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Trait Mapping Approaches Through

Linkage Mapping in Plants

Pawan L. Kulwal

Abstract Quantitative trait loci (QTL) mapping in crop plants has now become a

common practice due to the advances made in the area of molecular markers as well

as that of statistical genomics. Consequently, large numbers of QTLs have been

identified in different crops for a variety of traits. Several computational tools are

now available that suit the type of mapping population and the trait(s) to be studied

for QTL analyses as well as the objective of the program. These methods are

comprised of simpler approaches like single marker analysis and simple interval

mapping to relatively exhaustive inclusive composite interval mapping and Bayes-

ian interval mapping. The relative significance of each of these methods varies

considerably. The progress made in the area of computational analysis involving

the identification of QTLs either through interval mapping or association mapping

is unprecedented, and it is expected that it will continue to evolve over the coming

years. An overview of the different methods of linkage-based QTL analysis is

provided in this chapter.
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1 Introduction

Understanding the genetics of quantitative traits has been a common focus over the

last few decades. Ever since Sax [1] demonstrated the use of a simple t-test for
finding the association between the seed weight and color of beans, methods of

mapping quantitative trait loci (QTL) in plants have evolved steadily over the years.

However, over last three decades there has been a renewed interest in studying the

genetics of these traits due to the availability of large numbers of genomic resources

including mapping populations, molecular markers, linkage maps, and computa-

tional tools. The progress in this area has been quite unprecedented. Consequently,

large numbers of statistical methods are now available that suit the nature of the

trait and mapping population as well as the objective of the research. As a result, it

has now become possible to rapidly identify QTLs as well as candidate genes

associated with individual traits. A large number of marker-trait associations

(MTAs) for different traits have also been identified in different crops, and several

of these have been deployed successfully in crop improvement programs through

marker-assisted selection (MAS) [2, 3]. Some of the QTLs identified over the years

have also been cloned successfully in different crop plants [2, 4, 5]. Similarly, the

literature regarding this aspect has also grown tremendously. Many of reviews

describing different methods of QTL analysis and its various dimensions, with

special emphasis on crop plants, have appeared over the years [2, 6–15]. A partial

list of references on statistical genetics is available at http://pages.stat.wisc.edu/

~yandell/statgen/reference/software.html.

In this chapter, the different methods of QTL analysis that are based on the

principle of linkage are discussed without describing much of the statistics involved

in it (Fig. 1). Comparison between these different methods, factors affecting them,

and the recent trends in the QTL analysis in crop plants are also discussed, along

with different computer programs available for analysis of the data. However, the

aspect of association mapping, which is based on the principle of linkage disequi-

librium (LD), is not covered here, but is available in another chapter in this book.

2 Methods of Linkage-Based QTL Mapping

The different methods of linkage-based QTL analysis can be divided into four main

categories depending upon the principle involved in it, and can be classified as

(1) single-marker analysis when linkage map is not available, (2) interval mapping

when linkage map is available, (3) meta-QTL analysis and (4) joint linkage and

association mapping. Accordingly, these different methods are discussed in the

following sections.

In plant-breeding experiments, data on a trait are recorded in various ways

(during growth stages, at maturity) either in a continuous scale or in several ordered

categories. Therefore based on the nature of trait being studied, the different

methods of QTL mapping have also been discussed in this section.
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2.1 Identification of Marker-Trait Association (MTA) When
Linkage Map Is Not Available: Single-Marker Analysis

During the initial years when limited numbers of marker resources were available

and statistical programs for development of linkage maps and interval mapping were

still in their infancy, MTAs were identified based on rather simple approaches. The

approach of bulk segregant analysis (BSA) proposed by Michelmore et al. [16] was

very commonly used. In this approach, molecular marker(s) showing polymorphism

between the parental genotypes of the mapping population and the two pools or

bulks of DNA samples differing in a trait of interest are first selected and subjected to

BSA for further selection of putative markers, which are then used for genotyping

the whole mapping population. The putative QTL can thus be detected from the

analysis of such markers following any of the single-marker analysis (SMA)

methods. It is still considered as a rapid approach (short cut) for detecting the linkage

of a marker with a QTL for a trait of interest. Several important QTLs that were

earlier identified using BSA were later confirmed following advance methods of

interval mapping. The advantage with this method is that the huge cost often

incurred in genotyping the entire population could be saved.
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Fig. 1 Pictorial representation of different methods of QTL analysis. It describes that when a

biparental population is genotyped with molecular markers and genotypic data is available but

linkage map is not available, one can use single marker analysis (SMA) (t-test or ANOVA) for

identification of marker-trait associations. When linkage map is available, one can analyze the data

through simple interval mapping (SIM), composite/inclusive composite interval mapping (CIM/

ICIM), multiple trait mapping (MTM), multiple interval mapping (MIM), Bayesian interval

mapping (BIM), expression QTL (eQTL) or metabolite or protein QTL (mQTL/pQTL). The

criteria used in each of these interval mapping approaches are given in the box below the method.

The relative robustness of results of these methods over one another is shown with arrow. When

germplasm/natural population is genotyped, one can perform genome wide association study

(GWAS), while multiparental populations enable joint linkage and association mapping (JLAM)
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Although proposed more than two decades ago, the approach still remains

popular among the scientific community for quick analysis of the data. Large

numbers of studies have used the principle of BSA and identified important QTLs

for various traits in different crop plants. Recently, BSA was used for the identifi-

cation of major grain yield QTLs under drought stress in rice [17]. Similarly, in

another study using the whole genome-resequencing approach (also called

QTL-seq) in rice, two bulks comprising 20–50 individuals with extreme phenotypic

values were analyzed and QTLs for important agronomic traits were identified

[18]. Although initially proposed to be used in biparental populations, the principle

of DNA pooling from extreme genotypes for the rapid identification of QTLs has

also seen application in an association mapping experiment. Using this approach,

recently Kujur et al. [19] identified three major QTLs and candidate genes for seed

weight in chickpea. Because of its simple, time- and cost-effective features, BSA

still holds promise in the QTL-mapping programs.

Different methods commonly used for SMA include the t-test, ANOVA, and
simple regression [7, 20].

(i) t-test, ANOVA, or regression approach: One of the simplest ways to deter-

mine whether an association exists between a molecular marker and the trait of

interest is to conduct a single-factor analysis of variance (ANOVA). In this method

the marker and the trait of interest are considered as independent and dependent

variables, respectively. The marker-trait association (MTA) is considered only if

the marker under consideration shows a significant difference between the two

marker classes for the trait of interest. Based on this simple analysis, a QTL can be

inferred to be located adjoining to, or in the vicinity of, the identified marker.

