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Case Studies in Modelling, Control in Food
Processes

J. Glassey, A. Barone, G.A. Montague, and V. Sabou

Abstract This chapter discusses the importance of modelling and control in

increasing food process efficiency and ensuring product quality. Various

approaches to both modelling and control in food processing are set in the

context of the specific challenges in this industrial sector and latest developments

in each area are discussed. Three industrial case studies are used to demonstrate the

benefits of advanced measurement, modelling and control in food processes. The

first case study illustrates the use of knowledge elicitation from expert operators in

the process for the manufacture of potato chips (French fries) and the consequent

improvements in process control to increase the consistency of the resulting

product. The second case study highlights the economic benefits of tighter control

of an important process parameter, moisture content, in potato crisp (chips) man-

ufacture. The final case study describes the use of NIR spectroscopy in ensuring

effective mixing of dry multicomponent mixtures and pastes. Practical imple-

mentation tips and infrastructure requirements are also discussed.
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1 Introduction

Food production, quality and the security of supply chains remain critical societal

challenges requiring more and more advanced scientific and engineering methods

to address the arising issues. The benefits of modelling and control approaches in

achieving a better process understanding, higher yields and more consistent product

quality have been widely recognised in other industrial activities, such as

chemical and biochemical processes [1, 2]. Similar benefits of modelling and

control approaches have also been demonstrated in various sectors of the

food industry [3–7].

The strict regulatory environment in which the food industry operates also

necessitates effective use of modelling and control strategies to ensure food safety,

authenticity and quality. For example, Humphrey [8] provides a comprehensive

review of the current food safety and regulatory strategies, highlighting in particular

the differences between the regulatory schemes in the USA and EU. Dora et al. [4],

on the other hand, provide a review of a food quality management system concen-

trating specifically on the assessment strategies and a feasibility study for small and

medium-sized European food enterprises.

Perhaps the most widely recognised and internationally accepted system of

effective food safetymanagement is the Hazard Analysis and Critical Control Points

(HACCP) approach [9–11]. Glassey [12] discusses the implementation steps of

HACCP as well as their interlinkage with the Process Analytical Technologies
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(PAT) and the implications of this and other regulatory frameworks upon

data management in the food industry.

The major emphasis of this chapter is on advanced modelling and control

approaches currently being proposed for use in the food industry sector. Through

case studies, the major challenges and approaches are described and the oppor-

tunities identified.

1.1 Modelling and Control Challenges in the Food Industry

The fundamental requirements of any control scheme include a reliable measure-

ment of the relevant process variables and the ability to modify identified manipu-

lated variables effectively to maintain the desired process state. These requirements

pose specific challenges within the food processing sector, where the ability to

obtain representative measurements throughout the processing chain from the raw

material though intermediate stages to the final product are frequently affected by a

range of external factors. As Hitzmann et al. [13] highlighted in their status report

on PAT in the food industry, the properties of raw materials, the complex trans-

formations during the processing chain [14] and the perishable nature of the

products all contribute to the increased complexity of the challenge. Ropkins and

Beck [15] and Hitzmann et al. [13] argue that traditional end-point food testing

does not provide an effective assurance of food safety for a number of reasons.

These include [8]:

• The challenge of obtaining a representative sample, requiring substantial

sub-sampling of food for analysis

• A limited assurance of safety as only those hazards specifically tested for can be

assured

• A range of difficulties associated with traditional testing procedures, such as

time and resource demand, destructive nature and the difficulty of interpretation

• Reactive nature of control

• The most significant issue of product safety being assured only at the end-point

rather than ‘building it into the product through prevention’

1.1.1 Advanced Measurement

Although this chapter deals predominantly with the modelling and control appli-

cation case studies, it is important to highlight the importance of a representative

measurement of the process state as a critical requirement for effective control. A

wide range of scientific publications deals with detailed descriptions of traditional

and more advanced analytical techniques used to assess the quality and authenticity

of raw materials, intermediates and final products in the food processing chain.

These range from simple physico-chemical sensors, visual inspection and
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image analysis of raw materials and food products (e.g. [16–18]) to more advanced,

non-invasive fingerprinting techniques.

For example, Riedl et al. [19] and Nunes [20] review various applications of

vibrational spectroscopy and chemometrics to assess authenticity, adulteration and

intrinsic quality parameters of food and edible oils and fats, respectively. An

extensive review of the benefits of various spectroscopic approaches in this area

also provides useful reference material highlighting several modelling and data

analysis methods used to interpret the resulting measurements. Similarly,

Gutierrez-Capitan et al. [21] provide a review of the electronic tongue approach

in monitoring the quality of wines. Electronic tongues (similarly to electronic

noses) are devices containing an array of sensors, typically based on ion-selective

field effect transistors, providing a ‘fingerprint’ trace of the analysed food sample

(e.g. [18]).

Hitzmann et al. [13] argue the need for optical analytical methods, such as

various spectroscopic approaches, for a variety of reasons. These include, for exam-

ple, oxidative changes of raw materials during storage and processing, as well as

the critical importance of the visual impression of the final product and the

strict hygiene requirements throughout the production process and storage.

