shown in Fig. 4. Even if this classifica-
tion was made in the 1990s, it is still valid for the class of models here discussed.

42 K. B. Kuchemüller et al.



Unstructured and unsegregated models describe the biophase as one component
and use kinetic equations to describe their interaction and response to the environ-
ment, e.g., the effect of glucose concentration on bulk cell growth. They are widely
applied for industrial applications and are state of the art [69]. It is advantageous that
the model parameter estimation is based on only a few measured concentrations
[70]. Moreover, a method for their knowledge-driven development was recently
reported by Kroll et al. (2017) [23]. With the development of novel analytical
methods, structured and unsegregated models were developed. The cellular prop-
erties are reflected by average cells with the same physiological, morphological, and
genetic identity [71–73]. They aim to describe intracellular metabolic pools in
otherwise average cells. Most examples try to examine the intrinsic complexity of
cell metabolism. Lei et al. (2001) described the growth of Saccharomyces cerevisiae
based on glucose and ethanol using two modeled pools, which describes the
catabolism and anabolism, respectively [74]. Moreover, a six-compartment model
for microbial and mammalian cell culture was recently introduced to reduce the
modeling effort as a basis for digital twins [75]. Flux balance analysis, mostly used
in systems biology, is additionally associated with the structured model class
[76, 77].

In unstructured and segregated models, different separated cell populations are
modeled with the description of the metabolism by bulk kinetic equations [78]. The
scope of application is broader, leading to the determination of cell culture quality
and gaining an understanding of the cell cultivation process. Exemplary, cell-cycle-
dependent population balance models were introduced [22, 24, 78, 79]. Therefore,
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Fig. 4 Classification of mathematical models separated in unstructured, structured, unsegregated,
and segregated
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different cell-cycle-dependent growth rates, metabolic activity, and DNA replication
rates are modeled, and metabolic regulations were studied, but the degree of
complexity and computational power increases significantly from a few seconds to
multiple hours. Hence, they require a comprehensive knowledge of the mechanisms
and more data to estimate the model parameters. Segregated and structured models
describe the nature of cell cultures with individual single-cell metabolism and their
interaction with the medium. Sanderson et al. (1999) introduced a single-cell model
that describes the interaction of 50 components in the medium, cytoplasm, and
mitochondria for an antibody-producing CHO cell line [80]. Other examples could
be found for baculovirus-infected insect cell cultures [81] and the amino acid
metabolism of HEK293 and CHO cells [82]. However, the computational power
and amount of data required to estimate the model parameters are still considerable,
which can limit their industrial application.

3.2 Recommendations on the Selection of Designs for mDoE

The choice of an experimental design significantly influences the implementation of
DoE and mDoE. Usually, the selection of a design depends on basic settings
(number of factors, number of factor steps, the regression model, and the number
of test runs) and design-specific properties (block formation, orthogonality, and
rotatability). However, as the investigation of various studies has shown, in most
references less information for the choice of an experimental design is provided.
DoEs are mostly selected based on heuristics within a given scientific field, and there
is no guided decision-making workflow yet. Based on the author’s understanding, a
scheme (Fig. 5) is presented in the following to assist in the selection of appropriate
DoE designs in the field of bioprocess engineering. This scheme was developed
based on literature and is seen to assist in the selection of DoE designs within mDoE
[8, 11, 12].

Due to their favorable properties, CCDs and BBDs are most frequently used for
optimization [39]. If settings are adjusted individually, optimal designs should be
used. As a result of the low computational effort, the D-optimal design has become
generally accepted among the optimal designs [38]. Therefore, commercial software
tools for creating optimal designs are often limited to the D-optimal design
[83]. However, the I-optimal designs are sometimes recommended [39, 83]. If a
large area of the factor space is to be covered, it is recommended, e.g., to combine the
LHSD with an optimal design. This results in a better distribution of points across the
factor space and reduces both bias as well as noise [45].

In the first decision-making level, the number of investigated factors k is used.
Except for BBDs, which require at least three factors, the number of factors can be
selected as desired [38, 41, 84]. Typically, three to six factors are used for processes
optimization [38]. In the case of a high number of factors and the use of insignificant
factors, the LHSD is recommended. This is enabled by the random distribution of
experiments. Hence, if one or more factors appear not to be important, every point in
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the design still provides some information regarding the influence of the other factors
on the response [41]. However, in bioprocesses the number of factors is significantly
larger than the observations. Therefore, domain knowledge as used in mDoE is
needed, captured on models as additional constraints to the system.

