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Syngas Biorefinery and Syngas Utilization

Sashini De Tissera, Michael K€opke, Sean D. Simpson,

Christopher Humphreys, Nigel P. Minton, and Peter D€urre

Abstract Autotrophic acetogenic bacteria are able to capture carbon (CO or CO2)

through gas fermentation, allowing them to grow on a spectrum of waste gases from

industry (e.g., steel manufacture and oil refining, coal, and natural gas) and to

produce ethanol. They can also consume syn(thesis) gas (CO and H2) made from

the gasification of renewable/sustainable resources, such as biomass and domestic/

agricultural waste. Acetogenic gas fermentation can, therefore, produce ethanol in

any geographic region without competing for food or land. The commercialization

of the process is now at an advanced stage. The real potential of acetogens,

however, resides in their capacity to produce chemicals and fuels other than

ethanol. This requires the redesign and implementation of more efficient metabolic

pathways, adapting them to high performing manufacturing processes. Respective

species, their bioenergetics, the genetic tools developed for their metabolic engi-

neering, culture techniques and fermenter set-ups, as well as the commercialization,

are comprehensively described and discussed in this chapter.
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1 Introduction

The anaerobic conversion of CO2 and H2 to acetate in digested sludge was first

described by Fischer and colleagues [1]. Later, Wieringa isolated a pure culture of

Clostridium aceticum, which thus became the first known autotrophic acetogen [2–

4]. As the organism seemed to be lost during World War II, the biochemical

reactions of acetogenesis were elucidated using Moorella thermoacetica (formerly

Clostridium thermoaceticum). In honor of the scientists mainly involved in this

work, this metabolic feature was named theWood–Ljungdahl pathway. In 1977, the

sodium-dependent Acetobacterium woodii was isolated [5], and in 1981 a spore

preparation of C. aceticumwas found in a laboratory fridge of Barker (University of

California Berkeley), which could be successfully revived [6]. Since then, numer-

ous mesophilic and thermophilic autotrophic acetogens have been isolated and

characterized [7–10]. Based on the presence of Wood–Ljungdahl pathway genes,

more bacteria might possess the ability of autotrophic acetogenesis, but this needs

to be verified experimentally.
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The ability to capture carbon directly in the form of carbon monoxide (CO) and

carbon dioxide (CO2), present in syn(thesis) gas (which is used for certain reactions

in the chemical industry but is also a waste by-product of many industrial pro-

cesses), through anaerobic fermentation gives many anaerobic acetogens great

potential for use as microbial production platforms for a range of high value

commodity chemicals and fuels. Thus, in recent years, acetogens have attracted

significant attention as the process organism for the biotechnological production of

fuels and chemicals from industrial waste gas streams [11]. This emerging tech-

nology allows sustainable, high volume production of fuels and commodities

independent from food-based substrates. The technology has been successfully

demonstrated by a few companies at pilot and demo scales and the first commercial

units have been announced.

The development of these microbial production platforms has historically been

hampered by a lack of available genomic sequences and genetic tools, although

recent advances in sequencing technologies and subsequent implementation of

genetic methods have made these organisms far more accessible for directed

mutagenesis. Closed genome sequences have been published for A. woodii [12],
M. thermoacetica [13], Clostridium ljungdahlii [14], Clostridium autoethanogenum
[15], Clostridium carboxidivorans [16], C. aceticum [17], Eubacterium limosum
[18], and Clostridium difficile [19].

Key to development of a microbial platform is the establishment of robust and

reproducible procedures for DNA transfer into the organism. The delivery of

plasmids into an organism whose genome sequence has been elucidated allows

the development of targeted group II intron-based mutagenesis and directed homol-

ogous recombination strategies to facilitate individual gene knockout and comple-

mentation studies, as well as expression of heterologous genes.

2 Anaerobic Autotrophs

Many mesophilic and thermophilic autotrophic acetogens are currently known.

However, not all have been investigated in detail and only a few are currently

used in or for developing industrial applications. These latter ones are detailed in

the following paragraphs.

2.1 Clostridium aceticum

C. aceticum was isolated in 1936 from sludge from a canal in the Netherlands and

characterized with respect to morphology, nutritional requirements, growth pattern,

and product formation. Its remarkable metabolic activity is the conversion of four

molecules of hydrogen and two molecules of carbon dioxide into one molecule

of acetate and two molecules of water. Heterotrophic substrates can also be used
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[2–4]. C. aceticum was the first autotrophic acetogen cultivated as a pure culture. CO

can also serve as a carbon source [20]. After the war the culture seemed to be lost,

but was later found in a laboratory culture collection in California [6]. At about the

same time, attempts to re-isolate the organism were also successful [21]. The reason

for various earlier failed attempts at its re-isolation was most probably the alkaline

pH optimum of 8.3. The complete genome sequence of C. aceticum was recently

published [17]. Interestingly, the bacterium does not contain genes for quinone

synthesis [22] although cytochromes have been detected [6]. Thus, no electron

transport chain via cytochromes and quinones is possible. Instead, C. aceticum
harbors an Rnf (designation stems from Rhodobacter nitrogen fixation) complex,

which might be acting as a proton pump in this organism [22] (see Sect. 3).

2.2 Acetobacterium woodii

A. woodii was isolated in 1977 from black sediment from an oyster pond in Woods

Hole, MA [5]. It can grow on CO2 plus H2, producing acetate (as C. aceticum). The
heterotrophic substrate range is rather narrow, being limited to some sugars,

organic acids, and O-methylated aromatic compounds. The bacterium is Na+-

dependent [23], uses an Na+-dependent ATPase [24], and generates an Na+-gradi-

ent across the cytoplasmic membrane by means of an Rnf complex [25]. Its genome

has been completely sequenced [12] and its energy metabolism belongs to the best

understood among acetogens [26]. A. woodii is the model organism for Na+-

dependent autotrophic acetogens.

2.3 Clostridium ljungdahlii

C. ljungdahlii was isolated from chicken yard waste as an organism being capable

of using syngas (mainly a mixture of CO plus H2) as sole carbon source [27]. Its

genome was completely sequenced, indicating that this bacterium is one of the most

versatile acetogens with respect to substrate utilization [14]. In addition to acetate,

it produces large amounts of ethanol and smaller amounts of 2,3-butanediol and

lactate [28]. The genes responsible for ethanol and 2,3-butanediol production have

been identified as well as the function of the Rnf complex as a proton pump [29–

31]. Together with C. autoethanogenum, C. ljungdahlii developed into a model

organism for H+-dependent autotrophic acetogens. Strains of C. ljungdahlii are
industrially used by INEOS Bio (see Sect. 7.2).
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2.4 Moorella thermoacetica

Whereas all other bacteria mentioned in Sect. 2 are mesophilic,M. thermoacetica is
a moderate thermophile (optimal growth temperature 55�C). It was isolated under

heterotrophic conditions from horse manure [32]. M. thermoacetica served as the

model organism for elucidation of the enzymology of the Wood–Ljungdahl path-

way [8] (see Sect. 3). Much later it was discovered that the organism is also capable

of autotrophic growth [33]. It does not contain an Rnf complex but instead pos-

sesses cytochromes and quinones as well as an energy-conserving hydrogenase

(Ech) for generation of a proton gradient [13, 26, 34]. Nitrate and nitrite can be used

as terminal electron acceptors [35, 36]. With nitrate, H2-dependent growth yields

are higher than those with CO2. In the presence of nitrate, cytochrome synthesis is

repressed [37].