Similarly, linear regression can be used for the identification of MTA and can help

in estimating the phenotypic variation arising from the QTL linked to the marker.

The advantage with this approach is that it is computationally very easy and can be

performed even when one does not have a linkage map available. Often such types

of situations arise when sufficient markers are not available, which limits the

construction of a linkage map. However, the major drawback with this method is

that the further a QTL is from a marker, the less likely it will be detected. Several

QTL mapping studies in crop plants have utilized this approach for the identifica-

tion of QTLs for a variety of traits. Many of these QTLs were subsequently

confirmed using the approach of interval mapping.

2.2 Identification of QTL When Linkage Map Is Available

The era of development of framework linkage maps and interval mapping in plants

began with the availability of interactive computer package MAPMAKER

[21, 22]. Ever since its availability, it has been by far the most used computer

program for the development of linkage maps. It not only provided the basis for

framework maps, but it also introduced the principle of simple interval mapping

(SIM) for the mapping of QTL by scanning an interval between each pair of
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markers in the genome. Not only did it facilitate QTL identification, but it also

addressed the shortcomings of SMA. During the 1990s, majority of the QTL

mapping studies were carried out using the principle of SIM. It was only when

the principle of combining IM with multiple regression was introduced [23–25] that

the problems of SIM were addressed. This method was later named “composite

interval mapping” (CIM; [25]). This was a significant development and changed the

way QTL mapping studies used to be carried out. CIM became the method of

choice and by far the most popular QTL mapping approach amongst the scientific

community. In order to avoid chances of false-positive associations and to increase

the efficiency of QTL detection, improvements in the form of empirical threshold

and permutation tests have also been proposed [26, 27]. Another method called

inclusive composite interval mapping (ICIM), which fixed the problem of arbitrary

cofactor selection in CIM, was later proposed by Li et al. [28]. The advantage with

this method is that it takes into account the significant cofactors and calculates their

effects using stepwise regression before IM is conducted and the effects are fixed

during genome scanning. This method has been found to improve QTL detection

efficiency over that of CIM and has been used in many studies. Interval mapping

can be accomplished using any of the available methods including SIM, CIM,

ICIM, and several variants proposed later. Comparison between different methods

of QTL analysis is given in Table 1.

Several variants of QTL mapping were proposed subsequent to CIM that offered

a better understanding of the genetics of complex traits. These include studies of

multiple marker intervals simultaneously and identification of epistatic

(interacting) QTLs (multiple interval mapping, MIM), analysis of multiple traits

simultaneously taking into account trait correlations, analysis of dynamic and

ordinal traits, and many more. These methods are discussed in greater detail in

the following sections. Some of these methods, despite once being considered

computationally intensive, are being used on a regular basis due to advances in

computational tools. Large numbers of QTL mapping studies using either of these

approaches have been conducted in different crop plants and it is not possible to

include all of them in this chapter.

2.3 Identification of Interacting or Epistatic QTLs:
Two-Locus Analysis

The principle of epistasis has been known to geneticists for a long time and its

importance in plant breeding has been well documented [29]. However, only QTLs

having a main effect (M-QTL) were used for identification in the majority of the

earlier studies (single-locus analysis). This was mainly because of the computa-

tional complexity involved with using multiple QTLs in the statistical model

[30]. This becomes more complex if higher order interactions are involved

[31]. It therefore did not allow the identification of interacting QTLs (QTL � QTL;
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two-locus analysis). It is also logical to think that there may be QTLs that may or

may not have a main effect, but can interact with another such QTL [32, 33]. These

types of interacting QTLs also contribute significantly to trait variation. Therefore,

it was also thought appropriate to put the principle of epistasis into QTL interval

mapping. Accordingly, multiple interval mapping (MIM) was proposed by Kao

et al. [34]. Similarly, in another study, a mixed model approach was proposed by

Wang et al. [30] that enabled the identification of not only QTL � QTL

(QQ) interactions, but also QTL � environment (QE), and QTL � QTL � environ-

ment (QQE) interactions. Very recently, a three-stage search strategy for the

mapping of epistatic QTLs has been proposed by Laurie et al. [35]. In this approach,

first the main effect QTLs are identified, which is followed by the identification of

epistatic QTLs interacting significantly with other QTLs, and, finally, new epistatic

QTLs are searched in pairs. These methods not only improved the precision of the

commonly used approach of CIM, but also increased the efficiency of

QTL-mapping experiments, as interacting QTLs (QQ and QE) that contribute

significantly to the total variation of the trait could be identified. These approaches

have also been included in the commonly used QTL-mapping software: QTL

Network and QTL Cartographer [30, 36]. A large number of studies involving

identification of such interactions have now been carried out in different crops

including rice [30, 37, 38], wheat [33, 39–41], maize [42, 43], and barley [44, 45]. It

was also shown that in wheat the proportion of variation explained by QQ and QE

or QQE varies from trait to trait [39].

Molecular marker-based QTL mapping studies have provided more evidence for

epistasis than the conventional biometric approaches of quantitative genetics.

Therefore, for long-term progress in plant breeding, one cannot ignore the impor-

tance of epistasis [29]. In order to completely dissect the trait in terms of its total

variation, it is imperative that these interactions, including higher order interac-

tions, be identified [31]. However, the methodology for addressing the issue of

higher order interactions is still underdeveloped.

2.4 Mapping QTL for Correlated Traits Simultaneously

It is a common practice to conduct QTL analysis separately for each trait. However,

it is often observed that some of the traits are significantly correlated with each

other. The ability to identify and use a common QTL governing more than one trait

can accelerate and increase the efficiency of MAS programs significantly. Multiple-

trait QTL analysis is QTL analysis applied to several traits simultaneously and can

help in the identification of pleiotropic QTLs. The importance of such pleiotropic

QTLs and multi-trait QTL analysis has earlier been advocated and also empirically

demonstrated [46–48]. Taking into account the correlation structure among the

traits, this type of analysis was shown to improve the statistical power of QTL

detection and the precision of parameter estimation in these studies. Later this

approach was also incorporated into the popularly used QTL analyses program
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“QTL Cartographer” and other software, and was also successfully used in wheat

[40, 49], sorghum [50], and other crops for different traits.