On the next level, the desired regression model is defined. Generally, the use of a
quadratic regression model is recommended, since higher-order regression models
lead to an increasing number of unknown coefficients and can lead to an overfit
[38, 41]. For CCDs und BBDs, a quadratic regression model is used by default,
whereas for optimal designs, the regression models can be user-defined. If the
regression model cannot be defined, the LHSD can be used [39].
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The number of runs is taken into account at the penultimate level. BBD is most
efficient with three or four factors. Compared to other designs, they require the least
number of runs [44]. However, even with optimal designs, the number of experi-
ments can be user-defined and thus minimized. Only a model-dependent minimum
number must be included. For a quadratic regression model with four factors, e.g.,
the minimum number is 15, one term for the intercept, four linear terms, four purely
quadratic terms, and six cross-product terms must be taken into account. In the BBD
or CCD, the number of runs varies between 25 and 30, depending on the number of
center points [85]. LHSDs, on the other hand, require a large number of experiments
to fill the space and are therefore mainly used for computer simulations [86–88].

Finally, the choice of factor levels is decisive. In order to evaluate designs
optimally, they require at least three levels per factor [43]. In the BBD, the factors
are examined at three levels. However, no factor-level combinations are investigated
at the corner points, and thus, only a low prediction quality for extrema is available
[89]. LHSDs are also not suitable for the investigation of extrema [41]. The CCDs
contain five levels per factor [28]. In the optimal designs, the factor levels can also be
set user-specifically and combined as desired. However, it can happen that very few
test points are generated in the middle of the test area, which means that no
statements can be made concerning this area [38].

The selected design can then be implemented experimentally or in the mDoE (see
Sect. 4.3). It should be noted that the application of the selection scheme (Fig. 5) is
not limited to mDoE solely and it can be generally applied for the selection of DoE
designs.

4 Case Study: mDoE for Medium Optimization

As previously mentioned in Sect. 3.1, digital twins are used within the mDoE
concept to simulate and evaluate statistical DoE designs in silico. The application
of mDoE with a strong reduction in the number of experiments has been shown so
far for medium optimization, fed-batch design, and scale-up studies for antibody-
producing CHO cells, algae, and yeasts [11, 12, 61, 90]. During these studies, the
process understanding is stepwise increased and captured in the digital twin (i.e.,
mathematical process model). In the following, the application of mDoE is exem-
plarily discussed for the reduction of the factor boundary values for the optimization
of the glucose and glutamine concentrations in an antibody-producing cell culture
process. The specific workflow applied in this study is shown in Fig. 6.

In this case study, the dynamics of the bioprocess are modeled first, and the model
parameters are based on a few experimental data points. Then, the boundary values
of experimental designs are defined, and experimental settings are planned. Each
planned experiment is simulated, the responses (e.g., maximal product titer) are
calculated, and the response surfaces are determined. Based on these response
surfaces, the initially defined factor boundary values and the planned experiments
are evaluated, and only a few experiments are recommended to be performed. This
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results in a significant reduction in the number of experiments to be performed. This
example shown in the following is based on our previous publication, and more
details can also be found in Möller et al. (2019) [11]. This medium optimization is
only a small part of a process development workflow, which could be implemented
from medium optimization over fed-batch design to scale-up using mDoE [12]. This
resulted in the evolution of the digital twin, as briefly explained in Sect. 4.6.

4.1 Mathematical Process Model

In this case study, an unstructured, non-segregated saturation-type model was used
as virtual representation of the bioprocess. The mathematical model from literature
[19] was adapted and modified to describe the dynamics of cell growth and metab-
olism of antibody-producing CHO DP-12 cells in batch mode (see Table 2). This
model was chosen due to its simple model structure and the opportunity to estimate
all the model parameters from just a few shaking flask cultivations.