In such circumstances, non-invasive sensor systems are particularly useful.

1.1.2 Data Analysis and Modelling Approaches

The increasing use of fingerprinting analytical techniques, such as the optical

methods mentioned above, has led to increasing amounts and frequency of data

collected during processing, as discussed in Glassey [12]. Multivariate data analysis

methods capable of dealing with large, often highly correlated, data sets, reducing

their dimensionality and enabling correlations to be built between the measured raw

material characteristic, process data and the resulting product quality characteristics

have shown their benefits in a number of industries (e.g. [2, 19]). Principal com-

ponent analysis (PCA) and its variants have been used extensively to identify

underlying features in multidimensional data (e.g. [22]). On the other hand, various

regression methods, such as locally weighted regression, Partial Least Squares

(PLS) and its variants and nonlinear methods including artificial neural networks

were effectively used to develop models capable of quantitatively predicting the

desired process outputs (e.g. [21, 23]). Whilst this chapter does not intend to

provide details on these data analysis methods, they form an essential part of a

successful control of any process where process output measurements cannot be

directly obtained using analytical techniques. Readers are therefore referred to

various sources describing the fundamentals of these methods (e.g. [24, 25]).
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1.1.3 Process Control Approaches

The constantly increasing consumer expectations, market competition and strict

regulatory environment necessitate the use of increasingly more advanced control

approaches in the food industry. Such control approaches could not only contribute

to increased product quality consistency and safety; they could also improve the

manufacturing process efficiencies through reduced levels of finished product

rejections and recalls. These can affect both the economics of the process and the

impact upon the public trust and perception of manufacturers.

Several studies have shown the lack of competitiveness of European food indus-

tries as compared to North America and Australia [4] and the benefits of using

advanced quality management systems and Statistical Process Control (SPC)

approaches [26]. A comprehensive review of the use of SPC in the food industry

is presented by Lim et al. [5]. They provide a detailed analysis of a number of food

sector applications of SPC, with a very helpful time evolution indication for SPC

implementation in the food industry, highlighting its increasing integration in the

HACCP, ISO 9000:2000 and other quality management frameworks. The reviewed

articles highlighted ‘reduced process variation, improved food safety control,

improved knowledge about the process variation and cost savings’ as the most

cited benefits [5]. The most cited challenges included ‘resistance to change, lack of
sufficient statistical knowledge and lack of management support’ [5].

The case studies in this chapter indicate how benefits can be obtained even

through more established control approaches which often represent less of a chal-

lenge in terms of resistance to change or the need for detailed statistical knowledge,

yet still lead to tangible quality and cost benefits.

2 Case Study 1: Potato Chips (French Fries) Production

The first case study considers how an existing operating strategy can be ascertained

and improvements in the control system derived and justified. The process consi-

dered is a French fry line to which lorries transport potatoes from various growers to

the factory in loads of 20–30 tonnes. Each load is a single variety and from a single

supplier. When they arrive at the factory they are subjected to a number of quality

control tests and, if they pass these, they are unloaded into a storage bin. When

required for production, the potatoes from the bin are fed via conveyor belt to the

production line. First, the potatoes are peeled and then fed to a cutter to produce

chips of the required size and characteristics. The size is varied in response to

customer requirements. A sophisticated vision analysis system then removes from

the line any of the cut potatoes that contain defects. Following this, the cut potatoes

are partially cooked in a blancher and then pass into the dryer. The dryer acts to

regulate moisture to give the final product its correct texture. Following the dryer,

the chips are partially fried. The product is then frozen and packed ready for
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distribution to the customer. Quality control tests are carried out on the final packed

product to confirm that it meets customers’ specifications. The paramount produc-

tion objective is to manufacture French fries to quality criteria specified by the

various customers. To do so requires frequent changes to the processing equipment

to make product routinely whose quality falls within the target range.

2.1 Knowledge Elicitation

The first stage in the study involved determining what information existed on

process variations and current plant control policy. At the outset it was clear that

there was a considerable degree of manual intervention in plant operation. Whilst

control loops regulated variables such as blancher, dryer and fryer temperatures, the

set points of these controllers were specified by the plant supervisors based upon

their process expertise. The first step was to check that these controllers were

behaving acceptably. If local loops were not functioning correctly then controller

set point specification would be pointless. Observations of loop behaviour con-

firmed that all local control loops were functioning correctly. Following this, it was

necessary to get an appreciation of how and why the operators modified the

controller set points to regulate product quality. This information gathering

involved a series of knowledge elicitation sessions from the plant technical man-

ager and shift supervisors.

The Knowledge Acquisition Technique (KAT) used was developed by CK

Design and has proved to be an efficient knowledge elicitation tool and to result

in a complete, correct and consistent knowledge base [27]. The knowledge elici-

tation proceeds through successive overturning of the states of belief of the expert

about the core belief state. The line of questioning is carried out until the expert

believes there is no further condition to overturn the belief under the preceding

conditions. The knowledge base is structured in the form of exception graphs that

capture the expert’s decision process. Using the KAT method, working from the

core belief that the product quality was under control, exceptions were sought and

actions in the event of these exceptions occurring were obtained.