Recently an improvement over the existing method of multiple-trait analysis was

proposed by Silva et al. [51], which takes into account the genetic and environ-

mental correlations between traits and provides more details on the genetic archi-

tecture of complex traits by separating pleiotropic QTLs from closely linked

non-pleiotropic QTL and QE interactions. Further, it can also estimate the total

genotypic variance-covariance matrix between the correlated traits and decompose

it in terms of QTL-specific variance-covariance matrices. It is expected that this

method of multiple-trait multiple-interval mapping (MTMIM) of correlated traits

will be more rewarding and can enhance the speed of MAS.

2.5 Mapping QTL Using Prior Information: A Bayesian
Approach for QTL Mapping

In genetics, Bayesian analysis has been used for a long time and has now become an

integral part of the QTL mapping studies. It is always said that statistics deals with

uncertainty that is relative to the information we have [52]. In other words, the less

information, the more uncertainty, and vice versa. As opposed to the commonly

used methods of QTL analysis (SMA, SIM, and CIM), also called frequentist

methods, which depend on the fixed parameters, Bayesian analysis deals with the

uncertainty of the data based on prior information that is gathered and updated

regularly to draw the posterior distribution according to Bayes’ rule. It therefore
allows for easy and systematic incorporation of prior knowledge into the data

analysis [53]. Accordingly, a Bayesian model consists of three components:

(1) prior distribution, (2) conditional distribution, and (3) posterior distribution.

Although once considered to be computationally demanding, in recent years the

Bayesian application has become an integral part of not only QTL analysis exper-

iments, but also of association mapping [54, 55] and genomic selection

(GS) experiments [56, 57]. This all has been made possible due to advances in

the computational methodologies over the last few years. In one of its earliest

demonstrated uses in QTL mapping, Satagopan et al. [58] used the Bayesian

principle for estimating the locations and effect parameters for multiple QTLs

with pre-specified numbers of QTLs in a DH progeny of Brassica napus. Since
then, a large number of studies on crop plants involving the principles of Bayesian

statistics have been published and it has now become an almost integral part of any

analyses.

With the growing interest in this approach, new models were also proposed that

facilitated the analysis of binary and ordinal traits [59, 60], interacting QTLs/

epistasis [61–63], permutation testing [64], QE interactions [65], multiple QTL

analysis [66], multiple trait analysis [67, 68], and pleiotropy [69]. The complexity

of identifying epistatic QTLs, appropriate model selection, and many other issues
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that earlier plagued the efficient analysis of QTLs were addressed in these studies.

The only concern that might limit the use of the Bayesian approach in analysis is

that different conclusions can be drawn by different researchers if they use different

priors in their analysis [2, 70]. Notwithstanding this, Bayesian statistics is the

preferred choice of the statistician and will be used for a long time in all aspects

of genetic analysis.

2.6 The Analysis of Traits for Which Data Are Recorded
Periodically: QTL Mapping for Dynamic Traits

In majority of the QTL mapping studies, the data on a quantitative trait measured at

a fixed time point or stage of growth/ontogenesis are used for analysis. This way of

analyzing the data can identify QTLs and estimate their effects, which are accu-

mulated over time from the beginning of growth until the time of actual observa-

tion. However, it is a well-known fact that the development of a trait is an end result

of differential activities of many related QTLs, which express during the life cycle

of the crop. This is because the developmental traits are under the control of genes,

which are expressed at specific stages of development in response to the existing

environmental conditions. Therefore, the traits for which phenotypic values change

over time during the period of growth are called dynamic traits. Wu et al. [71] called

the QTL mapping of such traits time-related mapping (TRM), as opposed to time-

fixed mapping (TFM) for the traits for which the data are recorded at a fixed time or

stage. Later, Wu and Lin [72] termed this aspect “functional mapping.” The

advantage with this approach is that recorded observations of the same individuals

over different developmental stages are a form of replication that can increase the

statistical power of QTL detection. Besides this, another important advantage of

this approach is that the stage of growth at which the heritability of the trait is

highest can also be identified. The QTLs identified at this stage will be more useful

for a breeding program involving MAS [73]. One of the very common examples of

this is plant height in crops, for which the differences are visible during early

growth but are neutralized/minimized towards maturity.

Several QTL mapping studies have been carried out for dynamic traits in

different crop plants and have reported some common as well as growth-stage

specific QTLs. Earlier this approach was successfully used in rice to identify QTLs

associated with increased grain filling percentage per panicle [74]. Similarly,

dynamic QTLs for seed reserve utilization were identified during three germination

stages in rice [75]. It was observed that more QTLs express at the late germination

stage. Osman et al. [76] used this approach along with conditional analysis for

growth and yield traits under submergence conditions in maize and identified some

common and some stage-specific QTLs. Similarly, in a recent study in triticale a

population comprised of 647 doubled haploid lines derived from four families were

phenotyped for plant height using a precision phenotyping platform at multiple time

Trait Mapping Approaches Through Linkage Mapping in Plants 63



points. The study identified main effect and epistatic QTLs for plant height for each

of the time points. Some of these QTLs were detected at all time points whereas

others were specific to particular developmental stages, while the contribution of

the QTL to the genotypic variance of plant height also varied with time

[77]. Recently, a Bayesian nonparametric approach was also proposed for the

analysis of dynamic traits [78], which offers advantages over the existing methods

of analysis. The only limitation of this method is that it cannot be used for traits on

which periodical observations are not possible (for example, grain protein content,

grain yield, etc.).

2.7 Analysis of Traits for Which Data Are Scored
on a Numeric Scale: QTL Mapping for Ordinal Traits

QTL analysis of the trait is based on the data that are recorded on a continuous scale

with the assumption that they show normality. However, in nature, many quantita-

tive traits in plants like disease resistance or quality parameters are recorded on a

certain scale in several ordered categories based on intensity or severity. Although

these traits are quantitative in nature, the data do not show continuous variation and

therefore contain less information. These types of traits are called ordinal traits, and

appropriate statistical treatment is required to deal with this type of trait distribu-

tion. Nevertheless, in many earlier published reports of QTL mapping, data on

ordinal traits was analyzed in the same way as that of continuous traits. One of the

reasons attributed for treating these traits similarly in earlier studies was partly the

lack of availability of statistical tools to deal with these traits. However, QTL

mapping methods for dealing with ordinal traits have evolved over the years,

with more emphasis on traits studied in humans than in plants.