4.1.1 Batch Process Model as Digital Twin

According to the mDoE workflow (Fig. 2, Box 1), the mathematical process model is
used to simulate the growth of the CHO DP-12 cells. It is based on the linkage of the
main substrates glucose (cGlc) and glutamine (cGln) as well as the main metabolites
lactate (cLac) and ammonium (cAmm) to describe the behavior of the cells (Xt, total
cell density, and Xv, viable cell density). Cell growth is modeled with kinetic
parameters KS,i (i ¼ Glc, Gln), a maximal growth rate (μmax), a cell lysis constant
(KLys) of dead cells, and a minimal (μd, min) and a maximal death rate (μd, max). Since
no inhibition of cell growth could be detected in batch mode, inhibitory components
were not considered in the model. Therefore, the calculation of the specific growth
rate μ (Eq. 9, in Table 2) and specific death rate μd (Eq. 10, in Table 2) is based on a
Monod-like structure of the substrates glucose and glutamine, with only the substrate

Generate 
DoE

Evaluate 
mDoE

Compare 
mDoE/DoE

Develop 
digital twin

Simulate 
responses

Generate 
model

Case study: medium op�miza�on

Fig. 6 Workflow of the upcoming chapters of the medium optimization in the case study
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with the lowest concentration being relevant for growth. The cell-specific uptake
rates of glucose and glutamine depend, in contrast to the growth, only on the current
glucose and glutamine concentration (Eqs. 4, 5, 11, 12, in Table 2). However, the
uptake rate of glucose is reduced at low concentrations. The concentrations of lactate
and ammonium are proportional to the uptake rates of glucose (lactate) or glutamine
(ammonium) (Eqs. 6, 7, 13, 15, in Table 2) and are linked with the yield coefficients
(YAmm/Gln and YLac/Glc). In case of glucose concentrations below 0.5 mmol L�1, a
shift of lactate production to lactate uptake was considered (Eq. 14, in Table 2). The
antibody production (Eqs. 8, 16, in Table 2), according to Frahm et al. [19],
describes the production proportional to the viable cell density. However, glucose
concentrations below 1 mmol L�1 stop the antibody production (Eq. 17, in Table 2).

4.1.2 Adaption of Model Parameters

The initial experiments for modeling were based on the previous publications of
Beckmann et al. [91] and Wippermann et al. [92] with the same medium and cell
line. Biological experiments were performed in quadruplicates, the data were aver-
aged, and the model was adapted as well as model parameters estimated (Fig. 2, Box
2). This initial adaption and the further use of the mathematical model in mDoE can
be seen as the starting point into a digital twin. Therefore, the model parameters were
adapted. To compare and evaluate the quality of adaption, the modeled simulations
and cultivation data were plotted and the coefficient of determination calculated. If
the values tend to 1, the behavior of the cells could be represented with high
accuracy. However, the area, which should be optimally displayed, should be

Table 2 Mathematical process model in batch mode, modified from [19]

Balance equations Kinetic links

Biomass
dX v

dt ¼ μ� μdð Þ ∙ X v (1) μ ¼ μmax ∙
cGlc

cGlcþKS,Glc
∙ cGln

cGlnþKS,Gln
(9)

μd ¼ μd,min þ μd,max ∙
KS,Glc

KS,GlcþcGlc
∙ KS,Gln

KS,GlnþcGln
(10)dX t

dt ¼ μ ∙ X v � K Lys ∙ X t � X vð Þ (2)
dVi
dt ¼

dXv
dt ∙ X t�XV ∙ dXvdt

X t
2 (3)

Substrates and metabolites
dcGlc

dt ¼ �qGlc ∙ X v (4) qGlc ¼ qGlc,max ∙
cGlc

cGlcþkGlc
∙ μ

μþμmax
þ 0:5

� �
(11)

dcGln

dt ¼ �qGln ∙ X v (5) qGln ¼ qGln,max ∙
cGln

cGlnþkGln
(12)

dcLac
dt ¼ qLac ∙ X v (6) qLac ¼ Y Lac,Glc ∙ cGlc

cLac
∙ qGlc � qLac,uptake (13)

cGlc < 0:5 mmolL�1 : qLac,uptake ¼ qLac,uptake,max (14)
dcAmm

dt ¼ qAmm ∙ X v (7) qAmm ¼ Y Amm,Gln ∙ qGln (15)

Antibody
dcmAb

dt ¼ qmAb ∙ X v (8) qmAb ¼ γ (16)
cGlc < 1 mmol L�1 : dcmAb

dt ¼ 0 (17)
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focused on. The goal could be a high cell density; therefore the representation of the
stationary phase and the death phase is not important. This must be taken into
account during the evaluation. Alternative measures are detailed explained in liter-
ature, e.g., [93, 94].