2.5 Butyribacterium methylotrophicum

B. methylotrophicum is a catabolically versatile, mesophilic, spore-forming anaer-

obe that was isolated from a sewage digester in Marburg, Germany [38]. Hetero-

trophic growth is possible with sugars, organic acids, and C1-compounds such as

methanol. Autotrophic growth relies on CO2 + H2 gas mixtures. An adapted strain,

the so-called CO strain, can also grow on CO and syngas [39]. It is a mutant that

expresses higher levels of ferredoxin: NAD+ oxidoreductase, which is not inhibited

by NADH [40]. Products are acetate and butyrate, but, at decreasing pH values,

increasing amounts of butanol and ethanol are formed [41, 42]. Lactate has also

been described as a product [43]. In the EU, B. methylotrophicum is classified as

risk group 2. A genome sequence is not currently available.

2.6 Eubacterium limosum

E. limosum was isolated on methanol as a substrate, inoculated with sheep rumen

fluid and sewage sludge [44]. Products from methanol are acetate, butyrate, and

caproate. Autotrophic growth with CO2 + H2 or CO as sole carbon and energy

source is also possible. Under these conditions, no caproate is formed [45]. In

defined media, butyrate is produced from CO [46, 47]. An energy conservation

model has been presented, suggesting that the energetic benefit when growing on

CO might be a reason that butyrate is only formed on CO and not on CO2 + H2 gas

mixtures [48]. Complete and draft genomes are available for two E. limosum
strains, the latter also producing butanol [18, 49].
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2.7 Clostridium autoethanogenum

C. autoethanogenum was isolated from rabbit feces using CO as sole carbon and

energy source. It produces acetate, ethanol, and CO2 from CO [50]. Other natural

products are lactate and 2,3-butanediol [28]. It can also grow well on syn(thesis)

gas. This organism is used industrially for ethanol production from steel mill

exhaust gases by LanzaTech (see Sect. 7.2). The genome sequence has been

determined [51, 52].

2.8 Clostridium coskatii

C. coskatii was first described in a poster at the 60th annual Meeting of the Society

for Industrial Microbiology in San Francisco, August 1–5, 2010 [53]. The bacte-

rium was isolated from estuary sediment collected from the Coskata-Coatue Wild-

life Refuge in Nantucket, MA. C. coskatii produces ethanol as a primary product

from CO or CO2 + H2. The organism is closely related to C. autoethanogenum,
C. ljungdahlii, and Clostridium ragsdalei. The organism has been patented by

Coskata, Inc. for ethanol production from CO-containing gas mixtures [54, 55].

2.9 Clostridium ragsdalei

C. ragsdalei strain P11 produces acetate, ethanol, and butanol when using CO as a

substrate. Under these conditions, ethanol is the major product. However, when

grown on fructose, acetate is the dominant fermentation product and no butanol is

formed [56]. Optimization of the trace elements nickel, zinc, selenium, and tung-

sten improved growth and ethanol production of C. ragsdalei [57]. The organism is

also able to reduce certain fatty acids to their corresponding alcohols. Formation of

propanol, butanol, pentanol, and hexanol from propionate, butyrate, pentanoate,

and hexanoate has been reported. In addition to these primary alcohols, acetone

could be reduced to isopropanol [58].

2.10 Clostridium carboxidivorans

C. carboxidivorans strain P7 was isolated from sediment of an agricultural settling

lagoon at Oklahoma State University under a CO atmosphere [59]. The organism

stained Gram-positive and produced acetate, ethanol, butyrate, and butanol from

CO. Low partial pressure of CO in the headspace led to increased butanol and also

hexanol production [60]. The genome sequence has been determined [16].
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2.11 Thermoanaerobacter kivui (Formerly Acetogenium
kivui)

T. kivui was isolated from sediment samples from Lake Kivu, Africa. The enrich-

ment culture was incubated at 60�C under an atmosphere of 20% CO2 and 80% H2.

Acetate was the sole product. Heterotrophic growth with mannose, glucose, fruc-

tose, and pyruvate was also possible. Formate allowed only weak growth [61]. CO

as sole energy source did not allow growth, although in combination with H2

doubling times of 2.7 h were observed [33]. Although one report states the impor-

tance of Na+ for autotrophic growth of T. kivui [62], genome sequencing and

analysis as well as respective experimentation revealed a proton-dependent bioen-

ergetic system. An Rnf membrane complex is not present, but instead an energy-

conserving hydrogenase (Ech) [63].

2.12 Alkalibaculum bacchi

A. bacchi was isolated from soil under a CO atmosphere in the presence of

2-bromoethanesulfate (for inhibiting methanogenesis). In addition to gas mixtures

such as H2 + CO2 and CO + CO2, a number of heterotrophic substrates (sugars,

organic acids, alcohols, trimethylamine) can be used for growth with ethanol and

acetate as main products. The bacterium is remarkably alkali-tolerant (up to

pH 10.5) [64]. In mixed culture with Clostridium propionicum, a syngas fermenta-

tion resulted in production of ethanol and propanol plus minor amounts of butanol

[65]. Added carboxylic acids (propanoic acid, butyric acid, hexanoic acid) could be

reduced to their corresponding primary alcohols [66].

2.13 Blautia producta (Formerly Peptostreptococcus
productus and Ruminococcus productus)

A strain of B. producta (U-1) was isolated from anaerobic sewage digester sludge

under an atmosphere of 50% CO. Under optimal conditions, a doubling time of

1.5 h was recorded. Autotrophic growth on CO2 + H2 (significantly slower) and

heterotrophic growth on a variety of substrates was also possible. Acetate was the

main fermentation product [67]. When grown on sugars, strain U-1 also produced

lactate, succinate, and formate [68]. Another B. producta isolate (strain Marburg)

was also able to grow on CO, although the type strain is unable to do so [69]. A

number of Wood–Ljungdahl pathway enzyme activities could be measured

[70]. The active carbon species deriving from CO oxidation is CO2 rather than

bicarbonate [71].
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2.14 Clostridium difficile

C. difficile is a dangerous pathogen, representing a considerable threat to the North

American and European healthcare systems. Infection rates are still increasing and

numerous nosocomial outbreaks have been reported [72]. Originally, all bacteria

pathogenic against humans were considered heterotrophs [73]. It therefore came as

a surprise that C. difficile and phylogenetically closely related isolates were capable
of autotrophic growth on CO2 plus H2 [74, 75]. The arrangement of genes encoding

the enzymes for the Wood–Ljungdahl pathway in C. difficile is identical to the

operon structure in C. ljungdahlii [75]. C. difficile is thus the first known autotro-

phic human bacterial pathogen, but as a risk group 2 organism it is not considered

for biotechnological applications.