Earlier methods for QTL analysis of ordinal traits in back-crossed populations

using the general linear model (GLM) were proposed by Hackett and Weller [79],

and Xu and Atchley [80], which was later extended to four-way crosses by Rao and

Xu [81]. An improvement over the existing GLM method was later proposed by Xu

and Xu [82] in the form of a multivariate model to deal with the ordinal traits based

on the EM algorithm. Subsequently, the principle of MIM described earlier for

continuous traits was also extended to ordinal and binary traits for the identification

of multiple QTL effects and epistasis [83]. This method is also included in the

popular QTL analysis program QTL Cartographer. More recently, another

approach based on an efficient hierarchical GLM was proposed for the identifica-

tion of main-effect QTL and QE interactions governing ordinal traits in AM

experiments [84].

64 P. L. Kulwal



2.8 Meta-QTL Analysis

During the last two decades, there has been a surge in the number of QTL mapping

studies in different crop plants, which has resulted in several thousand published

articles (source, Google Scholar). It is also seen that QTL mapping for the same

traits are carried out in different genetic backgrounds in the same crop, leading to

the identification of several QTLs. It thus necessitates the integration of QTL

mapping results from these individual experiments performed on the same crop to

identify common as well as novel loci/alleles underlying complex traits, for their

effective use in crop improvement programs [2]. Meta-analysis of QTLs is an

important approach that integrates information frommultiple QTL-mapping studies

and allows greater statistical power for QTL detection and more precise estimation

of their genetic effects. Besides this, meta-QTL analysis can help to refine the

genomic regions of interest frequently identified in different studies, and can

provide the closest flanking markers [85]. Hence, a meta-analysis can be more

rewarding than those of individual studies and can give greater insight into the

genetic architecture of complex traits [86].

Because of its ability to integrate results from several individual QTL mapping

studies, this approach has been used in many crops, and several meta-QTLs have

also been identified. In one of the first examples, Chardon et al. [87] used the

approach of Goffinet and Gerber [88] to study the genetic basis of flowering time in

maize by integrating results of several mapping studies. From the total of 313 QTLs

used for the study, they identified a total of 62 consensus QTLs and also reported a

twofold increase in the precision of QTL position estimation from the original one.

Several such studies were later carried out in different crops, including: disease

resistance in cocoa [89]; fiber quality, yield, and biotic and abiotic stress tolerance

in cotton [90, 91]; drought tolerance in rice [92]; late blight resistance and plant

maturity traits in potato [85]; root genetic architecture in rice [93] and maize [94];

and protein concentration in soybean [95]. A list of several such studies carried out

in cereals is also given in Gupta et al. [2]. These studies have also been made

computationally possible due to the availability of software tools like BioMercator

[96] and MetaQTL [97].

2.9 Mapping of QTLs for Gene Expression and for Large
and Small Molecular Weight Compounds: The Concept
of Genetical Genomics

As is the case with many physiological traits, variation in gene expression

(m-RNA), as well as that of large and small molecular weight compounds (protein

or metabolite), often shows a quantitative distribution, thereby allowing its genetic

dissection using the commonly used methods of QTL mapping [98]. Earlier, the

term genetical genomics was restricted only to the mapping of expression QTL
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(eQTL) [99]. However, the last decade has seen tremendous progress in terms of

cost-effective high-throughput genotyping techniques, which made it possible to

study the complexity of traits by measuring not only gene expression, but also

thousands of proteins and metabolites to map eQTL, protein QTL (pQTL), and

metabolite QTL (mQTL), respectively [100–102]. In the experiments involving

genetical genomics, data on gene expression or individual proteins or metabolites

can be used as a phenotype in QTL analysis. The large-scale data on gene expres-

sion (genetical genomics), if combined with genetics, can help in connecting

phenotypic variation to genotypic diversity and can lead to the identification of

genetic regulatory loci, and ideally genes, which explain the observed variation

[98]. The rationale behind this approach is that a specific gene’s expression level is
easier to quantify than the more complex developmental or physiological traits.

Thus, if the loci governing differential gene expression patterns is identified and

compared with that of the loci controlling a specific physiological trait, one can

have better understanding of the complex traits [103]. It is thus obvious that

integration of omics data in genetic studies can reduce the number of candidate

genes for a given QTL from hundreds to a sizeable list [98].

The earlier studies on genetical genomics predominantly utilized microarrays for

the analysis of mapping populations in a variety of species. However, experiments

involving microarrays are very expensive, thereby limiting their use in all such

studies. Metabolomics platforms on the other hand are much cheaper per sample

than transcriptomics, enabling large populations to be studied with sufficient

replication for moderate-to-low heritability traits. Moreover, most metabolomics

platforms are higher-throughput than transcriptomics, allowing for rapid analysis.

Therefore, in recent years there are increasing numbers of reports pertaining to

mQTL analysis in plants. Some of them have been described elsewhere ([2, 104];

also see Alseekh et al. [105]). Although earlier these studies were more common in

model species like Arabidopsis ([106] and references therein [107]), they are also

being carried out in different crops including potato [108], brassica [109], tomato,

and wheat. Very recently, a comprehensive mQTL analysis was carried out in

tomato, and a total of 679 mQTLs for secondary metabolism in tomato fruit

pericarp were detected in 76 introgression lines [105]. Similarly, in wheat, mQTL

analysis was combined with that of QTL analysis for agronomic traits in a doubled

haploid population [110]. These studies are not limited to biparental populations,

but are also becoming very popular in AM experiments (for details, see Luo [111]).

Genetical genomics has offered lots of understanding about the influence of

genetic factors on a biological system. However, as like any quantitative trait,

molecular networks are also influenced by environmental conditions. Therefore,

for a better and complete understanding of these networks, it is necessary that this

interaction component (genotype � environment) is also studied. Accordingly, a

modified concept called generalized genetical genomics was proposed by Li et al.

[112], which combines both the genetic as well as carefully chosen environmental

perturbations, to study the plasticity of molecular networks. This will help in

understanding how a genotype responds to different environmental conditions.

The utility of this approach was demonstrated in Arabidopsis by identifying
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G � E interactions in the metabolism of germinating seeds [113]. Although these

studies offer lots of information, the number of such studies in crop plants are not

many and may be due to the cost associated with such experiments [113].