The simulation with the adapted model parameters is exemplary shown for cell
growth and antibody production in Fig. 7. The exponential cell growth, the transition
to the stationary phase, and the death phase could be simulated with an accuracy of
R2 ¼ 0.96 (Fig. 7a). The antibody concentration increases until Xv decreases after
approx. t¼ 144 h and was estimated with a high accuracy of R2 ¼ 0.98 (Fig. 7b). By
this, the previous knowledge is captured into the model structures, and the model
parameters reflect the cell behavior, which could further be used in mDoE.

4.2 Selection of Experimental Design

The determination of a suitable design is essential for the most appropriate evalua-
tion of the mDoE and thus the optimization of the respective process, as can be seen
in Fig. 2, Box 3. Therefore, a design for the mDoE was chosen considering the
scheme in Fig. 5. In the first decision-making level of the scheme, the number of
investigated factors k, which are two in this case study, was examined. Since BBD
requires the use of at least three factors and LHSD is recommended for a high
number of factors, only the CCD and optimal experimental designs remain. Then,
the regression model was considered. For both, CCD and optimal designs, the
recommended quadratic regression model can be used, although this is not adjust-
able for CCD. Therefore, no further restriction has yet been possible on the basis of
this level. Finally, the third level can be used to select the design. At this level the
number of runs is taken into account. Since the number of runs should be set
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individually, the CCD was discarded, and an optimal experimental design was
chosen.

Experiments were designed with suitable DoE software (in this study, Design-
Expert 9, Statcon, USA), and each experimental factor combination of the experi-
mental design was simulated (MATLAB). In the simulated design (20 experiments,
D-optimal design), the initial glucose concentration was varied between 20 and
60 mmol L�1. This corresponds to a 50% increase/decrease of the glucose concen-
trations related to the standard medium formulation as reported in Beckmann et al.
[91] and Wippmann et al. [92]. These studies did not focus on the optimization of the
batch-medium composition as aimed in this study. Glutamine concentrations typi-
cally applied in batch media range from 2 mmol L�1 up to 8 mmol L�1. The factor
range of the initial glutamine concentration was, therefore, widely defined between
2 and 12 mmol L�1.

4.3 Simulation of Experiments

Each planned factor combination (Fig. 8a-d) and the corresponding responses
(Fig. 8b, c, e, and f) were simulated using the mathematical model (as described in
Fig. 2, Box 4). As can be seen in Fig. 8, the concentration range of the substrates
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(Fig. 8a, d) causes a maximum cell number between 8 � 106 cells mL�1 and
15 � 106 cells mL�1 (Fig. 8b). The maximum antibody concentration lies in a
range between 75 mg L�1 and 380 mg L�1 (Fig. 8e). The simulated concentrations
for lactate and ammonium range between 12 mmol L�1 to 35 mmol L�1 and
2 mmol L�1 to 11 mmol L�1 (Fig. 8c, f). By simulation, the time course is also
determined, which is not the practice in typical experimental DoEs.

4.4 Evaluation of Planned Design

Out of the simulations, the maximal simulated values of Xv, cLac, cmAb, cAmm were
exported as responses to generate response surface plots (Design-Expert 9). The
simulated responses were treated in the same way as data from experiments. For this
purpose, no data transformation was applied, and after analysis of variance
(ANOVA, all hierarchical design mode, quadratic process order), an internal RSM
was set up with a maximal significance value of 0.05. As can be seen in Fig. 9,
different shapes of the response surface plots were determined, and their individual
optimum is different, e.g., Xv is maximal for high initial glucose and glutamine,
while cmAb is high, regardless of the glutamine concentration. Such interaction could
hardly be predicted before and was only possible through the simulations. After
defining the RSM for each response, user-defined constraints for medium optimiza-
tion were chosen (displayed in Fig. 9). The constraints were chosen to maximize Xv