It is usually the case that no one person possesses all the knowledge pertaining to

the problem domain. It is therefore necessary in the initial project stages to identify

all those that may contribute to the knowledge base. A degree of overlap of know-

ledge between ‘experts’ is desirable as inconsistencies can be highlighted. In this

project several process supervisors and quality control laboratory staff were inter-

viewed, along with the past and present production manager. A set of several

exception graphs from the various experts resulted. The next stage was to combine

them into a single exception graph. This requires the project ‘owner’ to adjudicate if
conflicts arise. If the degree of inconsistency between ‘expert’ views is significant,
then little can be gained from the knowledge elicitation other than indicating that

the whole process operational strategy requires reconsideration. This was not the
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case in this study, with only minor inconsistencies, primarily in the severity of

response operators took in response to process problems. As a result, the current

control strategy was determined in the form of an exception graph. The exact details

of the current control strategy are confidential as are the precise details of the

CK Design technique, but the information shown in Fig. 1 is typical of the

rules obtained and level of detail produced.

Here it can be seen that State 1 indicates that the chip quality is acceptable unless

State 2 or State 3 is true. To indicate the type of structure and rules that arise,

consider the left hand side of the tree and the situation when a measurement is

received to indicate that State 2 is true (i.e. the moisture is high). Action 1 associated

with State 1 is taken. This confirms that State 1 is in fact true. As moisture is a

measured value and subject to error from a variety of sources, this reconfirmation is

necessary. If State 1 is still true after reconfirmation then State 4 is considered. If the

raw material moisture reduces significantly then it soon results in product moisture

reduction so no action is required. Otherwise Action 2 should be taken. In this

scenario, Action 2 is likely to involve a reduction in product drying.

Chip Quality is
acceptable

Colour is too lightMoisture is
high

Raw material moisture
falling by less than x%

or increasing

Fryer temperature
constant of decreased

State 1

State 3State 2

State 4 State 5

Action 2 Action 3

Action 4

Rule 1
Quality is acceptable unless moisture is high
Take Action 1 to confirm State 2 is true
If Action 1 confirms this is the case then
If moisture in the raw material is falling by more than x%
take no action (moisture will soon fall)
else
take Action 1

Action 1

Example from
States 1, 2 and 4

Fig. 1 Example of control strategy information
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2.2 Control Strategy Development

Moisture was identified as particularly important as product is sold by weight and

moisture targets set by customers are quite tight. At this stage the managing director

of the company not unreasonably asked how much money would be saved by

improving moisture control to ascertain whether it was a worthwhile undertaking.

Answering such a question requires the use of cost benefit analysis techniques. The

fundamental question to answer is how much is a control scheme going to save but

this must be answered before it is implemented. To attempt to resolve this ‘Catch
22’ question, use was made of techniques proposed by Anderson [28] and verified

in other industrial sectors (for example [29]). The underlying philosophy is that

improved control translates to reduced product variance. By decreasing product

quality variance it is still possible to stay within the range of acceptable product but

with a mean value of operation which can be changed. In this case, this could lead to

the mean value of product moisture increasing but still satisfying the customers’
quality control demands. From this situation, a simple financial calculation can be

undertaken to reveal what a move in product quality mean is worth. The current

operational records provide the information to determine existing variance. The

fundamental assumption proposed by Anderson [28] is that, by implementing

sophisticated control procedures on a process plant, the variance of the product

quality is at least halved. Indeed, in plants where significant manual intervention is

currently the norm, this is quite pessimistic. The new product distribution can be

estimated and the new mean operating point determined to ensure that quality

control still remains within the target range. Clearly, the figures relating to the

application are financially sensitive and are unable to be revealed. However, the

procedure outlined above was followed and the potential savings indicated were

significant and justified the continuation of the study.

Although product moisture is influenced by several operations on the line, the

main influence and therefore the control variables are within the dryer. The oper-

ation of the dryer is not an insignificant task. Analysis of the existing control policy

for moisture control revealed two important issues:

1. The severity of control changes to the same deviation varied from operator to

operator

2. The operators acted to correct process deviations using a feedback strategy

acting on information from the quality control laboratory

Whilst the first issue could easily be rectified, the second highlighted a funda-

mental control problem. Feedback control is not a particularly effective means of

controlling the process. Delays in the overall loop of 35 min at best are significant.

This would occur if a sample was taken from the line immediately a change reached

the sampling point. In the worst case, because samples to measure product moisture

are only taken every hour then the delay could amount to 95 min. When the line is

producing many tonnes of product, this could amount to significant

off-specification product. Of equal concern is that, with significant disturbances
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coming from raw material variation, a change in product moisture takes at least

55 min to be observed. Corrective action could then be taken but by this time a new

load of potatoes are being fed to the line because it takes around 60 min to process a

load. Such corrective action would therefore be completely inappropriate. Thus it is

clear that this scheme is fundamentally flawed.