3 Wood–Ljungdahl Pathway and Bioenergetics

The reductive acetyl-CoA- or Wood–Ljungdahl (WL) pathway is probably the

oldest carbon assimilation pathway on Earth [12, 76, 77]. It is found in acetogens,

methanogens, and strictly anaerobic sulfate-reducing bacteria and archaea [77]. It

consists of two parts, the methyl and the carbonyl branch (Fig. 1). In the former, one

molecule of CO2 (or CO) is bound to the coenzyme tetrahydrofolate (in bacteria)

and then reduced in several steps to a methyl group, which is transferred to an iron-

sulfur-corrinoid protein (FeSCo-P). FeSCo-P serves as the methyl donor for the key

enzyme of the pathway, the nickel-containing bifunctional CO dehydrogenase/

acetyl-CoA synthase. In the carbonyl branch, another molecule of CO2 is reduced

to CO, which is also bound to acetyl-CoA synthase. There, methyl and carbonyl

groups are fused to an acetyl residue and, combined with coenzyme A (CoA), are

converted into acetyl-CoA. This compound can be used anabolically for biosyn-

theses or catabolically for formation of acetate by phosphotransacetylase (Pta) and

acetate kinase (Ack), thereby yielding one molecule of ATP by substrate level

phosphorylation. Looking at the energetics of the pathway, it becomes clear that

one ATP is required for formyl-THF formation although only one ATP is gained

from acetate formation. So, the net balance is zero, and additional energy-

conserving mechanisms must exist.

For this purpose, different mechanisms are employed by acetogens. Although

the biochemical reactions of the WL pathway have been elucidated using

M. thermoacetica until the late 1980s, A. woodii was the first acetogen whose

energetics were well-understood [26]. The breakthrough was the discovery of

flavin-based and ferredoxin-dependent electron bifurcation that can be coupled to

proton or Na+ gradient generation and thus to ATP formation [78, 79]. So far, four

such flavin-based electron-bifurcating enzyme complexes have been discovered in

autotrophic acetogens (Table 1). Four more such reactions are known from Clos-
tridium kluyveri, Clostridium acidurici, and methanogenic archaea [86], which,
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H2O
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2 [H] H2
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Fig. 1 Wood–Ljungdahl

pathway employed by

autotrophic acetogenic

bacteria. CoFeS-P
corrinoid-iron-sulfur

protein, 2 [H] reducing
equivalents, Pi inorganic
phosphate, THF
tetrahydrofolate

Table 1 Flavin-based and ferredoxin-dependent electron bifurcation and confurcation enzyme

complexes in autotrophic acetogens

Enzyme complex Reaction catalyzed Organism References

NAD+-specific [FeFe]-

hydrogenase

(HydABC(D))

3 H+ + NADH + Fd2�

Ð 2 H2 + NAD+ + Fdox

A. woodii
M. thermoacetica

[80, 81]

ferredoxin:NADP+

oxidoreductase

(NfnAB)

2 NADP+ + NADH + Fd2� + H+

Ð 2 NADPH + NAD+ + Fdox

M. thermoacetica [82]

caffeyl-CoA reductase

(CarCDE)

caffeyl-CoA + 2 NADH +

Fdox ! 2,3-

dihydroxyphenylpropionyl-

CoA + 2 NAD+ + Fd2�

A. woodii [83]

NADP+-specific

[FeFe]-hydrogenase/

formate dehydrogenase

(HytA-E/FdhA)

NADPH + Fd2� + H+

+ 2 CO2 Ð NADP+

+ Fdox + 2 formate

C. autoethanogenum [84]

Lactate dehydroge-

nase/electron-transfer

flavoprotein

Lactate + Fd2� + 2 NAD+

! pyruvate + Fdox + 2 NADH

A. woodii [85]
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however, might only be the tip of the iceberg, as several other reactions might be

candidates for such a mechanism. In principle, respective enzymes couple the

exergonic reduction of a substrate with NADH to the endergonic reduction of

ferredoxin with NADH. Similarly, flavin-based electron confurcation has been

demonstrated in A. woodii in the case of lactate utilization (Table 1). Endergonic

lactate oxidation with NAD+ as oxidant is driven at the expense of simultaneous

exergonic electron flow from reduced ferredoxin to NAD+ [85].

Key to energy conservation under autotrophic conditions is the generation of

reduced ferredoxin from H2. This reduced ferredoxin can be reoxidized at the

membrane-bound Rnf complex, simultaneously reducing NAD+ to NADH. This

exergonic reaction is coupled to pumping of either H+ or Na+ across the membrane.

A proton gradient is, for example, formed in C. ljungdahlii [29] and then used for

ATP generation by an H+-dependent ATPase. On the other hand, the Rnf complex

of A. woodii pumps a sodium cation [87] and uses the Na+ gradient by an Na+-

dependent ATPase for ATP formation [24].

In M. thermoacetica, cytochromes and quinones are present, indicating the

presence of an electron-transport chain across the membrane. Such a chain might

also involve iron-sulfur and flavoproteins, which are present inM. thermoacetica as
well. A tentative scheme for generation of a proton gradient has been proposed [34].

A third possibility for energy conservation is the presence of an energy-

conserving hydrogenase (Ech) catalyzing the reversible oxidation of reduced fer-

redoxin with protons to hydrogen, thereby generating a proton or Na+ gradient.

Such membrane-associated enzymes have been found in several H2-consuming, as

well as H2-producing, archaea and bacteria [79], for example, inM. thermoacetica.
As this organism also forms cytochromes and quinone, the physiological role of the

two systems still requires elucidation. Are both contributing to the generation of an

ion gradient or only one and, in that case, which one? A recent hypothesis proposed

to separate acetogens based on the presence of either rnf or ech genes [26]. Although
in M. thermoacetica this proposal cannot yet be clearly verified (cytochrome plus

quinone and also ech genes), in T. kivui (a thermophilic autotrophic acetogen) only

ech genes could be detected [63]. Further genome comparisons revealed that indeed

the presence of rnf and ech genes in autotrophic acetogens seem to be mutually

exclusive [22].

Finally, the reduction step from methylene-tetrahydrofolate (THF) to methyl-

THF is highly exergonic and irreversible under physiological conditions

(DG00 ¼ �22 kJ/mol) [88]. This methylene-THF reductase could thus be another

site, which is coupled to electron transport or electron bifurcation, as speculated for

M. thermoacetica [34] and C. ljungdahlii [14]. Indeed, electron bifurcation with

endergonic reduction of a still unknown receptor has been shown in

M. thermoacetica [89], whereas in A. woodii an additional energy conservation

during this reaction has been excluded [26].