above a minimal Xv of 10
7 cells mL�1. Furthermore, cmAb should be maximized. The

constraints for the metabolic waste products were defined based on the literature data
with respect to cell growth and product quality. High lactate concentrations were
shown to correlate with a reduced integral of viable cell density and a reduced
product titer at day 14 in pH-controlled shaking flask cultivation with added sodium
lactate [95]. Lactate concentration below 20 mmol L�1 is considered to not harm cell
growth and productivity, whereby lactate concentration higher than 40 mmol L�1

was shown to harm CHO cell growth [96]. Therefore, a maximal cLac of 30 mmol L�1

was defined as the upper constraint, and the lactate concentration was minimized
below this value to avoid potential lactate inhibition. The ammonium concentration
was defined to be minimized. This was motivated based on the following under-
standing of its impact on product quality, even if it was not measured. Andersen et al.
(1995) identified that the sialylation of a granulocyte colony-stimulating factor was
significantly reduced by ammonium concentrations over 2 mmol L�1 [97]. Ha et al.
(2015) investigated the mRNA expression levels of 52 N-glycosylation-related
genes in recombinant CHO cells producing an Fc-fusion protein and observed a
decrease of the protein production and the viable cell density after an addition of
10 mmol L�1 ammonium chloride. Simultaneously, the sialic acid content and the
acidic isoforms were reduced after 5 days of cultivation [98].
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Subsequently, an objective (i.e., desirability) function di was calculated for each
response yi individually, based on the user-defined constraints as lower acceptable
response Li and the upper acceptable response Ui.

di yið Þ ¼
0 if yi < Li

yi � Lið Þ
Ui � Lið Þ if Li < yi < Ui

1 if yi > Ui

2
664

3
775 ð18Þ

di(yi) is 0 if the optimization criteria is not fulfilled, and di(yi) tend toward 1 if the
optimization is highly desirable. The multidimensional optimization problem is
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reduced with the multiplication of the different desirability function values di(yi) to
one overall desirability D:

D ¼
Yn
i¼1

di yið Þ ð19Þ

The overall desirability function was calculated for the constraints mentioned and
is shown in Fig. 10.

Glutamine concentrations higher than approximately 10.5 mmol L�1 and glucose
concentrations above 52 mmol L�1 result in a optimization criteria D ¼ 0. The
optimization criteria were also not reached below 4 mmol L�1 glutamine and
21 mmol L�1 glucose. The performance of these experiments would be time- and
cost-intensive, without providing sufficient knowledge. In this way, multiple con-
straints were considered and only a small area (5 of the 20 evaluated factor
combinations) results as suggested experimental space with D> 0. Only this 5 factor
combinations of the 20 evaluated would increase the process understanding.

4.5 Comparison to Experimentally Performed Design

The usage of mDoE allows the a priori evaluation and reduction of the boundary
values if mechanistic links could be formulated beforehand. The reduced experi-
mental space was selected within the estimated desirability function (Fig. 10). Based
on the evaluation of Fig. 10, the boundary values for the initial glucose concentration
were defined between 52.5 mmol L�1 � cGlc � 32.5 mmol L�1. The initial
glutamine concentration has to be between 10 mmol L�1 � cGln � 6 mmol L�1.
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After the evaluation of the boundary values of the initially planned design, a new
D-optimal design was planned (see Fig. 5) within the reduced design. Therefore,
16 experiments in a D-optimal design based on the reduced boundaries were planned
and experimentally performed as well as simulated. The experimentally performed
design was realized in 16 parallel shaking flask cultivations (approximately ten
samples per cultivation). For the evaluation of the DoE in mDoE, the responses
were only simulated. Both designs (experimental performed and simulated) were
statistically evaluated, and the response surfaces were estimated. Both desirability
functions were calculated due to the maximization of the antibody concentration and
the minimization of the ammonium concentration and are shown in Fig. 11.

The evaluation is performed by the executing person, e.g., rely on their individual
experience or user-defined constraints (device settings, etc.). Optimal starting con-
centrations in the upper right corner (high glucose as well as low glutamine con-
centrations) were recommended with D ¼ 0.87 for the simulated design (Fig. 11a)
and nearly the same for the experimentally performed design (D ¼ 0.70). These
small differences are typical when comparing the simulated results with uncertainty-
based experimental results. No further experiments needs to be performed outside of
this area, since the outer experimental space was evaluated beforehand using the
digital twin (Sect. 4.4). Compared with the full experimental performed design,
mDoE results in a reduction of 75% in the number of experiments (4 experiments for
modeling vs. 16 experiments in experimental DoE).

