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Nanotechnology in Plants
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Abstract The integration of nanotechnology in medicine has had a tremendous
impact in the past few decades. The discovery of synthesis of nanomaterials (NMs)
and their functions as versatile tools promoted various applications in nano-
biotechnology and nanomedicine. Although the physical and chemical methods
are still considered as commonly used methods, they introduce several drawbacks
such as the use of toxic chemicals (solvent, reducing, and capping agents) and poor
control of size, size distribution, and morphology, respectively. Additionally, the
NMs synthesized in organic solvents and hydrophobic surfactants rapidly aggregate
in aqueous solutions or under physiologic conditions, limiting their applications in
medicine. Many of the phase-transfer strategies were developed and applied for the
transfer of NMs into aqueous solutions. Although great efforts have been put into
phase transfers, they mostly include expensive, time-consuming, intensive labor
work, multi steps, and complicated procedures.

Use of plant extracts in the biological synthesis method offers stark advantages
over other biomolecules (protein, enzyme, peptide, and DNA). Plant extracts have
been commonly used for food, medicine, NM synthesis, and biosensing. There are
many viable techniques developed for the production of plant extracts with various
contents based on their simplicity, cost, and the type of extract content. In this
chapter, we conduct a comparative study for extract preparation techniques, the use
of extracts for metallic single and hybrid nanoparticle (NP) synthesis, and their
antimicrobial properties against pathogenic and plant-based bacteria.

I. Ocsoy (*), D. Tasdemir, and S. Mazicioglu
Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
e-mail: ismailocsoy66@gmail.com

W. Tan (*)
Department of Chemistry and Shands Cancer Center, University of Florida, Gainesville, FL,
USA
e-mail: tan@chem.ufl.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/10_2017_53&domain=pdf
mailto:ismailocsoy66@gmail.com
mailto:tan@chem.ufl.edu


Graphical Abstract

Keywords Disease and antimicrobial property, Metallic NP, Microorganisms,
Plant extract

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
2 A Comparative Study of Extraction Methods for Medicinal Plants . . . . . . . . . . . . . . . . . . . . . . . 265
3 Preparation of Extract for Nanoparticle (NP) Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

3.1 Solvent-based Extraction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
3.2 Microwave-assisted Extraction Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

4 Isolation of Specific Molecules from Plant Extracts Using Appropriate NPs . . . . . . . . . . . . . 267
5 Synthesis of NPs Using Plant Extracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

5.1 Synthesis of Silver and Gold NPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
6 Plant Disease Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

6.1 Antimicrobial Properties of Silver Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

1 Introduction

In recent years, nanotechnology has been increasingly utilized for the synthesis,
engineering, and designing of various nanomaterials (NMs) used as antioxidants,
antimicrobials, anticancer agents, therapeutics, and diagnostics agents, and in the
fabrication of nanosensors. The NMs have been intensively applied in many
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different scientific and industrial fields. However, production of biogenic NMs in
nanotechnology and their uses in medicine have become the fastest developing and
most attractive research. The use of plant extracts is prominent, not only because of
their easy production and cheap cost compared to other biomolecules (protein,
enzyme, peptide, and DNA), but also because they provide large-scale and environ-
mentally benign NMs, which can widen their medical applications.

2 A Comparative Study of Extraction Methods
for Medicinal Plants

Medicinal plants have been practically used as effective and traditional drugs or
biocides for various disorders for a long time. The research has focused on the
elucidation of the chemical structures of these plant extracts. The physicochemical
properties of plants are investigated at the following steps: (1) authentication,
(2) extraction, (3) separation, (4) isolation, (5) characterization of isolated com-
pounds, and (6) quantitative evaluation. The methods vary in simplicity, cost,
efficiency, and degree of extracted or isolated molecule damage. It is worth men-
tioning that each extract needs its own characteristic extraction method for produc-
tion with greater efficiency. For instance, while essential oils as volatile compounds
in aromatic plants are extracted using distillation methods, solvent extraction
methods are viable and suitable for obtaining other volatile compound-rich extracts.