In analysing the existing control scheme it is apparent that the problems are a

result of process and measurement delays and the sampling rate of the quality

variables. Even if the sampling rate could be increased significantly, which given

human resource requirements would be difficult, the fundamental problem remains

of process delay. Overcoming the problem of delay requires a predictive control

philosophy. If the answers to two fundamental questions are obtained then control

performance could be considerably improved upon. The two questions are:

1. If a change is made to the dryer, how does the product quality respond? If the

product is off-target or a change to the operating target is required, information on

how to change the dryer to get the product approximately within range can avoid

major reliance on delayed feedback. Although predictive information is never

perfect, the predictive action moves the product quality close to the desired value

and feedback could provide fine modifications to the operation. This avoids

typically well over an hours’worth of production potentially out of specification.
2. If the raw potato quality is known can its effect on product quality be predicted? If

so, by howmuch and when should the dryer be changed to compensate for it? If it

can be anticipated how a raw material change influences product quality, correc-

tive action can be taken in a feedforward control sense to nullify any changes in

raw material. It is realised that perfect process information is not available but

even approximate process information can serve to provide effective feedforward

control, with feedback control again providing fine modifications.

The modified control strategy is shown in Fig. 2.

Process operators
feedback actions

Influence of dryer
settings on

product moisture

Influence of raw
material on

 product moisture

Σ Σ Σ

Laboratory assays
of product
moisture

Process operators
feedforward actions

Potato moisture
variations

French fry
moisture content

Product desired
moisture content

-

-

++

Fig. 2 Modified control strategy for product moisture
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Two key control strategy parameters had to be specified for the scheme to

function acceptably. First, the feedforward controller gain was determined from

analysis of data produced from some simple plant tests. Observations of indepen-

dent variations of dryer temperature and raw material moisture on product moisture

provided the necessary information to determine the feedforward controller gain.

Second, inversion of the information on dryer temperature/product moisture pro-

vided the predictive information to determine by how much to increase temperature

to correct product moisture deviation.

2.3 Control Strategy Implementation

Trials of the new control scheme took place over a number of days of operation.

From a practical perspective it is important to note that no new instrumentation was

required and few, if any, extra laboratory analyses were undertaken. The essential

aspect of the new control philosophy was to use the available information but to

respond at appropriate times using knowledge of the likely outcomes of process

changes. The initial results were obtained in a series of process tests undertaken by

the development team in collaboration with the process operational staff. During

such tests, closer attention than normal is obviously paid to the process plant

operation. The worry is therefore that, although plant improvements are indicated,

in the longer term, when normal day-to-day operation resumes, without a specific

focus on the new policy little additional benefit is found. Long-term performance

compared with process behaviour prior to the introduction of the scheme is the best

way to judge whether this is indeed the case. This information is shown in

Fig. 3a. Figure 3a shows the performance of the production line prior to the

implementation of the control scheme. Laboratory samples measuring moisture

content are shown along with the tight bounds within which it is desirable to

operate. It can be seen that deviations outside of the bounds were frequent (56%

of the samples fall outside of the bounds). Figure 3b shows the behaviour of the

process following the introduction of the control scheme. Much tighter regulation

of the moisture content is apparent (10% of the samples fall outside of the bounds).

Slight oscillatory behaviour is observed within the bounds of operation. One of the

reasons for this is that potato loads are not selected at random to go through the

production line. The operators make an effort to put a load of similar moisture

content to the previous load through the line, hence introducing the observed

perturbations.

In interpreting these figures it must be remembered that the operational bounds

are tighter than the customers’ requirements but nevertheless, for the reasons

discussed previously, it is important to reduce variation as much as possible.

Returning to the cost/benefit analysis carried out prior to the implementation, it is

interesting to observe that the process variation has been almost exactly halved,

which is in line with the prevailing wisdom on improved control benefits.
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In summary, the case study set out to demonstrate that variations in product

quality in a food processing line could be reduced by the application of advanced

control methods. The KAT knowledge elicitation proved effective at obtaining an

initial idea of the control strategy. It highlighted where problems existed but it did

not provide a total solution. Once the failings of the current control scheme were

identified, cost benefit analysis revealed very clearly that improvements were

possible and the likely savings would more than justify the investment. The control

strategy itself was fairly straightforward to devise from a theoretical viewpoint,

with simple process trials revealing approximate process gains which were suffi-

cient for control design purposes. Implementation on the production line to prove

that the methods worked was remarkably trouble free. In the longer term, whilst the

Fig. 3 (a) Performance prior to control scheme implementation. (b) Performance subsequent to

control scheme implementation
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new control strategy is simple to implement, it does rely upon manual changes to be

made at roughly the correct time. This is a fundamental problem, as staff in a

small company tend to have many calls upon their time and this is seen as one more.

However, failing to respond to raw material changes has serious financial conse-

quences on the production line. A general awareness of the scale of the potential loss

may be encouragement to adopt the new strategy.