In general, autotrophic acetogens do not possess many possibilities for ATP

generation and are operating at the thermodynamic limit of life. This is an important

aspect for metabolic engineering of novel pathways in these organisms. Syntheses,

demanding a high amount of ATP, are unlikely to function well in this group of

bacteria.
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4 Genetic Methods and Metabolic Engineering

The full potential of acetogens as a chassis for the production of a wide range of

chemicals and biofuels may be realized through the implementation of metabolic

engineering strategies. These are reliant on the availability of effective gene tools

and gene transfer procedures. The first anaerobic acetogen to undergo genetic

modification studies successfully was C. difficile [90], although at the time its

classification as an acetogen was not known, and mutation studies were primarily

concerned with elucidation of virulence pathways and mechanisms. Plasmid trans-

fer by conjugative methods from Escherichia coli donors was demonstrated using

an indigenous Gram-positive replicon (pCD6) from C. difficile [90]. Subsequently,
a range of directed mutagenesis methods were developed and implemented in

C. difficile, including the ClosTron [91, 92], which utilizes a directed mobile

group II intron from the ltrB gene of Lactococcus lactis, generating targeted

insertional mutants, selectable by acquisition of antibiotic resistance. The nature

of the mechanism of insertion of the intron means that such insertional mutants are

completely stable, and host antibiotic resistance can only occur through chromo-

somal insertion of the group II intron. ClosTron technology allows for the rapid

generation of insertional gene knockouts and has been found to be widely applica-

ble within the genus Clostridium, including the homoacetogens for which a DNA

transfer method, electroporation, or conjugative plasmid transfer from E. coli
donors, has been established. Implementation of the ClosTron has been demon-

strated in both C. ljungdahlii [unpublished data] and C. autoethanogenum [89].

The first anaerobic acetogen for which a genetic modification system was

specifically designed with a view to creating a microbial platform for chemical

synthesis was C. ljungdahlii. A relatively low frequency electroporation transfor-

mation procedure was described using the Clostridium–E. coli shuttle vector

pIMP1, and heterologous expression of the Clostridium acetobutylicum butanol

synthesis pathway genes thlA, hbd, crt, bcd, adhE, and bdhA (encoding thiolase,

3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase,

bifunctional butanol/butyraldehyde dehydrogenase, and butanol dehydrogenase,

respectively) was demonstrated [14]. This recombinant strain was shown to be

capable of producing butanol, albeit at a low (2 mM) concentration in the expo-

nential growth phase in batch culture. The low concentrations of butanol observed

were shown to be caused by the organism’s ability to metabolize 1-butanol to

butyrate. Nevertheless, this proof of principle experiment represented an important

step towards the establishment of the first acetogenic microbial platform, with a

system capable of heterologous expression of metabolic pathway genes, although

knockouts of native genes had not yet been demonstrated.

Subsequently, the transformation procedure was optimized, and frequency was

improved to a level where homologous recombination methods for directed chro-

mosomal knockouts using suicide plasmids became possible [30]. A chromosomal

‘clean’ deletion of the gene fliA, encoding a putative sigma factor involved in

flagella biosynthesis, demonstrated the growing potential for C. ljungdahlii as a
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model platform organism for gas fermentation based systems. More recently, it was

shown that heterologous genes could be introduced in a stable manner into the

chromosome from a plasmid through isolation of double crossover mutants using

homologous recombination cassettes, delivered by suicide vectors, in this instance

encoding enzymes required for butyrate production as proof of principle [93]. After

a number of metabolic pathway modifications, this recombinant strain developed

was shown to redirect carbon and electron flow significantly towards the production

of butyrate. Carbon and electron yields in butyrate were approximately 50% with

H2 as the electron donor, and 70% with CO [93]. This development represents a

crucial component of the genetics toolkit, as it allows the generation of production

strains, with metabolic pathways modified through expression of synthetic and

heterologous genes, which require no antibiotic selective pressure for maintenance.

A useful recent addition to the tools available for manipulation of genetic

pathways was the implementation of an inducible promoter system originally

shown to be effective in C. perfringens [94], and later in the solventogenic

bacterium C. acetobutylicum [95], based around the native lactose operon present

in Clostridium perfringens. Inducible promoters have a broad range of applications,

including gene complementation studies, adjustable modulation of protein expres-

sion, and transposon mutagenesis studies. This system consists of the constitutively

expressed transcriptional activator bgaR, encoding a protein that binds to and

activates the bgaL (β-galactosidase) promoter when in the presence of lactose.

Adaptation of this system from C. acetobutylicum involved the exchange of a

Gram-positive replicon on the plasmid for one that had previously been shown to

function well in C. ljungdahlii, and the system was exemplified through inducible

upregulation of the native adhE1 gene (encoding a bifunctional ethanol/acetalde-

hyde dehydrogenase), such that expression was shown to be 30 times higher than in

the wild type organism [96].

The combined ability to modify native pathways through directed clean muta-

genesis, and introduce stable heterologous genes into the chromosome, alongside

the development of an inducible promoter system, further reinforces the importance

of C. ljungdahlii as a forerunner model platform acetogen for the production of high

value chemicals from synthesis gas.

A. woodii was the first autotrophic acetogen to be investigated in detail, and as

such the native organism is well-characterized, with its energy conservation path-

ways amongst the best understood of all acetogens [26, 97, 98]. Plasmid transfer has

been demonstrated into A. woodii via both conjugative transfer from an E. coli host
strain and by electroporation [99]. The electroporation procedure was improved

through adaptation of the refined protocol for C. ljungdahlii [14], and plasmid-

based heterologous expression of selected theoretical bottlenecks in the Wood–

Ljungdahl pathway was employed to increase metabolic flow and thus yields of

acetate produced by the first engineered strain of A. woodii [100]. In a

pH-controlled batch process, acetate concentrations in the recombinant strains

reached a maximum of 51 g/L after 3.7 days, compared to the reference strain

whose acetate concentrations reached 44.7 g/L under equivalent conditions

[100]. Further genetic tools are currently in development for this organism.
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A comprehensive range of tools for the moderately thermophilic acetogen

M. thermoacetica has also recently been implemented, making use of a uracil

auxotrophic mutant strain as a screening tool for successful double crossover

homologous recombination events, and consequent insertion of heterologous

genes into the host chromosome [101]. The system was developed through eluci-

dation of a successful electroporation strategy which allowed integration of a

methylated vector containing a knockout cassette targeting the gene pyrF, part of
the uracil biosynthesis pathway. A double crossover deletion mutant was obtained

through serial screening of isolated single colonies, and its uracil auxotroph phe-

notype confirmed. This strain can become the base strain for chromosomal insertion

of synthetic and heterologous genes using plasmids which couple the repair of pyrF
and alleviation of uracil auxotrophy to the insertion of foreign DNA. A lactate

dehydrogenase gene from Thermoanaerobacter pseudethanolicus was inserted into
the chromosome ofM. thermoacetica under control of a native promoter as a proof

of concept experiment, and synthesis of lactate was observed in the organism for the

first time. When grown on basal media supplemented with fructose, lactate con-

centrations of 6.8 mM were observed in batch culture, whereas the wild type

organism was unable to produce a detectable concentration.

Subsequently, a novel strain of M. thermoacetica (Y72) was isolated [102], and

its frequency of transformation was shown to be approximately 20 times that of the

ATCC 39073 strain, hypothesized to be because of the reduced number of copies of

the native restriction–modification system. More recently, a novel thermostable

kanamycin resistance marker (kanR), derived from a plasmid harbored by Strepto-
coccus faecalis, was shown to be functional withinM. thermoacetica [103], further
expanding the rapidly growing genetic toolkit available for those wishing to

develop a thermophilic acetogenic platform.