2.10 Identification of QTLs Using Multiparental Mapping
Populations: Joint Linkage-Association Mapping

Generally, QTL mapping is carried out using a biparental mapping population for

which parental genotypes exhibit contrasting phenotypes for the trait of interest.

However, it is well recognized that such a mapping population will segregate for

only those alleles/QTLs for which the parental genotypes differ. This leaves out

many important QTLs that are controlling the trait but are not detected just because

the parental genotypes do not segregate for them. Therefore, another important

approach based on the principle of LD called association mapping (AM), also

called genome wide association studies (GWAS), was suggested. Large numbers

of studies involving AM have been published in different crop plants and are

beyond the scope of this chapter. For further details, readers are referred to another

chapter on this aspect in this book as well as detailed reviews [114–116]. It was also

realized that linkage-based interval mapping and LD-based AM have their own

advantages and limitations when used independently and therefore it was proposed

to integrate these two approaches into one approach called joint linkage-association

mapping (JLAM) [117]. This type of analysis has been facilitated by the availability

of next-generation multiparental mapping populations like Multi-parent Advanced

Generation Intercross (MAGIC) populations, Nested Association Mapping (NAM)

populations, Multiline Cross Inbred Lines (MCILs), and Recombinant Inbred

Advanced Intercross Lines (RIAILs) [2, 118].

These populations have been developed in many important crops including

wheat, rice, maize, chickpea, pigeonpea, peanut, barley, oat, and tomato (for

details, see review by [119, 120]). Although it may not be feasible to develop

multiparental populations in all crops, alternatively one can perform JLAM using a

number of biparental populations as well as an association-mapping population

genotyped with a common set of markers. Several variants of JLAM were later also

proposed including that for the analysis of multi-trait data [121–123]. The utility of

JLAM was shown by Lu et al. [124] in maize. Using the NAM population, they

identified 18 new QTLs and candidate genes for drought tolerance, which were

earlier not identified by either of the two methods individually. Recently, in

rapeseed, this method has identified two major pleiotropic QTLs for seed weight

and silique length [125]. Another advantage of using JLAM is that it can effectively

address the issue of rare alleles, which is a matter of concern in any AM study

[114]. Looking into its important features, this method will be used for a long time

in many more crops.
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2.11 Quantitative Resistance Loci (QRLs) Governing
Quantitative Disease Resistance (QDR)

It is now well recognized that disease resistance in crop plants is quantitative in

nature, involving major as well as minor QTLs. Accordingly, they are described

either as R genes (having major effect) or quantitative resistance loci (QRL), which

governs quantitative disease resistance or QDR in crop plants [126]. While dealing

with QRL, the data on QDR are analyzed in the same way as that of any QTL

analysis experiment for any morphologic or agronomic trait. It is therefore unnec-

essary to make a distinction between QRLs and QTLs. This is also evident from the

fact that in several earlier studies involving QDR, the term QTL was used instead of

QRL. In the last few years, large numbers of these so-called QRLs have already

been identified in different crop plants including cereals and legumes, which

subsequently led to map-based cloning of some of these QRLs. A partial list of

such cloned QRLs in cereals is available in Gupta et al. [2].

In recent years advances in whole genome sequencing accompanied by the

availability of high-throughput marker approaches like GBS has brought down

the cost of genotyping drastically. These advances in genotyping technologies, if

accompanied with precise and high-throughput phenotyping for QDR, will defi-

nitely facilitate the elucidation of complex forms of disease resistance and QRLs

associated with them in crop plants [127–129]. It is expected that the knowledge

gained from detailed understanding of QDR and that of associated QRLs will help

in breeding varieties for disease resistance in crop plants in coming years. An

optimal strategy is therefore needed to effectively and efficiently use the identified

QRLs in breeding programs aimed at disease resistance [128, 129].

Some of the earlier successful examples of MAS for QRLs include: (1) MAS for

single QRL for Fusarium head blight (FHB) in wheat [130], leaf rust in barley

[131], white mold in common bean [132]; (2) multiple QRLs (pyramiding or

stacking) for stripe rust in barley [133], common bacterial blight (CBB) in common

bean [134], FHB in wheat ([135]; for a review, see Miedaner and Korzun [136]),

root and stem rot in pepper [137]; and (3) QRLs plus qualitative resistance genes for

stripe rust in barley [138], bean golden mosaic virus (BGMV) in common bean

[139], potato virus Y in pepper [140], and many others.

2.12 Discovery and Introgression of Useful QTLs from Wild-
Type or Unadapted Germplasm: Advanced Backcross
QTL Analysis

One of the reasons often attributed to the limited use of identified QTLs in crop

improvement programs is that QTL identification and varietal development are

considered as separate activities. In order to deal with this issue and to harness the

potential of the wild/unadapted germplasm in breeding programs, Tanksley and
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Nelson [141], while working on tomato, proposed a novel method of QTL mapping

called advanced backcross QTL (AB-QTL) analysis. The important feature of this

method is that one can simultaneous detect and transfer useful QTLs from the wild/

unadapted relatives to a popular cultivar. The backcross population (BC2, BC3) is

developed from a cross between the superior cultivar and a wild species carrying

the desirable trait, and molecular markers are used to monitor the transfer of

desirable QTLs.

It is a means of reducing the number of donor parent alleles present in any given

backcross inbred line. The reason for delaying QTL analysis until an advanced

generation like BC2, BC3 is that it allows the phenotypic selection to reduce the

frequency of deleterious alleles and at the same time favorable donor alleles at QTL

can be more easily recognized. Since its demonstrated success in tomato, it has been

used in several crops including wheat, barley, and rice for the transfer of desirable

QTLs for a variety of traits from the wild/unadapted germplasm. Details of these

studies are readily available in several reviews and book chapters. In recent years,

its application has been seen in barley for proline accumulation and leaf wilting

under drought stress conditions [142]; in rice for salinity tolerance [143], grain

shape [144], and reproductive stage drought resistance [145]; and in peanut for

resistance to root knot nematode [146]. Having practical significance in breeding

programs, this method is going to be used for a long time.

3 Factors Affecting Results of QTL Mapping in Plants

Several factors that influence the results of any QTL-mapping experiment have

been widely discussed in the literature either using computer simulations or empir-

ical data (e.g., [8, 147–149]). Important factors amongst them are trait heritability,

nature and size of mapping population, number of markers, and method of analysis

(Table 2). All these factors are related to each other. For example, a mapping

population of an average size of n ¼ 200 will yield a low-density linkage map,

which in turn will limit the precision and resolution of the QTL so identified. The

end result will be that the estimates of QTL effects will be biased as QTLs with

small effects will not be identified and those that are closely linked will not be

separated. These factors are discussed in more detail in the following sections.