3 Case Study 2: Potato Crisps (Chips) Production

The amount of waste generated by food manufacturing processes presents a high

financial cost, making cost reduction one of the priorities for a process analyst. The

initial assessment of the process used for this case study indicated that a significant

amount of waste was generated by unacceptable levels of moisture in the end

product. In terms of moisture levels, the parameters within which the factory

operates for ‘Product A’ are divided into three zones: the Green zone – 1.4–1.8

(product has an optimal moisture level), Amber zone – 1.1–1.3 (the product meets

the process parameters but it can be further improved) and Red zone – below 1.1

and above 2.1 (see Fig. 4). When the moisture levels in the end product are situated

within the Red zone, the product is rejected from the line and it has to be dealt with

as waste. The moisture levels in the end product are measured online by utilising an

NDC online NIR gauge that also measures the amount of fat in the end product. On

a regular basis, the NDC gauge is giving a moisture reading every 30 s, but for the

purposes of this project the NDC gauge was set to give moistures values every 10 s

for more data to be captured so as to understand the process dynamics better. After

analysing the data generated over a 3-week period, it was estimated that, on

Fig. 4 Mechanism of the negative closed loop system utilising the moisture levels in the end

product to modify the fryer oil set point temperature to reduce the amount of waste generated by

unacceptable levels of moisture in the end product
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average, the amount of waste generated on one line by unacceptable levels of

moisture in the end product amounts to a weekly cost of approximately €1,250.
When the fact there are multiple lines within the factory is considered, this presents

a significant opportunity for improvement.

3.1 Developing a Solution

Once the current opportunity was assessed, the next step was to identify possible

solutions for reducing the waste and to achieve better process control in terms of

moisture levels in the end product. The main mechanism for control of moisture

levels in the factory is through the fryer oil temperature. Thus better control over

how the fryer was operated was chosen as the main solution for this challenge. A

closed loop negative feedback control system that utilises the moisture levels in the

end product to modify the set point temperature of the fryer oil to adapt it for the

subsequent product stream was developed. The mechanism through which this

negative feedback system operates is presented in Fig. 4.

Figure 4 illustrates the modifications to be made to the fryer temperature set

point in concordance with the three zones for moisture levels: Green zone, Amber

zone and Red zone. The system also requires that, after a change was made on the

fryer temperature, 4 min must pass before another change is made. The reason

behind this is partly that the time delay of the fryer temperature in this case is

around 4 min and also the desire to improve the robustness of the control system in

the event of spurious measurements.

The system presented above was designed so that it can be developed as an

automatic software solution and installed on the SCADA gauge utilised for con-

trolling the fryers in the factory. Having this negative feedback closed loop system

operating in an automated fashion offers many advantages, being more effective

and more cost efficient in the long term. Nevertheless, before the software was

developed, a series of trials was conducted to identify the efficiency of the system.

3.2 Trials Mimicking the Negative Closed Loop System

Two trials which lasted 12 h each were carried out to assess the efficiency of the

negative feedback closed loop system. For the purposes of these two trials, one

process operator was assigned to monitor closely the fryer at the control panel on

the SCADA gauge and to follow the instructions presented in Fig. 4. By following

exactly the system presented in Fig. 4, without being influenced by the effect of the

changes on the process, the efficiency of the automatic software was tested.

Moisture levels in the end product were measured as usual utilising the online

NDC gauge and data was captured and exported every 10 s so that data could be

further analysed and compared with previous data.
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The results obtained through these two trials were positive, showing lower

rejection rates of product based on unacceptable levels of moisture and also less

time spent in the Amber zone of moisture content. During the first trial there was no

rejected product for poor levels of moisture, although during the second trial 1 min

of rejected product was recorded, amounting to around €30. Although only two

trials have been carried out to date, the results were positive, giving more confi-

dence for developing and utilising the closed loop system. Currently an automatic

software system is being developed and implemented.

4 Case Study 3: Food Mixing Consistency

Consistency of mixing of various dry food mixtures and pastes remains a significant

challenge in food processing, despite years of development in this area. To date, the

mixing operations are predominantly operated using standard operating procedures

with times of mixing specified on the basis of empirically established values to

ensure product homogeneity. This may lead to excessive mixing and thus equip-

ment underutilisation or insufficient mixing and product rejection, neither of which

are desirable in food manufacturing.

This case study demonstrates how NIR may be used to improve the consistency

of mixing processes in food industries. Bread and confectionery powder mixtures

aimed at the bakery market were analysed in this study. The main components of

these mixtures were flour, sugar, gluten and salt. Four different products were taken

into consideration:

1. Product A: blend with small particle size distribution and more than one main

component

2. Product B: blend with small particle size distribution and one main component

that accounts for more than 50%

3. Product C: blend with small particle size distribution and one main component

that counts for more than 90%

4. Product D: blend with large particle size distribution and more than one main

component

The experiments were performed using two conical screw mixers of nominal

capacity of 4,000 L, each equipped with a diffuse reflectance fibre-optic probe

connected to a Bruker Matrix-F FT-NIR spectrometer. Figure 5 shows the configur-

ation of the conical screw mixer (Fig. 5a) and how the NIR probe is connected to the

blender (Fig. 5b). Spectral data were collected using OPUS software version 7.0

provided by Bruker. Homogeneity studies were performed by analysing spec-

tral data with Matlab version R2014a, and calibration models were built using

OPUS software.
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4.1 Homogeneity Measurement

Spectra were collected continuously during the whole production time from the

point of loading the first ingredient until the process was stopped. Dealing with

solid samples, data collected were largely influenced by light scattering, and

therefore different pretreatments algorithms were used to clean data from scatter-

ing. Four types of pretreatment were considered as detailed below.