A further method likely to figure prominently in acetogens in the coming years is

a method, now termed Allele-Coupled Exchange (ACE), which allows the rapid

insertion of heterologous DNA of any size or complexity into the genome

[104]. The system is designed so that, following integration of the plasmid by

single-crossover recombination, the desired second recombination event leads to a

plasmid-borne allele becoming ‘coupled’ to a genome-located allele, and the

creation of a new selectable allele that facilitates the isolation of double-crossover

cells. The order of recombination events is dictated by the use of highly asymmetric

homology arms. A long homology arm (e.g., 1,200 base pairs) directs the first

recombination event (plasmid integration) and a much shorter homology arm (e.g.,

300 base pairs) directs the second recombination event (plasmid excision). A

number of different genetic loci may be used to insert heterologous DNA via

ACE. One of the most useful exemplifications of the method exploits the native

pyrE gene. During the procedure this gene is inactivated by replacement of the

wild-type allele with a mutant allele lacking approximately 300 base pairs from the

30 end of pyrE. The pyrE gene encodes orotate phosphoribosyltransferase, which, in

common with PyrF, is an enzyme involved in pyrimidine biosynthesis. One of its

most useful features is that it can be used as both a positive and a negative selection

marker. This is because the presence of a functional allele is essential in the absence
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of exogenous uracil, whereas the presence of a non-functional allele renders cells

sensitive to 5-fluoroorotate (FOA). Accordingly, a heterologous pyrE gene can be

used as a counter-selection marker in a pyrE minus background in an equivalent

manner to pyrF [105]. Its use as a counter-selection marker was demonstrated in

two different strains of C. difficile using a heterologous pyrE allele from Clostrid-
ium sporogenes [106]. Crucially, however, the design of the created uracil auxo-

troph strain is such that its mutant pyrE allele can be rapidly restored (2 days in the

case of C. difficile) to wild-type using an appropriate ACE correction vector. This

allows any specific in-frame deletion mutant made to be characterized in a clean,

wild-type background. Furthermore, this facility provides the parallel opportunity

to complement the mutant at an appropriate gene dosage through insertion of a

wild-type copy of the inactivated gene, under the control of either its native

promoter or the strong Pfdx promoter (derived from the ferredoxin gene of

C. sporogenes), concomitant with restoration of the pyrE allele back to wild-type

[106]. The suite of ACE vectors needed for the manipulation of the genomes of

C. ljungdahlii and C. autoethanogenum have now been assembled and exemplified

in both acetogens [unpublished data].

5 Fermentation

5.1 Fermentation Overview and Routes

Gas fermentations are fundamentally different from sugar fermentations in that the

gaseous substrate has to be supplied continuously at high rates, and cannot be added

to the media before the start of a fermentation run. As such, gas fermentations are

most suitable as fed-batch or continuous process, whereas sugar fermentations are

typically operated as batch or fed-batch processes. Continuous sugar fermentations

are typically hampered by contamination problems, with other microorganisms

thriving on the sugar substrate. Given that only a few organisms can effectively

grow on one-carbon substrates and CO is toxic or at least inhibitory to most

microorganisms, the threat of microbial contamination does not pose as great a

limitation for gas fermentations. The product spectrum of gas fermentations is

dictated by some degree by which substrate combination is used.

5.1.1 CO, CO + H2, and CO/CO2 + H2

Most gas fermentation work to date has been carried out on CO-containing gas

streams. The reduced substrate CO acts as both carbon and energy source, thus

providing sufficient energy to synthesize even reduced products such as ethanol,

butanol, 2,3-butanediol, or isopropanol.
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5.1.2 CO2 + H2

In contrast to CO, CO2 can only act as carbon source but not as energy source, and

H2 is required for fixation of CO2. Most reports on fermentations with CO2 and H2

describe acetic acid as sole fermentation product, but production of ethanol [89] or

other products such as acetone [9] has also been described.

5.1.3 Microbial Electrosynthesis (MES)

CO2 fixation has also been demonstrated in the absence of hydrogen when an

electric current is supplied. In this so-called microbial electrosynthesis (MES)

concept, the bacteria grow on a cathode. This has been shown for several acetogenic

species including C. ljungdahlii, C. aceticum, M. thermoacetica, and two

Sporomusa species with a high efficiency of over 80% [107]. Acetobacterium
woodii, which is sodium- rather than proton–dependent, was unable to consume

current. There are several excellent reviews that cover all aspects of microbial

electrosynthesis in detail [108–111].

5.1.4 Acetogenic Mixotrophy

As a route to very energy intense products (e.g., isoprene) and still having maxi-

mized carbon utilization, a concept called acetogenic (anaerobic,

non-photosynthetic; ANP) mixotrophy has been proposed where gases and carbo-

hydrates are consumed at the same time [112].

5.1.5 Carboxylic Acid Conversion

Acetogens such as C. autoethanogenum, C. ljungdahlii, and C. ragsdalei have been
demonstrated to convert effectively a range of carboxylic acids as acetic acid,

propionic acid, butyric acid, valeric acid, and caproic acid into their respective

alcohols in the presence of CO [113–115]. This may be integrated with a carbox-

ylate fermentation platform [116].

5.2 Fermentation Control Parameters and Optimization

Parameters that can be used to monitor gas fermentations differ from those for

aerobic fermentations. Although, in aerobic fermentations, dissolved oxygen (dO2)

is a key parameter to monitor and control the process, this cannot be used in gas

fermentations because of the lack of readily available technologies for the mea-

surement of dissolved CO and routine indirect assays are arduous. Instead, one
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needs to rely on indirect gas measurements to monitor the fermentation in addition

to biomass and metabolite as well as oxidation reduction potential (ORP) measure-

ments to track the progress of a fermentation run.

Inlet and outlet gas measurements can give a direct indication of the fermenta-

tion status and show whether the microbes are readily utilizing the feed gas. As an

example, in a fermentation of CO-rich gas to ethanol and acetate, the CO2/CO ratio

can give an indication of the metabolic outcome of the supplied gas:

4COþ 2H2O ! 1CH3COOHþ 2CO2 CO2=COratio

¼ 0:50 � Acetate asamajor product

6COþ 3H2O ! 1CH3CH2OHþ 4CO2 CO2=COratio

¼ 0:66 � Ethanol as a major product

Gas supply to the culture can be altered by changing the parameters that control

gas to liquid mass transfer, including gas feed rate, liquid agitation rate, or pressure.

In addition, typical control parameters such as temperature and pH must be con-

trolled to maintain the state of the fermentation and the metabolite profile.

5.2.1 pH

pH is one of the key parameters that needs to be controlled during a fermentation.

Acetogens, as do other organisms, have a pH range in which growth is optimal and

the cells are metabolically active. Given the phylogenetically diverse nature of

acetogens [117], there are both acetogens that have a low pH optimum and those

that prefer a higher pH range (Fig. 2).
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Fig. 2 Reported pH optimum for acetogens considered for industrial applications.