In addition to conventional extraction methods, some modern extraction methods
including microwave-assisted extraction (MAE), ultrasonication-assisted extraction
(UAE), supercritical fluid extraction (SFE), and solid-phase micro-extraction
(SPME) have been developed and are actively used. They display certain advantages
over conventional methods. Although classical methods are fairly simple, standard,
and have widespread use, they consume large quantities of organic solvents, cause
degradation of heat-labile constituents, produce extracts with a low yield, and have
time-consuming and labor-intensive procedures. The use of these classical extraction
methods allows the benefits of production efficiency, selectivity, and the elimination
of additional steps of modern extraction methods before chromatographic analysis
allows them to be used intensively and preferentially. The extraction procedures can
also be redesigned to obtain the desired molecules by manipulating experimental
parameters. Additionally, the extraction method selection to isolate targeted compo-
nents with the highest yield and highest purity is dependent upon the plant source
[1, 2]. Thus, the development of modern extraction methods plays an important role
in the overall effort of ensuring and providing high-quality herbal products [3].
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3 Preparation of Extract for Nanoparticle (NP) Synthesis

The extraction of plant contents has received considerable attention owing to the use
of plant contents in medicine, nanoparticle (NP) synthesis, and biosensing. Three
major extraction methods for NP synthesis are: (1) solvent extraction, (2) micro-
wave-assisted extraction, and (3) maceration extraction. The ideal extraction method
should be cost-effective, simple, less time-consuming, and simply conducted in any
laboratory.

3.1 Solvent-based Extraction Methods

The solid-liquid extraction provides soluble components in the solid material to be
integrated with the solvent. The mass transfer ratio decreases as the concentration of
the active principle in the solvent increases. This process results in the solvent and
solid material reaching an equilibrium concentration when a mass transfer of the
active components from plant material to solvent occurs. There are different types of
this technique: cold percolation, hot percolation, and concentration [4, 5].

3.1.1 Cold Percolation

The extraction of the plant contents is carried out in a percolator that is connected to a
condenser and a receiver for removing the solvent from the mixture. The powdered
material is in contact with the percolator along with a suitable solvent until equili-
brium is reached.

3.1.2 Hot Percolation

The principle of hot percolation is based on increasing the temperature of the
solvent, which increases the solubility. The extract is permanently passed into a
tubular heat exchanger by steam heating.

3.2 Microwave-assisted Extraction Technique

Microwave-assisted extraction (MAE) allows the materials to reach the given energy
that is associated with the dielectric susceptibility of both the solvent and the
solid plant material, through rapid heating [6, 7].
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3.2.1 Maceration

The maceration process can be completed in three steps: (1) grinding of plant
materials into small particles, (2) choosing the appropriate solvent, which is added
in a closed vessel, and (3) filtration for the separation of the liquid phase from the
plant pulp. The mixture of the plant powder and solvent should be shaken to provide
proper extraction with a high efficiency [8, 9].

4 Isolation of Specific Molecules from Plant Extracts Using
Appropriate NPs

It is well known that titanium dioxide (TiO2), with a certain crystal form, potentially
reacts with phosphorylated biomolecules including peptides, proteins, and glyco-
proteins, under the proper acidic experimental conditions. The phosphate moieties of
those molecules specifically attach to the surface of TiO2 NPs and retain their
surfaces, which provides the isolation or enrichment of the corresponding molecules.

Recently, TiO2 NPs have been integrated into plant nanobiology for isolation of
specific molecules from plants. In a recent studies, TiO2 NPs acted as nano-
harvesting agents to isolate bioactive compounds from living cells. For instance,
Kurepa et al. [10] used phosphorylated anatase TiO2 NPs with a 20-nm diameter to
capture the specific flavonoids from Arabidopsis plants. This work showed that
quercetin and kaempferol as enediol and catechol groups containing flavonoids
can successfully bind to the phosphorylated TiO2 NPs, and they were isolated
from the plant matrix.