4.2 Derivatives

Derivatives of spectra are calculated using the Savitzky–Golay algorithm. First and

second order derivatives are most common: first order derivatives remove baseline

from spectra and second order also eliminate linear trends [30]. Derivatives are

very good at enhancing differences between spectra and differentiate the over-

lapping signature, but they also increase noise.

4.3 Detrending

Detrending subtracts a polynomial fit from the original spectra to correct the

baseline [31]. The resulting spectrum is given by

XDt ¼ X � a0 þ a1λð Þ ð1Þ

Fig. 5 Conical screw mixer configuration. (a) Configuration of the conical screw mixer.

(b) Connection of the probe to the blender
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4.4 Normalisation

The same weight is given to all the absorbances: each spectrum is in fact normalised

to a length of 1 by dividing it by the Euclidian norm [30]:

Xnorm ¼ Xorig
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

X2
orig

� �

r ð2Þ

4.5 Standard Normal Variate (SNV)

SNV normalises each spectrum to zero mean and unit variance by subtracting the

mean of each spectrum and dividing by its standard deviation [30]:

XSNV ¼ Xorig � Xmean

σ
ð3Þ

Deviation from the target spectrum was investigated to establish the mixing

time; it was calculated as the Euclidean distance between all the spectra collected

and the ideal spectrum referred to the homogeneous blend:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

spectra matrixi, j � ideal spectrum
� �2

q

ð4Þ

In all the experiments the change of spectra over time was observed, eventually

converging to the same steady-state spectrum (see example in Fig. 6). Green spectra

represent the beginning of the production, when the blend is still under the level of

the probe. The characteristic flat shape is because only the air present in the mixer is

scanned at this phase. As soon as the probe starts getting covered by the powder

mixture, spectra begin to show some peaks. This is represented by the blue spectra.

These spectra are shown to change over time, indicating the composition is chang-

ing. In fact, during the process, different ingredients are added and blends are

continuously mixed, leading to different powders being scanned by the NIR

probe. Spectra are seen to start overlapping after a certain time, as illustrated by

the red spectra. Because each sample of a given composition and concentration is

uniquely identified by a spectrum, the overlap demonstrates that the powder inside

the mixer has the same concentration, thus indicating that the blend is

homogeneous.

Mixing time is therefore determined by the time it takes for the spectra to start

overlapping with each other and a steady-state fully mixed spectrum is reached.
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The effect of component distribution was evaluated by comparing results

obtained for Products A, B and C, and particle size distribution was studied by

investigating the different effects on Products A and D. The entire blend run was

analysed, employing different combinations of pre-processing techniques. In Fig. 7

the blending profiles of deviation from the target spectrum for all the products are

shown using Normalization+SNV+Detrending and Normalization+second deriv-

ative. Variations in profiles were observed when using different pretreatments;

however, for all the experiments an overall behaviour was observed and plots

were generally divided into four parts:

1. First stationary phase: the deviation is stable over time and its highest value is

recorded. Powder is still under the level of the probe and NIR is scanning only

air. Green spectra shown in Fig. 6 represent this phase

2. Decreasing phase: deviation suddenly decreases because of the powder

approaching the probe level. Referring to Fig. 6, this phase illustrates the passage

from green to blue spectra

3. Oscillations: deviation changes over time as a consequence of the variation in

composition during the production process. Blue spectra shifting over time in

Fig. 6 describe the same phenomenon of oscillations

4. Second stationary phase: deviation finally approaches zero value and remains

stable over time. Red spectra overlapping each other represent the second

stationary phase

Fig. 6 Example of spectra collected during the production phase. Green spectra are recorded

when the powder is still under the level of the probe. Blue spectra show powder reaching the level

of the probe. Red spectra represent the homogeneous mixture
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Fig. 7 Comparison of pretreatment combinations for Products A, B, C and D. Data were first

pretreated using Normalisation+SNV+Detrending and Normalisation+second derivative. Subse-

quently, deviation from the target spectrum was calculated. The red vertical line represents the
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Mixing time is thus identified by the starting point of the second stationary

phase, which may change depending on the pretreatment chosen. The value of

d (deviation from target) which determines the homogeneity starting point is set

depending on the product analysed. There is not a general recommended value, but

d is rather based on experience by analysing previous batches of the same product

and establishing the average minimum value when the profile becomes stationary.