C. autoethanogenum [50], C. ljungdahlii [27], C. ragsdalei (P11) [118], C. carboxidivorans
(P7) [59], B. methylotrophicum [38], A. bacchi [64], E. limosum [119], A. woodii [5],

M. thermoacetica [120], T. kivui [61], and C. aceticum [6]

262 S. De Tissera et al.



Typically, solventogenic acetogens have a lower pH optimum than those that

only produce acetic acid (homoacetogens), although this is not always true (see,

e.g., A. bacchi). At lower pH, acetic acid is more toxic for the cells as more

undissociated acid is present which can pass through the membrane and enter into

the cell, where it can dissociate again and disrupt the proton gradient across the

membrane. The maintenance of this proton gradient is required for energy conser-

vation and several transport mechanisms.

As such, lowering the pH in the medium can lead to a shift from acidogenesis to

solventogenesis, allowing increased production of ethanol and other highly reduced

products [121, 122]. This was investigated by Gaddy and Clausen using

C. ljungdahlii growing in a two-stage Continuous Stirred-Tank Reactor (CSTR)

system, where the pH of the first reactor was set to pH 5 to promote cell growth and

that of the second reactor to pH 4–4.5 to promote ethanol production [123]. A

similar strategy was recently also investigated for C. autoethanogenum [124] and it

has been demonstrated that a set-up with a smaller first stage and a larger second

stage could also be a feasible option [125]. In the case of C. autoethanogenum, a pH
around 4.75 was found optimal for ethanol formation [126, 127], whereas for

C. ragsdalei a pH below pH 6 was not associated with high ethanol

production [128].

Routine and continuous online monitoring the pH trend during the fermentation

gives an instant understanding of the state of the fermentation process, as it is an

indication of the metabolites the bacteria are producing. For example, a drop in the

pH would indicate acetate production. Maintaining a relatively constant pH is

important and adjustment of the fermentation pH is therefore critical to avoid a

crash.

The pH range of the organism should also be considered when introducing and

optimizing fermentation conditions for heterologous enzymes to match the pH

optimum best.

5.2.2 Temperature

Temperature is also an important parameter as it influences the microbial activity as

well as the gas solubility, which increases with decreasing temperature [128]. Most

acetogens are mesophilic that grow best between 30 and 40�C, but there are also

thermophilic acetogens such as M. thermoacetica [120] or T. kivui [61] that grow
best between 55 and 75�C.

Lowering the temperature may also help to increase tolerance towards solvents.

For C. ragsdalei (P11), ethanol production was higher at a temperature of 32�C than

at its optimum growth temperature of 37�C [128].

5.2.3 Gas Supply

Both CO and H2 are not very soluble gases. Although different reactor designs are

being developed to address the mass transfer issue (see Sect. 6), most fermentation
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development work is carried out either in bottles or in CSTRs. The gas supply in

such systems can be increased via the gas feed rate or loading, agitation or shaking,

or by pressure.

The partial pressure has a big influence on the microbial growth and metabolism

[129]. In a study with C. carboxidivorans (P7), an increase in partial pressure of CO
(PCO) from 0.35 to 2.0 atm led to a maximum cell concentration, an increase in

ethanol production, and a decrease in acetate production [130]. In organisms that

are more sensitive to CO, such as Blautia producta [131] and E. limosum [45], a

prolonged doubling time has been observed when the partial pressure of CO was

increased. Up to a pressure of 1.6 atm, a linear relationship between the reaction

rate and CO partial pressure was observed, but at a pressure of 2.5 atm the culture

failed to utilize CO after an initial period of CO uptake [132]. It was hypothesized

that this might be because of CO toxicity, caused by insufficient cell concentrations

resulting from a failure to keep the reaction at a mass transfer limit stage. Therefore,

high CO pressure could be applied once a sufficient cell concentration is achieved.

By gradually increasing the pressure applied to a culture, these researchers were

able to achieve a CO partial pressure of 10 atm [132].

A model for hydrogen partial pressure (pH2) for syngas fermentation has been

established for C. ragsdalei (P11) [133]. In A. woodii, the effect of hydrogen partial
pressure on CO2/H2 fermentation was investigated. It was shown that acetate pro-

ductivities increased linearly with pH2 between 400 and 1,700 mbar with a maximal

acetate productivity of 1.6 gacetate/gcdw/day and a final acetate concentration of 44 g/L

after 11 days [134]. In a follow up study, rates up to 147.8 g/L/day has been

demonstrated in continuous fermentations at a dilution rate of 0.35/h [135].

5.2.4 Media Formulation

During gas fermentation, acetogens consume CO and CO2 + H2 as carbon and

energy sources. Beside carbon, all bacteria need other elements such as nitrogen,

sulfur, phosphorus, trace minerals and metals, vitamins, and reducing agents for

synthesis of cell materials and products. Several media optimization studies have

been carried out for acetogens including C. autoethanogenum [126, 136–138],

C. ljungdahlii [122], C. ragsdalei (P11) [57, 128, 139–144], C. aceticum [145],

and Moorella thermoacetica [146, 147] with the aim of increasing growth and

product formation and establishing a defined or least-cost media.

A study by Phillips and Gaddy on C. ljungdahlii showed that, by reducing the B
vitamin concentration and by eliminating yeast extract, a maximum concentration

of 48 and 23 g/L of ethanol could be achieved in a CSTR with and without cell

recycling, respectively [122].

Beside vitamins, trace metal concentrations were found to have a significant

influence on growth and product formation as many of the enzymes involved in the

Wood–Ljungdahl pathway and ethanol formation require metal co-factors includ-

ing rare metals such as selenium and tungsten [148, 149]. Nickel, for example, is an

important co-factor for enzymes such as CO dehydrogenase and acetyl-CoA

synthase [150]. The use of nickel has been shown to improve CO uptake and
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ethanol production in a variety of acetogens [137]. The effect of various trace metal

ions on growth and ethanol production in C. ragsdalei was investigated and it has

been observed that the removal of Cu2+ from the medium and increasing concen-

trations of Ni2+, Zn2+, SeO4
2�, and WO4

2� had a positive effect on ethanol

production [57].

As a low redox potential is required for strict anaerobes to grow, reducing agents

such as titanium(III) citrate, cysteine, sodium sulfide, and sodium thioglycolate are

commonly added to the fermentation medium and are shown to bring about an

increase in solvent formation [127, 140, 151–153]. A study on C. ragsdalei showed
that addition of methyl viologen promoted solventogenesis, where 1.3 g/L of

ethanol was produced compared to 0.51 g/L without the addition of any reducing

agent [140].

5.2.5 Inoculum

Inoculum preparation is important to ensure a quick start up and achieve maximum

production rates as fast as possible and without a lag phase. For C. ljungdahlii, it
was shown that pre-adaptation is important and the presence of gas in pre-adapted

cultures led to better ethanol overall production [154] and in C. ragsdalei (P11) a
positive effect on ethanol production was observed from heat shocking the cells

prior to inoculation [155].