5 Synthesis of NPs Using Plant Extracts

The production of colloidal metallic NPs has become one of the fastest developing
and most exciting fields of research and has had an enormous impact on the
evolution of nanotechnology over the past decades. The size, shape, and
composition-dependent electronic, optical, luminescent, and magnetic features of
the NPs with great enhancement have found a wide spectrum of applications in
scientific and technical fields [11–16]. In general, three major methods, chemical,
physical, and biological, have been actively and extensively used for the synthesis of
NPs. Although chemical methods are used the most for the synthesis of high-quality
NPs with a narrow size distribution, the use of toxic organic solvents as well as
reducing and stabilizing agents greatly limits the applications for NPs, especially in
biomedicine and bioanalytics [16–19]. Additionally, in order to use NPs synthesized
in organic solvents in biologically-related applications, phase transfer is an indis-
pensable step for introducing the NPs into aqueous solutions. The NPs can be made
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water-soluble with two common surface-engineering procedures: (1) ligand
exchange and (2) ligand polymerization [20–25].

Physical methods include simple one-step procedures and provide large-scale
production in a short time. However, those methods almost always result in a lack of
size, shape, and size distribution of the NPs [26, 27]. To address the drawbacks
encountered in chemical and physical methods, researchers have recently focused on
biological methods called “green methods” for NP synthesis [28, 29].

The main principle of green methods is to use nontoxic biomolecules including
DNA, proteins, enzymes, carbohydrates, and plant extracts for the synthesis of
biocompatible metallic NPs through the reduction of metal ions in aqueous solution
[30–38]. Although DNA, proteins, and enzymes have been employed as scaffolds
for nucleation and growth of metallic NPs with unique crystalline structures [39–43],
those biomolecules are quite costly, easily decomposable, and can be contaminated.
In contrast to those molecules, plant extracts are easily reachable, quite affordable,
and very stable against environmental conditions (temperature, pH, and salt
concentration).

Plant extracts are a rich source of polyphenols, flavonoids, sugars, enzymes,
and/or proteins, and can be utilized as reducing and stabling agents for the biosyn-
thesis of metallic NPs. In the potential proposed mechanism, hydroxyl, amine, and
thiols groups existing on particular extracts of plants may bind to metal ions,
canalize electron flow from the extracts to metal ions, and lead to the completion
of the eventual NP synthesis [44–49]. Numerous numbers of plant extract-directed
metallic NPs have been synthesized and used in various fields [47–49]. Using plant
extracts for the rapid reduction and formation of metallic NPs was discovered by
Sastry and co-workers. They used lemongrass plant extract to synthesize the spher-
ical gold NPs and triangular gold nanoprisms [50]. In addition to the aforementioned
unique properties of plant extracts, plant-based biogenic synthesis can provide cost-
effective, environmentally-friendly, simple, less labor intensive, and large-scale
production procedures.

5.1 Synthesis of Silver and Gold NPs

Silver (Ag) and gold (Au) are two commonly synthesized plasmonic NPs, due to
their unique intrinsic properties. Ag NPs have been considered as effective and
universal germicidal agents against various microbes. Their use has also been
recognized in nanomedical and industrial applications [51–54]. As stated above,
the plant extract-based synthesis method for Ag NPs provides simple, one-step, and
rapid procedures compared to other synthesis methods. The extracts produced from
different parts of the plant such as leaves, roots, seeds, and fruit act as potential
reducing and stabilizing agents to form Ag NPs of various sizes and shapes. For
instance, square, spherical, triangular, and hexagonal-shaped Ag NPs with diameters
ranging from 10 to 90 nm were synthesized using leaf extracts obtained from plants
[55–57]. In our view, different plants contain different contents in the extract, which
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may lead to the formation of Ag NPs of various sizes and shapes. The synthesis of
Ag NPs of various morphologies was systematically reported using extracts of roots,
seeds, and fruit [58–60].

Similar strategies have been used for the synthesis of Au NPs. Au NPs have
received considerable attention due to their attractive optical and non-toxic proper-
ties, which market them for use in a wide variety of scientific areas including
nanomedicine, nanoelectronics, nanobiosensing, and catalysis [61–66]. Similar to
Ag NPs, the extracts obtained from different parts of plants reacted with Au ions to
reduce them and to eventually form Au NPs. For instance, while leaf extract from the
Menta piperita plant resulted in the formation of spherical Au NPs with a diameter of
150 nm, triangular-, hexagonal-, and pentagonal-shaped Au NPs with a size ranging
from 5 to 500 nm were synthesized from the extracts of Coriandum sativum,
Memecylon edule, and Magnolia kobus plants [55, 67, 68].