Product A mixing time to reach homogeneity was identified with both combi-

nations as shown by the stationary phase achieved at minute 35 in both cases

(Fig. 7a, b). The homogeneity of Product B instead could only be identified using

Normalisation+SNV+Detrending (Fig. 7c, d) because of the reduced variability of

the system. This blend has one main component which counts for more than 50%,

whereas Product A has more than one main component. The smaller variation in the

component distribution of Product B causes, in turn, a smaller variation in the

spectra, which makes it more difficult to detect the changes during production and

therefore to understand at which point homogeneity begins. SNV and Detrending,

compared to derivatives, accentuate more the spectral differences, so making more

evident the homogeneity starting point. Product C homogeneity point could not be

identified properly by any of the combinations employed (Fig. 7e, f): the blend in

fact appears homogeneous as soon as the powder reached the probe (minute 12),

and no variations are shown when different ingredients are added. The main com-

ponent of Product C is present for more than 90%, so making the quantities of the

remaining ingredients very small. Changes in composition are minimised and NIR

is unable to detect such small variations. Product D homogeneity could be esti-

mated accurately using Normalisation+derivative, but not by Normalisation +SNV

+Detrending (Fig. 7g, h). The large variation in the particle size distribution of

Product D is in fact responsible for the increase in variability, and SNV and

Detrending accentuate these differences too much, causing oscillations in the

second stationary phase too. Derivatives, on the other hand, do not present the

issue as they enhance these variations less and are able to show more clearly

the homogeneity starting point.

Normalisation+SNV+Detrending gives all the benefits provided by these three

techniques: initial scattering is removed, oscillation phase is emphasised and the

homogeneity starting point is clearly detectable. This combination can be generally

used for products with average or small component distribution, but not for

products with a single component concentration higher than 90%. For this kind of

material, represented here by Product C, deviation from the target spectrum cannot

identify the mixing time required to achieve homogeneity. With regard to the

⁄�

Fig. 7 (continued) homogeneity starting point. Where the red line is missing it was not possible to

determine the mixing time. (a) Product A – Normalisation+SNV+Detrending; (b) Product A –

Normalisation+second derivative; (c) Product B – Normalisation+SNV+Detrending; (d) Product
B – Normalisation+second derivative; (e) Product C – Normalisation+SNV+Detrending;

(f) Product C – Normalisation+second derivative; (g) Product D – Normalisation+SNV

+Detrending; (h) Product D – Normalisation+second derivative
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particle size distribution, it is preferred to employ Normalisation+derivative as

differences would be accentuated too much by SNV-Detrending because of the

high variability involved in these products.

4.6 Calibration

Following the homogeneity analyses described in Sect. 4.1, the process was stopped

when the mixture was believed to be homogeneous and spectra collected inline

were analysed to measure the composition of the blend inside the vessel. To evalu-

ate the concentration of the blend components and to check whether they are within

the specifications, calibration models for Near-Infrared probe installed inline were

required.

An additional probe of Bruker Matrix-F, the same as installed inline into the two

conical screw vessels, was used and it was connected to the spectrometer with fibre

optic cable. The probe was placed under a bench in the laboratory in an upside down

position so that the sample could be placed on top of the probe and scanned (see

Fig. 8). This allowed the making of samples of known composition with a wider

range of concentrations, and reducing the time to build a calibration model. Fifty

samples of Product D were prepared with varying concentrations of each compo-

nent and scanned with the spare probe; calibration models were built using a

PLS algorithm and data were first pretreated and screened with PCA to eliminate

eventual outliers.

Results of cross-validation showed a very good correlation for most of the

organic components in the mixture, and gluten is illustrated here as an example.

Two factors were checked to measure the quality of predictive capability of the

calibration model: Root Mean Square Error of Cross-Validation (RMSECV) and

coefficient of determination (R2). The model for gluten prediction achieved 0.476

for RMSECV and 94.74% for R2, indicating a very low prediction error and a high

correlation. The plot of predicted vs actual values displayed in Fig. 9 shows the

Fig. 8 Additional probe of Bruker Matrix-F installed offline for sample calibration. (a) Scheme

showing the same NIR spectrometer connected to two Bruker probes, one installed in the conical

screw mixer and one installed offline under the bench. (b) Top view of the offline probe
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values lying on the parity line, which indicates that the predictions are very close to

the actual values for the whole studied range.

4.7 Tumble Mixer

To evaluate the effectiveness of this methodology independent of the unit operation

used, Product E, a bread roll powder mixture mainly composed of flour, salt and

sugar, was considered. The blending process of a Matcon tumble blender (see

Fig. 10a) of a nominal capacity of 2,000 L was monitored in this experiment.

Because in this case the blender itself is always in motion, it would not be possible

to apply a traditional NIR probe as seen in Sect. 4.1. The fibre and power cables

would rotate together with the mixer, so eventually snapping. Moreover, the

considerable size of the probe would not allow it to be applied to the tumble

blender, as it would certainly crash against either the floor or the ceiling of the

mixer. A MicroNIR PAT (shown in Fig. 10b) was considered for this purpose

because of its reduced dimensions and its cable free nature, being Wi-Fi and battery

powered.

MicroNIR PAT was applied to the lid of the tumble blender and spectra were

collected every time the lid was in the bottom position. Spectral data were collected

using the MicroNIR PAT software and then analysed with Matlab version R2014a.

Deviation from the target spectrum, as described in Sect. 4.1, was monitored to

establish the starting point at which the spectra overlap.