6 Mass Transfer and Reactor Optimization

Mass transfer is a major challenge in gas fermentation. Transferring the gaseous

substrate to the reaction site in the cell is complex and involves a series of

resistances at a micro scale: the resistance encountered when the gaseous substrate

passes through the gas-liquid interface, during dispersion through the fermentation

media, during the diffusion of the gaseous substrate through the microbial mem-

brane, and the intracellular resistance through to the reaction site. The major mass

transfer resistance for sparingly soluble gases such as CO, CO2, and H2 is encoun-

tered when diffusing through the gas–liquid interface [129]. This resistance can be

overcome either by increasing the surface to volume ratio of gas bubbles or by

reducing the resistance at the gas–liquid interface by minimizing the surface

tension [131].

Surface tension can be reduced by addition of chemicals such as detergents,

surfactants, solvents, or polymers [131, 156], and several studies have demonstrated

that mass transfer can be enhanced by addition of functionalized nanoparticles or

catalysts that can absorb and then release the CO to the fermentation broth

[157, 158].

In addition, a variety of bioreactor configurations have been investigated to

address these challenges. Techniques used in different reactor configurations to

enhance mass transfer include optimizing pressure, fluid flow rates and patterns, the
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use of microbubbles, and the use of various impeller designs to facilitate shearing

and break-up of gas bubbles. The main types of reactors currently being considered

for gas fermentation include Continuous Stirred Tank Reactors (CSTR), Trickle

Bed Reactors (TBR), Bubble Column Reactors (BCR), Membrane Bioreactors

(MBR), and Moving Bed Biofilm Reactors (MMSB), which are discussed in detail

below.

One main objective of bioreactor optimization is to enhance mass transfer rates,

at the same time lowering operational costs to allow the process to be scaled up to

commercially viable production levels. Therefore, the performance of a reactor

design should be measured based on the volumetric mass transfer coefficient per

unit power input (kLa/Pg). Several studies have modeled and compared perfor-

mance of these reactor types for gas fermentation [132, 159–161] and a few studies

have also explored use of a combination of different reactor types [125].

Further improvements can come from cell recycling to increase the number of

cells in a reactor and gas recycling to utilize gas most efficiently. Cell recycling has

been shown to be effective for increasing ethanol concentrations in gas fermenta-

tions [122], but also adds cost to the process, although gas recycling can increase

the gas retention time and utilization efficiency [125].

6.1 Continuous Stirred-Tank Reactors (CSTR)

The CSTR uses a rotating impeller to break up gas bubbles, thus reducing the

volume of individual bubbles and increasing the overall surface area of bubbles (the

gas–liquid interfacial area). CSTRs are the most extensively used reactor type in

gas fermentation. Although many studies have reported higher cell concentrations

and product yield with increase in impeller speed, the high input of energy per unit

volume in these reactors makes them economically challenging for large scale

production processes.

6.2 Trickle Bed Reactors (TBR)

Trickle bed reactors are columns packed with inert packing material and fed with

gas streams and media in either concurrent or counter flow configurations. Gas flow

rate, liquid recirculation rate, and the packing material size are the main factors that

affect mass transfer rates in TBRs.

6.3 Bubble Column Reactors (BCR)

BCRs employ gas sparging without mechanical agitation to achieve mass transfer.

Because of the comparatively low capital and running costs associated with the
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operation of a BCR, these reactors are considered to be promising candidates for

commercial scale operation of gas fermentation reactions. However, the conversion

efficiency of the gas substrate is low in BCRs because of the short gas retention

times.

6.4 Membrane Bioreactors (MBR) and Moving Bed Biofilm
Reactors (MMSB)

MBRs are a class of reactors that employs membranes to facilitate the formation of

a biofilm. A subclass of MBRs known as Modular Membrane Supported Bioreac-

tors (MMSB) consists of multiple modules of hollow fibers (also known as Hollow

Fiber membrane Reactors—HFR) made up of microporous or non-porous mem-

branes. The substrate gases are introduced into the hollow compartments of the

fibers and the microbial cells are attached to the outer surface of the membrane.

These fibers are then immersed in growth media and contained within an outer

shell. Because of their large surface area to volume ratio, MBRs have very efficient

mass transfer rates, but a major disadvantage in this type of reactors is a phenom-

enon called pore wetting. This occurs when the media in contact with the outer

surface of the hollow fibers enter into the lumen through the membrane because of a

pressure drop within the fibers. This may be overcome by incorporating a liquid-

impermeable layer, such as silicone coating, onto the membranes, stopping the

liquid media from entering the fibers even when the inside pressure drops. Another

disadvantage is that the cells first need to be immobilized.

7 Scale-Up and Commercialization

Most of the studies reported in the scientific literature were carried out on bench-

top/lab-scale bioreactors which were less than 10 L in volume, with exception of a

study with C. ragsdalei (P11) in a 100-L pilot scale fermenter fed by a gasifier at the

Oklahoma State University [162]. In addition, three companies—INEOS Bio,

Coskata, and LanzaTech—are operating gas fermentations at a larger scale and

are working on commercialization of this new technology.

7.1 Process Integration

Several things need to be considered when scaling up a gas fermentation process.

From integration with gas sources, through efficient reactor design (as discussed in

Sect. 6), to integration with downstream processes as distillation or other separation
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technologies and the use of process water and bulk chemicals as well as water

recycling.

A wide range of readily available gas sources can be considered as feedstock for

gas fermentation, such as industrial waste gases such as off-gases from steel mills

(>1.4 billion metric tonnes/year) or ferroalloys that are mainly composed of CO,

reformed methane (biogas or natural gas; >180 Tera m3/year that is mainly

composed of CO and H2), or syngas (composed of varying concentrations of CO,

H2, and CO2) from biomass (>1.3 billion metric tonnes/year in the US only) or

municipal solid waste MSW (>2 billion metric tonnes/year). These often contain

trace amount of impurities such as different sulfur species (H2S, SO2, SOx, COS),

nitrogen species (NH3, NOx), BTEX species (benzene, toluene, ethylbenzene,

xylenes), methane, HCl, HCN, acetylene, naphthalene, phenol, light hydrocarbons,

metal species (arsenic, vanadium, bromide, copper, iodide, chromium), and tar

[163, 164]. Although acetogenic bacteria are generally much more tolerant to

such impurities in the gases than chemical catalysts and can even utilize some of

these impurities, such as certain sulfur, nitrogen, and metal species [165–167], it is

important to track these and monitor the productivity of the fermentation process in

response to contaminants in the gas streams. If certain impurities in the feed gas are

present in too high concentrations, they have been shown to cause reduced cell

growth, lower production rates, and even cell dormancy [168, 169].

Impurities such as NOx and acetylene are known to be potent irreversible

inhibitors of hydrogenase enzyme activity [170, 171]. Any inhibition of the hydrog-

enase activity thus results in cells obtaining electrons from CO rather than H2,

leading to reduced availability of CO as a carbon source for ethanol formation. CO

itself is also known to be a competitive inhibitor of hydrogenase and it has been

shown that in B. methylotrophicum the utilization of H2 is inhibited until CO is

exhausted [43]. CO inhibition has also been investigated for the Hyt hydrogenase of

C. autoethanogenum; the Ki for reduction of CO2 to formate was 0.3% CO [172].

Recent studies with C. carboxidivorans have shown the effects of inhibitors can
be mitigated by cleaning the syngas using gas scrubbers or cyclones and a filter

prior to introduction into the fermenter [169].