The combination of model-assisted simulations with statistical tools can be used
to decrease the experimental effort during medium optimization studies. Further-
more, the modeling study itself leads to an increase of the process understanding,
which is part of QbD. No heuristic restrictions with several iterative rounds were
necessary, because the mathematical process model incorporates the known factors
and interactions and their dynamics in DoE. Furthermore, DoEs are typically based
only on endpoints, and different responses and endpoints can be tested using the
kinetic model.
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4.6 Further Development of the Digital Twin in Process
Development Workflow

The evolution of the mathematical process model as digital twin is part of mDoE,
as briefly focused in the following. As shown in Fig. 12, an unstructured, unsegre-
gated model was initially adapted and modified to describe the dynamics of cell
growth and metabolism of antibody-producing CHO DP-12 cells for the purpose of
medium optimization in batch mode (Sect. 4.1). The model incorporated known
mechanistic links for CHO cells, and the initial data for modeling was based on just
four experiments, and optimal conditions for the medium composition were
identified [11].

The complexity of the digital twin could be further increased during the process
development workflow. The mathematical model was expanded by metabolic inhi-
bition terms to optimize cell growth and productivity in fed-batch mode [11]. There-
fore, the digital twin was used to optimize the concentration of glucose as well as
glutamine in the feed, the feeding rate, and the start of feeding. After optimizing the
medium composition and fed-batch strategy, the digital twin was used in model-
assisted scale-up to evaluate the bioprocess dynamics during process transfer and
scale-up computationally [12]. Therefore, the mathematical model was extended by
model parameter probability distributions, which were determined at different bio-
reactor scales due to measurement uncertainty. Finally, the quantified parameter
distributions were statistically compared to evaluate if the process dynamics have
been changed and the former optimized fed-batch strategy was successfully scaled
up to 50 L pilot scale. The application in these different processes has deepened the
knowledge and thus steadily increased the complexity of the digital twin [11, 12].
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Fig. 12 Process development workflow in context to the digital twin
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5 Conclusion and Outlook

In this chapter, the mDoE concept for the combination of mathematical process
models with DoE was described. The most commonly used designs were examined,
and one representative study was described in detail. The role of a digital twin was
discussed and applied to a medium optimization case study using mDoE. A math-
ematical process model as a starting point for digital twin was adapted to four
experiments, and widely distributed boundary values for a DoE were evaluated
using model predictions instead of laboratory experiments. The reduced experimen-
tal spaces were experimentally performed (DoE) and compared to the simulated DoE
(mDoE). The same optimal conditions were found, and the further development in
different steps of a process development workflow was described. Finally, the
development of a digital twin and its use in mDoE can be seen as a useful tool in
decision-making for process development and optimization with DoE in QbD.

Statistical DoE can still be used for initial screening studies and can also lead to
process optimization in several rounds. Compared to conventional DoE, mDoE
supplies a more knowledge-based development of bioprocesses. Due to the mathe-
matical model in mDoE, challenges in DoE can be avoided. The mathematical model
can be used for simulating the entire time trajectory with, e.g., metabolite formation
uptake. Hence, not only endpoints of experiments are examined. Thus the knowl-
edge about the process can be increased. Furthermore, domain knowledge is
required and can be captured as additional constraints to the system, leading to a
focused screening or optimization of bioprocesses using the mathematical model as a
digital twin in mDoE.

Currently, the mDoE approach is tested for algae, yeasts, and cell culture. Further
applications of digital twins and mDoE can be seen in the field of cell therapeutics,
e.g., in the treatment of previously untreatable diseases as tumor diseases, brain
insult, and chronic infections. Since, the production of cells is still mainly performed
in static culture systems (e.g., T-flasks), it is difficult to provide a sufficient quantity
of patient-specific cells. A digital twin in combination with mDoE could be used to
build up an understanding of the process and, e.g., scale-up to enable fast and
efficient proliferation of stem and immune cells.
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