6 Plant Disease Treatment

Various techniques have been developed and applied to control microorganism-
caused diseases in plants. For instance, the antibiotic streptomycin, as part of a
chemical technique, was used in the 1950s to prevent the proliferation of
Xanthomonas vesicatoria found on plants. However, those bacterial strains devel-
oped resistance against streptomycin and thus made it ineffective [69]. Copper-based
(Cu) bactericides incorporated ethylene-bis-dithiocarbamate (EBDC) fungicides
(e.g., maneb or mancozeb). These fungicides (e.g., maneb or mancozeb) have
acted as potential biocides in order to effectively manage the diseases existing on
plants. Nevertheless, Cu-resistant bacterial strains have been observed due to their
frequent use and the resulting drastic reduction in antimicrobial activity of those
biocides [70–72].

Research has focused on investigation and development of bacteriophages and
systemic-acquired resistance (SAR) inducers as alternative disease-management
techniques over the last decade [73, 74]. As an example, acibenzolar-S-methyl
(ASM) was used as an SAR inducer agent, to activate and enhance plant defense
systems by increasing the transcription of stress-related genes against bacterial
tomato spot [73]. Although bacteriophages have been introduced as biological
alternatives to Cu-based bactericides, real-time use in the field reduced their viability
and then their use was highly limited due to environmental conditions [75, 76]. It is
worth mentioning that only very few chemical techniques are available and there is
an urgent need to develop effective, biocompatible, and economical materials for
disease management.

No reports have fully explained the mechanism underlying the antimicrobial
activity of NPs, and the mechanism is still under debate. Recently, various types
of single-component metallic NPs and metal-graphene oxide (GO) NPs have been
synthesized and used as novel and effective antimicrobial agents for the management
of agricultural crop diseases. The key point in the use of NPs is their toxicity, which
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can adversely influence environmental and human health [77–80]). For instance,
Paret et al. studied antibacterial properties of light-activated titanium dioxide (TiO2)
and metal-doped hybrid TiO2 NPs (TiO2/Ag, TiO2/Zn) against Xanthomonas
perforans, which causes bacterial tomato spot disease. This study demonstrated
that TiO2 did not show any antimicrobial function under non-illuminated conditions
and only TiO2/Ag exhibited some antimicrobial activity due to the intrinsic antimi-
crobial property of Ag. In contrast, all TiO2-based NPs effectively inhibited bacterial
growth when exposed to an incandescent light intensity of 3 � 104 lux. The
combination of the photocatalytic activity of TiO2 and the natural germicidal activity
of Ag introduced the best antimicrobial activity under illuminated conditions [80].

6.1 Antimicrobial Properties of Silver Nanoparticles

Silver NPs have been considered to be the strongest and most universal biocides
compared to other metallic NPs. The one logical proposed mechanism offered is that
Ag NP may interact with some functional groups (thiol, carboxyl, hydroxyl, amino,
and phosphate groups) existing on bacterial membranes, with membrane degrada-
tion then leading to serious structural deformation. In addition to that, some Ag NPs
can be internalized through the membranes and may inactivate or distort the working
function of enzymes, which may lead to cell death [81, 82]. However, when Ag NPs
are aggregated, their antimicrobial activities are weakened and can be lost. Most
recent works show that Ag-GO nanocomposites overcome the limitations of bare Ag
NPs. Ag-GO nanocomposites display extraordinary antibacterial activity that results
in rapid killing [83, 84].

7 Conclusion

The type of extraction method used varies according to the type of content in the
extracts. The use of plant extracts has advantages over other biomolecules (proteins,
enzymes, peptides, and DNA) in terms of the biosynthesis of metallic NPs, because
they are inexpensive, easily producible, and accessible. They provide environmen-
tally friendly NPs with the ability for large-scale production. For these reasons, plant
extract-directed NPs can potentially be used in various bioanalytical and biomedical
applications as antioxidants, antimicrobial agents, anticancer agents, therapeutics,
diagnostic tools, and drug-vehicle agents.
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