7.2 Commercial Projects

INEOS Bio, Coskata, and LanzaTech have all operated pilot and demonstration

plants for extended periods of time and INEOS Bio and LanzaTech are currently

scaling up their processes to a commercial scale.

INEOS Bio [173], a subsidiary of major chemical company INEOS (which

acquired technology developed by gas fermentation pioneer James L. Gaddy of

the University of Arkansas in Fayetteville in 2008), has built an 8 million gallons/

year semi-commercial facility in Vero Beach, FL operated as New Plant Energy

(NPE) Holding, LLC [174]. Construction of the $130 million project was com-

pleted in 2012 and, after commissioning, INEOS Bio declared mid-2013 that the
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plant was online and producing ethanol [175]. The facility uses MSW and generates

6 MW of electrical power. By the end of 2014 there had been reports and a

statement from INEOS about problems with impurities such as HCN that were

negatively impacting operations, and the commissioning of new equipment to

address this problem [176].

LanzaTech [177], a start-up founded in Auckland, New Zealand in 2005 with its

global headquarters in Chicago, IL, successfully operated a 100,000-gallon/year

pre-commercial plant at one of Baosteel’s steel mills outside Shanghai, China in

2012. Using steel-making off-gases as substrate for the fermentation process, all

productivity expectations were exceeded and all commercial milestones achieved

[178]. In 2013, the company operated a second 100,000-gallon/year

pre-commercial plant at a Shougang Steel mill near Beijing, China. LanzaTech’s
process using steel mill waste gases at this facility has been certified by the

Roundtable on Sustainable Biomaterials (RSB) [179]. In April 2015, China Steel

Corporation out of Taiwan approved investment in a full LanzaTech commercial

project. A 50,000 metric tonnes (17 million gallons)/year facility is planned for

construction in Q4 2015, with the intention to scale up to a 100,000 metric tonnes

(34 million gallons)/year commercial unit thereafter [180]. In July 2015, the

company announced a second commercial project in partnership with

ArcelorMittal, the world’s leading steel and mining company, and Primetals Tech-

nologies, a leading technology and service provider to the iron and steel industry.

The 47,000-MT/year facility is to be built at ArcelorMittal’s flagship steel plant in

Ghent, Belgium, is anticipated to commence later in 2017, with bioethanol produc-

tion expected to start 2018. The intention is to construct further plants across

ArcelorMittal’s operations. If scaled up to its full potential in Europe, the technol-

ogy could enable the production of around 500,000 MT of bioethanol a year

[181]. Although the initial product focus is to be industrial ethanol and gasoline

additives, plans are for increased product diversity utilizing LanzaTech’s unique
microbial capability. One example the company is working on is to produce jet fuel

and a first demonstration flight in partnership with Virgin Atlantic and HSBC is

being prepared [182]. Together with the world’s largest nylon producer Invista

[183] and Korean energy and petrochemical company SK innovation [184], the

company is working on new processes for the production of nylon and rubber

precursor butadiene [185] and also has an agreement with major chemical company

Evonik Industries for development of precursors to speciality plastics [186]. Evonik

has recently announced the first successful production of PLEXIGLAS® precursor

2-hydroxyisobutyric acid from syngas [187].

Although Coskata [188], a start-up founded in 2006 in Warrenville, IL, has not

yet announced any commercial project, the company has successfully operated a

40,000-gallon ethanol/year semi-commercial facility in Madison, PA over a 2-year

period [189] and have recently announced that Elekeiroz, a Brazilian chemical

company, has acquired technology rights on their butanol production

processes [190].
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7.3 Barriers to Market

Much of today’s legislation was written prior to the development of gas fermenta-

tion technologies and does not provide a clear framework for fuels produced from

bacterial biomass through recycling waste carbon gases, such as those generated in

the process of steel making [191]. Below, an overview is provided of some of the

most relevant legislative framework.

7.3.1 European Union (EU) Waste Framework Directive 2008/98/EC

(WFD)

This legislation is currently being transposed into member state law, and a proposal

to revise the directive is pending withdrawal by the EU commission services. The

current definition of waste in article 2(a) excludes gaseous effluents emitted into the

atmosphere. The narrow scope of this definition does not allow for innovative

solutions such as gas fermentation for fuel production from these gas emissions

to benefit from advantages of recycling mentioned in the directive. CO/CO2 is

valuable waste for CO2 reuse industries and, by including it into the waste defini-

tion, solutions such as carbon recycling can benefit from the waste hierarchy where

prevention, reuse, and recycling are top priority. CO2 reuse technologies prevent

pollution and at the same time reuse and recycling the carbon, so they fulfill key

elements from the waste hierarchy.

7.3.2 Industrial Emissions Directive (IED)

The Industrial Emissions Directive (IED) has superseded the Waste Incineration

Directive (WID) of 2000. It is intended to achieve a high level of protection for the

environment as a whole from the harmful effects of industrial processes by applying

the Best Available Techniques (BAT). Gas fermentation technologies should be

recognized as such by offering an alternative to incineration of wastes, flaring of

gases, or combustion for power generation at a steel mill.

7.3.3 European Union (EU) Carbon Capture and Storage Directive

2009/31/EC

To date, the CCS Directive from 2009 and the renewed strategy focus greatly on

CCS, and carbon capture and utilization (CCU) technologies are becoming a

reality. Therefore, any future CCS frameworks should also include and help the

roll-out of CCU technologies in Europe.

A technology neutral approach is needed to provide a clear legislative frame-

work for gas fermentation technologies in Europe today. Technologies should be
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qualified by sustainability results, for example by life-cycle assessment (LCA) data

and environmental impact on land resources and biodiversity such as a recent report

by E4 Tech and Ecofys that compared sustainability implications of different new

routes to low carbon fuels [192].

Acknowledgments Work in the authors’ laboratories was funded by the ERA-Net IB 5 project

CO2CHEM. Work in PD’s laboratory was supported by grants from the BMBF Gas-Fermentation

project (FKZ 031A468A), the ERA-IB 3 project REACTIF (FKZ 22029612), the MWK-BW

project Nachhaltige und effiziente Biosynthesen (AZ 33-7533-6-195/7/9), and the European

Union’s Seventh Framework Programme for research, technological development, and demon-

stration under grant agreement no 311815 (SYNPOL project). Work in NPM’s laboratory was

additionally funded by the BBSRC sLoLa GASCHEM (Grant no. BB/K00283X/1), the BBSRC/

EPSRC Synthetic Biology Research Centre (Grant no. BB/L013940/1), and a BBSRC China

Partnership Award (Grant no. BB/L01081X/1). LanzaTech thanks the following investors in its

technology: Sir Stephen Tindall, Khosla Ventures, Qiming Venture Partners, Softbank China, the

Malaysian Life Sciences Capital Fund, Mitsui, Primetals, CICC Growth Capital Fund I, L.P., and

the New Zealand Superannuation Fund.

References

1. Fischer F, Lieske R, Winzer K (1932) Biologische Gasreaktionen. II. Mitteilung: Über die
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