There are other issues that should be considered before initiating the QTL-mapping

experiment, and which have been discussed in greater detail by Wurschum

et al. [150].

3.1 Heritability of the Trait

It is a well-known fact that the majority of the quantitative traits exhibit poor

heritability, which makes it difficult to detect a minor effect QTL with a smaller
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population size and limited number of markers. Another issue with low heritability

traits in QTL mapping is that QTL effects are always overestimated. This has been

demonstrated empirically as well as by using simulations in several studies.

Although heritability of the trait cannot be increased, scoring of the data in dynamic

fashion wherever possible can help in identifying the correct stage of crop growth

where heritability for the given trait is highest. This can also help in identifying

novel loci that are specific to the growth stage and often escape detection. Similarly,

the mapping population can also be evaluated at different locations and over the

years for the trait of interest to resolve location and year effects.

3.2 Size and Nature of Mapping Population

Often, small mapping populations are used in linkage mapping experiments.

Although one can develop a framework linkage map with smaller populations, it

may not be suitable for QTL mapping. Therefore, the use of larger populations has

always been appreciated for bringing precision in the QTL mapping studies. It has

been shown that with a population size of >200, methods like ICIM achieve

unbiased estimations of QTL position and effect. On the contrary, when using a

smaller population size, there is a tendency for the QTL to be located towards the

center with overestimated QTL effects [148]. Earlier also it was shown that

statistical power, QTL effect estimates, and precision of QTL localization can be

improved from larger populations [147, 151, 152]. Therefore, sufficiently large

Table 2 Factors influencing results of QTL mapping using biparental populations

Factor Details

Size of mapping population More the number of individuals in the population, more

accurate will be the linkage map and more accuracy in the

QTL results; chances of detecting QTL with minor effect is

high with larger population size

Nature of mapping population F2 < BC < DH � RILs

Density and coverage of markers

in the linkage map

More the markers on the map, less the interval distance

between two markers and more accuracy in the results

Statistical method used SMA < SIM < CIM < ICIM � BIM

Heritability of the trait More the heritability of the trait, more the chances of QTL

detection

Significance criteria used More false positives with arbitrary significance criteria;

robustness and accuracy increases with permutation test and

threshold values

Effect of environment If the effect size of the QTL is small, it may not be detected

in all the environments

Experimental error Precision in phenotyping is crucial; errors in scoring of

genotypic data as well as missing marker data can affect the

order of markers on the linkage map and can affect the

estimated QTL location

70 P. L. Kulwal



populations are needed for QTL mapping studies [29]. However, population size

cannot be arbitrarily increased due to increasing costs associated with phenotyping

all the lines. This issue can be overcome to some extent by using a large number of

markers and high-density marker maps that can increase the precision of QTL

mapping.

3.3 Number of Markers in the Linkage Map

The recent advances in cost-effective high-throughput genotyping techniques have

made it possible to generate thousands of data points in several crops. These

advances are also being effectively utilized in several GWAS and GS experiments.

However, in the majority of the earlier studies on QTL mapping, linkage maps were

developed using a rather limited number of markers. Using computer simulations, it

was earlier shown that a marker density of 10–20 cm is sufficient for precise QTL

detection and that there is no added advantage from higher marker densities

[147, 153]. It is therefore often debated whether the biparental QTL mapping

studies would benefit from high-density maps. Contrary to this, later it was

shown that high-density maps could increase the probability and precision of

QTL detection between two recombination breakpoints and tightly linked markers

could be identified [154–156]. Moreover, two tightly linked QTLs can also be

separated using high-density maps [148]. However, in a recent study based on a

computer simulation as well as on experimental data of DH populations in maize, it

was shown that high-density maps neither improved the QTL detection power nor

the predictive power for the proportion of genotypic variance explained [157]. Fur-

thermore, they observed that the precision of QTL localization, the precision of

effect estimates for small- and medium-sized QTLs, as well as the power to resolve

closely-linked QTLs profited from an increase in marker density from 5 to 1 cM.

However, from an MAS point of view, precise estimates of QTL effects are more

desirable and these relevant parameters may outweigh the higher costs of high-

density genotyping [157].

3.4 Method of Analysis

Different methods of QTL mapping have been discussed in the earlier sections. The

choice of method for QTL analysis also influences the outcome of the study. For

example, ICIM has been found to be more powerful in separating tightly linked

QTLs than the commonly used IM [148]. As has been discussed, the importance of

interacting QTLs (QQ, QE, and QQE) cannot be underestimated. Therefore, while

conducting any QTL analysis, it is necessary to choose the appropriate method that

will not only identify main effect QTLs, but also different interactions with higher

precision.
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4 Computer Programs for QTL Analysis

Over the years, several QTL mapping approaches have been proposed, making it

possible to identify thousands of marker-trait associations in crop plants. Credit for

these studies also goes partly to the availability of different computer programs that

facilitated these studies in a rapid manner. Since the development of the popular

computer program MAPMAKER/QTL [158], large numbers of such programs are

now available that can be efficiently used for the identification of QTLs using either

biparental QTL mapping or association mapping. The majority of these programs

are available free of cost. In recent years a shift has also been seen from the use of

standalone programs to open-source environments like R. It can run on a variety of

platforms and has the same ability as statistical computing and graphics (http://

www.r-project.org/). A comprehensive, though not exhaustive, list of different

types of software that can perform QTL analysis, along with their features, are

given in Table 3. Similarly, a detailed list of computer programs available for AM is

given in Gupta et al. [114].

5 Conclusion and Outlook

During the last two decades or more, significant progress has been witnessed in the

studies involving complex quantitative traits in crop plants. This has been facili-

tated by the availability of the cost-effective high-throughput genotyping tech-

niques as well as the constantly improving area of statistical genomics. Several of

the identified QTLs for various traits have been, and are being, successfully used in

the crop improvement programs following MAS. Starting from SMA and SIM to

ICIM, and more recently BIM, QTL-mapping approaches have evolved over the

years. These advances not only improved the understanding and precision of the

QTL-mapping results but also the outcome of the MAS program. The increasing

emphasis on the identification of interacting QTLs (QQ, QE, and QQE) has also

provided a new dimension to the traditional QTL mapping studies. With growing

interest in the area of genetical genomics involving eQTL, pQTL, and mQTL,

coupled with generalized genetical genomics, it is expected that a better under-

standing about the biosynthetic pathways underlying complex traits will be gained.