As with the convective mixer, the change of spectra over time was observed,

eventually converging to the same steady-state spectrum. However, in this case the

only spectra that can be seen are those varying over time, representing the change of

composition (Fig. 11, coloured in blue), and those overlapping each other that

exemplify the homogeneity phase (red).
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Fig. 9 Cross-validation

results obtained for

calibration model of gluten

using the Matrix-F NIR

spectrometer
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Blending profile pretreating data with Normalisation+second derivative is

shown in Fig. 12. In contrast to the convective mixer, given the initial flat spectra

absence, the first stationary phase is not observed here. The other phases are

evident: the profile starts with the decreasing phase, then continues with the oscil-
lation phase and ends with the second stationary phase.

The homogeneity starting point can be clearly identified using “Deviation from

target” and is indicated by a red line in Fig. 12.

Fig. 10 Matcon tumble blender (a) and MicroNIR PAT (b)

Fig. 11 Spectra collected during production in a tumble mixer. Initial flat spectra are not present

as probe was always covered by powder. Blue spectra indicate composition changes over time and

red spectra overlapping each other refer to the homogeneity phase
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4.8 Mixing and Cooking Vessel: Mixing of Pastes

For this part of the case study, paste products, in particular caramel and custard,

were analysed. They consist of high density and high viscosity products, produced

through high temperature processes. The main ingredients in both products are

water and sugar.

NIR spectroscopy was applied to a Giusti mixing and cooking vessel (see

Fig. 13), which has a nominal capacity of 2,000 L and is surrounded by a jacket

used for cooling and heating. Temperatures vary during the process, from

room temperature to a maximum of 120�C.
The spectrometer employed in this case (as in Sect. 4.3) was the MicroNIR PAT.

Because of the high temperatures involved in the process, and given the instrument

operative temperature range is only 0–40�C, an extended probe was applied to

MicroNIR PAT so that the product was not in direct contact with the spectrometer.

MicroNIR PAT was applied to the recirculation pipe and not to the vessel itself,

because the presence of the jacket surrounding the Giusti mixer does not allow

welding the flange. Working with high density and high viscosity materials, it is

very likely they stick to the probe surface. To avoid this problem, the spectrometer

was placed in the pipe, just above the recirculation pump, so there was enough

pressure to remove the product layer and NIR was able to scan the product flowing

into the pipe.

The production of caramel was monitored by taking samples every 15 min

during the process and analysing them offline to measure different physical prop-

erties: colour (light +), refractive index, water activity and moisture. Meanwhile,

spectra were collected inline and retrieved at the end of the production process.

Four batches were monitored: data from the first three batches were used to build

the model and data from the remaining batch were used to test the model and predict

the properties. The model was built based on the full spectrum, pretreating data with
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Fig. 12 Blending profiles analysed with “Deviation from target”
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SNV+first derivative, screening with PCA to check for potential outliers and

finally regressing using the PLS algorithm.

The results of the calibration model for caramel for the four physical properties

considered – colour, refractive index, moisture and water activity – are shown in

Fig. 14.

Figure 14a shows the predicted vs actual values of the model for colour pre-

diction where a high correlation is evident, as values lay along the parity line. This

is also supported by the high value of R2 equal to 82.29% and the low value of

RMSE equal to 1.72. Figure 14b shows the results of the calibration model of

refractive index for caramel. A very low correlation is evident, with an R2 equal to

50.79%. Values in the lower calibration range (around 28–29) are actually well-

distributed along the parity line, but for higher values of refractive index, points

are lying on a horizontal line, which indicates a lack of correlation. RMSE in this

case was equal to 1.50. Results of the calibration model of moisture for caramel are

reported in Fig. 14c, where the predicted values are very close to the actual values.

R2 was quite high (95.92%) and RMSE was low (0.77), indicating a very high

correlation for moisture. Finally, results of water activity are shown in

Fig. 14d. A high correlation of predicted vs actual values can be observed,

which is confirmed by the value of R2 equal to 74.37% and of RMSE equal to

0.03.

Fig. 13 Giusti mixing and cooking vessel. (a) View from the bottom of the entire vessel. (b) View
from the top showing the opening where raw materials are added
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The models built so far were subsequently tested to assess their potential in

predicting physical properties of inline products. Data from the fourth batch were

analysed using the models previously built and predicted vs actual values were

plotted for the different properties as shown in Fig. 15.

Most of the values of colour are overpredicted (Fig. 15a) whereas refractive

index is underestimated (Fig. 15b). Values of moisture (Fig. 15c) and water activity

(Fig. 15d) are closer to the parity line, but few outliers are present. Despite the

calibration models showing high correlation, the predictions for an unseen batch are

not very accurate. However it should be noted that only three batches were used in

this study to build the model, so it is not surprising that the model is not sufficiently

robust. More data need to be included and more batches have to be monitored to

improve the calibration.
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Fig. 14 Inline calibration model results for caramel for different properties: colour (a), refractive
index (b), moisture (c), and water activity (d)
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5 Conclusions

This chapter discussed the drivers and some methods of food process modelling and

control. A range of case studies was used to demonstrate the benefits and the chal-

lenges associated with the implementation of established control approaches as well

as more advanced monitoring methodologies. Clearly significant benefits can be

gained either by reducing waste generation or by increasing product consistency/

reducing unit operation time requirements, although care needs to be taken when

analysing multivariate spectral data and using this to predict product characteristics.
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