In the future, the approaches of biparental QTL mapping as well as of

AM/GWAS, either performed independently or in combination, will be used in

many more crops using the recent advances in genomics. Methods like JLAM have

the ability to harvest the benefits of both the approaches together as has been

successfully demonstrated in maize [150, 181]. Similarly, the recent advances in

the area of GS will address the issue of minor QTLs by way of considering the

effects of all the markers simultaneously. Thus, it is evident that the progress made

in the area of QTL mapping is huge and will be further benefited by recent advances
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Table 3 List of computer programs available for QTL analysis

Program Important features Reference

SAS program ANOVA Knapp and

Bridges [159]

MAPMAKER/

QTL

SIM, DOS based Lincoln et al.

[158]

MQTL CIM Tinker and

Mather [160]

PLABQTL SIM, CIM, Epistatic QTL Utz and

Melchinger

[161]

QGene SIM, CIM Nelson [162]

SOLAR Almasy and

Blangero [163]

Multimapper BIM Sillanpaa and

Arjas [164]

BQTL Bayesian estimation, IM, CIM, runs on R Berry [165]

MultiQTL SIM, MIM www.multiqtl.

com

MapManager

QTX

SIM, CIM Manly and

Olson [166]

QTL network CIM, Epistatic QTL Wang et al. [30]

Pseudomarker Analysis of eQTL Sen and Chur-

chill [167]

QTL Express SIM, CIM Seaton et al.

[168]

R/qtl SIM, CIM, Epistatic QTL Broman et al.

[169]

BioMercator Meta-analysis Arcade et al.

[96]

GridQTL Linkage-Disequilibrium-Linkage-Analysis (LDLA) tool,

epistasis

Seaton et al.

[170]

Genotype matrix

mapping

SIM, CIM, Epistatic QTL Isobe et al.

[171]

IciMapping ICIM, epistasis Li et al. [28]

MetaQTL Meta-analysis Veyrieras et al.

[97]

QTLBIM Map multiple interacting QTL, can handle continuous,

binary and ordinal traits, R based

Yandell et al.

[172]

FlexQTL Single bi-parental mapping population up to complex

multi-generations pedigrees, Bayesian analysis

Bink et al. [173]

QTLMap Linkage analysis and linkage disequilibrium linkage

analysis (LDLA); eQTL, single and multiple trait analysis

http://www.

inra.fr/qtlmap

MAPQTL 6 SIM, CIM van Ooigen

[174]

QTLMiner Discovery of candidate gene within a QTL region Alberts and

Schughart [175]

MapDisto Linkage mapping; ANOVA Lorieux [176]

(continued)
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in computational tools. The success will translate into the crop-improvement pro-

grams of the future.

References

1. Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in

Phaseolus vulgaris. Genetics 8:552–560
2. Gupta PK, Kulwal PL, Mir RR (2013) QTL mapping: methodology and applications in cereal

breeding. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Dordrecht, pp

275–318

3. Kulwal PL, Thudi M, Varshney RK (2012) Genomics interventions in crop breeding for

sustainable agriculture. In: Meyers RA (ed) Encyclopedia of sustainability science and

technology, vol I. Springer, New York, pp 2527–2540

4. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future

challenges. Trends Plant Sci 10:297–304

5. Wang M, Wang S, Xia G (2015) From genome to gene: a new epoch for wheat research?

Trends Plant Sci 20:380–387

6. Asins M (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant

Breed 121:281–291

7. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers,

quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement:

the basic concepts. Euphytica 142:169–196

8. Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental

populations. Nat Rev Genet 3:43–52

9. Frommlet F, Bogdan M, Ramsey D (2016) Statistical methods of QTL mapping for exper-

imental populations. Phenotypes and genotypes. Springer, London, pp 73–104

10. Gupta PK, Kulwal PL (2006) Methods of QTL analysis in crop plants: present status and

future prospects. In: Trivedi PC (ed) Biotechnology and biology of plants. Avishkar Pub-

lishers, Jaipur, pp 1–23

11. Hackett CA (2002) Statistical methods of QTL mapping in cereals. Plant Mol Biol

48:585–599

12. Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet

33:303–339

Table 3 (continued)

Program Important features Reference

Windows QTL

Cartographer

SIM, CIM, MIM, multi-trait IM, BIM, Ordinal trait Wang et al. [36]

MAPfastR QTL mapping from inbred and outbred line-crosses; epi-

static interactions, R based

Nelson et al.

[177]

Dslice Dependency detection between a categorical variable and

a continuous variable, R based

Ye et al. [178]

EBEN Multiple QTL mapping, Bayesian mapping, R based Huang et al.

[119, 120]

FastQTL cis-QTL mapping strategy Ongen et al.

[179]

Solarius Linkage and association mapping, R based Ziyatdinov et al.

[180]

74 P. L. Kulwal



13. Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary

biology. Nat Rev Genet 2:370–381

14. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

15. Xu Y (1997) Quantitative trait loci: separating, pyramiding, and cloning. Plant Breed Rev

15:85–139

16. Michelmore WR, Paran I, Kesseli RV (1991) Identification of marker linked to disease

resistance genes by bulked segregant analysis, a rapid method to detect the markers in specific

genetic region by using the segregating population. Proc Natl Acad Sci U S A 88:9828–9832

17. Vikram P, Swamy BM, Dixit S, Ahmed H, Cruz MS, Singh AK, Ye G, Kumar A (2012) Bulk

segregant analysis: “an effective approach for mapping consistent-effect drought grain yield

QTLs in rice”. Field Crops Res 134:185–192

18. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H,

Tamiru M, Takuno S, Innan H (2013) QTL-seq: rapid mapping of quantitative trait loci in rice

by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

19. Kujur A, Bajaj D, Saxena M, Tripathi S, Upadhyaya H et al (2014) An efficient and cost-

effective approach for genic microsatellite marker-based large scale trait association map-

ping: identification of candidate genes for seed weight in chickpea. Mol Breed 34:241–265

20. Broman KW (2001) Review of statistical methods for QTL mapping in experimental crosses.

Lab Anim 30:44–52

21. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using

RFLP linkage maps. Genetics 121:185–199

22. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987)

MAPMAKER: an interactive computer package for constructing primary genetic linkage

maps of experimental and natural populations. Genomics 1:174–181

23. Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

24. Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping

quantitative trait loci. Proc Natl Acad Sci U S A 90:10972–10976

25. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

26. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping.

Genetics 138:963–971

27. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative

character. Genetics 142:285–294

28. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval

mapping. Genetics 175:361–374

29. Holland JB (2001) Epistasis and plant breeding. Plant Breed Rev 21:27–92

30. Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and

QTL � environment interactions by mixed linear model approaches. Theor Appl Genet

99:1255–1264

31. Pang X, Wang Z, Yap JS, Wang J, Zhu J, Bo W, Lv Y, Xu F, Zhou T, Peng S, Shen D (2013)

A statistical procedure to map high-order epistasis for complex traits. Brief Bioinform

14:302–314

32. Jannink JL, Jansen R (2001) Mapping epistatic quantitative trait loci with one-dimensional

genome searches. Genetics 157:445–454

33. Kulwal PL, Singh R, Balyan HS, Gupta PK (2004) Genetic basis of pre-harvest sprouting

tolerance using single-locus and two-locus QTL analyses in bread wheat. Funct Integr

Genomics 4:94–101

34. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci.

Genetics 152:1203–1216

35. Laurie C, Wang S, Carlini-Garcia LA, Zeng Z-B (2014) Mapping epistatic quantitative trait

loci. BMC Genet 15:112

36. Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer 2.5. Department of

Statistics, North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/

WQTLCart.htm

Trait Mapping Approaches Through Linkage Mapping in Plants 75

http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
http://statgen.ncsu.edu/qtlcart/WQTLCart.htm


37. Huang A, Xu S, Cai X (2014) Whole-genome quantitative trait locus mapping reveals major

role of epistasis on yield of rice. PLoS One 9:e87330

38. Sandhu N, Singh A, Dixit S, Cruz MT, Maturan PC, Jain RK, Kumar A (2014) Identification

and mapping of stable QTL with main and epistasis effect on rice grain yield under upland

drought stress. BMC Genet 15:63

39. Kulwal PL, Kumar N, Kumar A, Gupta RK, Balyan HS, Gupta PK (2005) Gene networks in

hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct Integr

Genomics 5:254–259

40. Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL analysis for yield and yield

contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177

41. Xing W, Zhao H, Zou D (2014) Detection of main-effect and epistatic QTL for yield-related

traits in rice under drought stress and normal conditions. Can J Plant Sci 94:633–641

42. Berger DK, Carstens M, Korsman JN, Middleton F, Kloppers FJ, Tongoona P, Myburg AA

(2014) Mapping QTL conferring resistance in maize to gray leaf spot disease caused by

Cercospora zeina. BMC Genet 15:60

43. Ku LX, Sun ZH, Wang CL, Zhang J, Zhao RF, Liu HY, Tai GQ, Chen YH (2012) QTL

mapping and epistasis analysis of brace root traits in maize. Mol Breed 30:697–708

44. Bocianowski J (2013) Epistasis interaction of QTL effects as a genetic parameter influencing

estimation of the genetic additive effect. Genet Mol Biol 36:93–100

45. Bocianowski J (2014) Estimation of epistasis in doubled haploid barley populations consid-

ering interactions between all possible marker pairs. Euphytica 196:105–115

46. Jiang C, Zeng Z-B (1995) Multiple trait analysis of genetic mapping for quantitative trait loci.

Genetics 140:1111–1127

47. Korol AB, Ronin YI, Kirzhner VM (1995) Interval mapping of quantitative trait loci

employing correlated trait complexes. Genetics 140:1137–1147

48. Korol AB, Ronin YI, Nevo E, Hays PM (1998) Multi-interval mapping of correlated trait

complexes. Heredity 80:273–284

49. Kulwal PL, Roy JK, Balyan HS, Gupta PK (2003) QTL analysis for growth and leaf

characters in bread wheat. Plant Sci 164:267–277

50. Apotikar DB, Venkateswarlu D, Ghorade RB, Wadaskar RM, Patil JV, Kulwal PL (2011)

Mapping of shoot fly tolerance loci in sorghum using SSR markers. J Genet 90:59–66

51. Silva LDCE, Wang S, Zeng Z-B (2012) Multiple trait multiple interval mapping of quanti-

tative trait loci from inbred line crosses. BMC Genet 13:67

52. Chen Z (2013) Statistical methods for QTL mapping. CRC Press, Boca Raton, pp 1–308

53. Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet

5:251–261

54. Li J, Das K, Fu G, Li R, Wu R (2011) The Bayesian lasso for genome-wide association

studies. Bioinformatics 27:516–523

55. Stephens M, Balding DJ (2009) Bayesian statistical methods for genetic association studies.

Nat Rev Genet 10:681–690

56. Kärkkäinen HP, Sillanpää MJ (2012) Back to basics for Bayesian model building in genomic

selection. Genetics 191:969–987

57. Sun X, Habier D, Fernando RL, Garrick DJ, Dekkers JC (2011) Genomic breeding value

prediction and QTL mapping of QTLMAS2010 data using Bayesian methods. BMC Proc 5:1

58. Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A Bayesian approach to detect

quantitative trait loci using Markov Chain Monte Carlo. Genetics 144:805–816

59. Yi N, Xu S (2000) Bayesian mapping of quantitative trait loci for complex binary traits.

Genetics 155:1391–1403

60. Yi N, Banerjee S, Pomp D, Yandell BS (2007) Bayesian mapping of genomewide interacting

quantitative trait loci for ordinal traits. Genetics 176:1855–1864

61. Meyer da Silva A, Leandro RA, Garcia AA, de Souza AP (2013) A Bayesian approach to map

QTL and to detect epistatic effects in a maize population. Rev Bras Biom 31:558–581

76 P. L. Kulwal



62. Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait

loci. Biometrics 63:513–521

63. Yi N, Xu S, Allison DB (2003) Bayesian model choice and search strategies for mapping

interacting quantitative trait loci. Genetics 165:867–883

64. Kopp A, Graze RM, Xu S, Carroll SB, Nuzhdin SV (2003) Quantitative trait loci responsible

for variation in sexually dimorphic traits in Drosophila melanogaster. Genetics 163:771–787
65. Bauer AM, Hoti F, Von Korff M, Pillen K, Léon J, Sillanpää MJ (2009) Advanced backcross-
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