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Machine Vision-Based Measurement Systems

for Fruit and Vegetable Quality Control

in Postharvest

José Blasco, Sandra Munera, Nuria Aleixos, Sergio Cubero,

and Enrique Molto

Abstract Individual items of any agricultural commodity are different from each

other in terms of colour, shape or size. Furthermore, as they are living thing, they

change their quality attributes over time, thereby making the development of

accurate automatic inspection machines a challenging task. Machine vision-based

systems and new optical technologies make it feasible to create non-destructive

control and monitoring tools for quality assessment to ensure adequate accomplish-

ment of food standards. Such systems are much faster than any manual

non-destructive examination of fruit and vegetable quality, thus allowing the

whole production to be inspected with objective and repeatable criteria. Moreover,

current technology makes it possible to inspect the fruit in spectral ranges beyond

the sensibility of the human eye, for instance in the ultraviolet and near-infrared

regions. Machine vision-based applications require the use of multiple technologies

and knowledge, ranging from those related to image acquisition (illumination,

cameras, etc.) to the development of algorithms for spectral image analysis.

Machine vision-based systems for inspecting fruit and vegetables are targeted

towards different purposes, from in-line sorting into commercial categories to the

detection of contaminants or the distribution of specific chemical compounds on the

product’s surface. This chapter summarises the current state of the art in these

techniques, starting with systems based on colour images for the inspection of

conventional colour, shape or external defects and then goes on to consider recent
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developments in spectral image analysis for internal quality assessment or contami-

nant detection.

Keywords Hyperspectral, Image processing, In-line inspection, Postharvest,

Quality, Real-time, Spectral imaging
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1 Introduction

Food standards are evolving both to ensure the sustainability of agriculture and to

address consumer concerns. The reputation of producers, and consequently their

position in the market, is based on the quality of the product, which makes quality

controls essential. The market and consumer exigencies, as well as increasing

social concerns about good practices, including environmental, economic and

social sustainability and traceability, require guarantees of optimal quality from

the earliest stages of the crop to postharvest storage and treatments.

Optical devices and sensors have been introduced in the industry as

non-destructive techniques for inspecting fruit [1]. Such technological advance-

ments have been used for various purposes, ranging from the automatic sorting of

products into categories to the control of processes which are difficult to observe,

for instance, because of their long duration [2]. At this point it is important to note

that the quality of biological products is not easy to assess, as individuals of the

same category may differ greatly from one to another in terms of colour, shape or

size. Furthermore, because they are living products, their physiochemical properties

evolve over time. Their inherent variability sometimes introduces a certain amount

of subjectivity into quality control, thus increasing the difficulty involved in

developing automated inspection systems. Addressing these challenges often

requires research in advanced and multidisciplinary technologies, and sometimes

the use of expensive equipment.
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Machine vision inspection is aimed at ensuring the quality of each product and

the correct classification (including rejection) of those individual items based on

quality standards. Automation is aimed at reducing production, processing and

handling costs, but also at delivering the produce to the appropriate markets, thus

optimising the overall profit. Furthermore, the excellence of a commodity is often

achieved by ensuring correct and regular sizes, suitable colouring, and absence of

external damage, optimal organoleptic properties and the absence of harmful

residues. However, despite the great amount of research devoted to machine

vision-based inspection systems [2, 3], the introduction of this technology in the

industry is still relatively scarce because of its relatively high cost, the complexity

of the equipment needed and the particular requirements for each implementation.

Current computer-based applications for the inspection of fruit and vegetables

are described in the following sections. Most of these systems use visible (VIS)

information to inspect the external quality of the produce using conventional tech-

niques. However, recent advances include hyperspectral imaging to assess chemical

composition, inspection of the internal quality of the produce or the detection of

invisible damage, almost always for the real-time implementation of automated,

in-line inspection and quality control systems.

2 Machine Vision Systems Based on Visible Information

The success of computer vision-based systems for the external inspection of fruit or

vegetables depends largely on the quality and resolution of the acquired images,

which is closely related to the cameras employed and the illumination of the scene.

Frequently, such systems measure and compare colours, and for this reason illumi-

nation with a good colour rendering index is required. This index is a quantitative

measure of the degree to which a test illuminant renders colours similar to their

appearance under a reference illuminant [4]. The illumination must be uniform and

avoid specular reflection, which produces bright spots that can mask certain blem-

ishes. This is especially important for the estimation of two of the main external

properties associated with the quality of the fruit by consumers, namely the colour

and the presence of external defects.

2.1 Measurement of Colour

Colour is one of the most important attributes of many agricultural products that can

be expressed using several standard colour spaces, themost used in image processing

in agriculture being RGB (Red, Green, Blue), HSI (Hue, Saturation, Intensity) and

CIELAB. The first is the native colour space of computers and digital devices and the

others try to imitate human perception better. Figure 1 show some examples of

apples and the distribution of their colour in different colour spaces obtained using

the program FoodColorInspector (available at http://www.cofilab.com).
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As fruit ripens, chlorophyll degrades and new pigments such as anthocyanins or

carotenoids start to be synthesised, resulting in the fruit turning from green to a

wide variety of colours, mainly ranging from red to blue [5]. Hence, the consumer

normally associates colour with the stage of maturity or ripeness of fruit and thus it

plays an important role in the purchase decision. For this reason, colour has mainly

been studied as an indicator of maturity. However, the presence of discoloration or

stains on the skin can make it difficult to measure the average colour of the whole

fruit, leading to inaccurate results. For this reason, Mohammadi et al. [6] developed

an algorithm to classify persimmon into three maturity stages. In their work, black

stains on persimmon were segmented and removed from the analysis. Then they

used colour bands such as R and G from the RGB colour space, b* from the

CIELAB colour space, S from the HSI colour space and grey levels and linear

(LDA) and quadratic discriminant analysis (QDA) to assess fruit maturity stages

with a 90% rate of success. Another approach is reported by Taghadomi-Saberi

Fig. 1 Apples of Royal Gala and Golden cultivars with different colours and the distribution of

the colours in the RGB, HSI and CIELAB colour spaces
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et al. [7], who used the CIELAB colour space to study the evolution of the ripening

of sweet cherries. The colour coordinates were measured using a chroma meter and

a CCD camera-based device that employed an artificial neural network (ANN)

classifier. They achieved a coefficient of determination R2¼ 0.99 between both

measurements. They also observed that L* and b* values decreased during the

ripening of the cherries, whereas a* values first increased and then decreased.

Baltazar et al. [8] sorted tomatoes using a colorimeter and a firmness sensor. The

ratio a*/b* and the L* coordinate of the CIELAB colour space were used to study

the changes in colour associated with storage time. El-Bendary et al. [9] used HSV

colour coordinates and the first three colour moments (mean, standard deviation and

skewness) to sort tomatoes. They employed Principal Components Analysis (PCA)

for feature extraction and Support Vector Machines (SVM) and LDA for classifi-

cation. The performance of the system was evaluated by means of the area under the

curve of the receiver-operating characteristic (ROC curve) [10].

The colour of fruit is often expressed using indexes. Guzmán et al. [11] set up a

maturity index for olives to determine the optimal harvest time. The index was

based on colour segmentation of the olives using the k-nearest neighbour (KNN)

algorithm, and calculating the percentage of the area of the olives that belonged to

one of four predefined classes (bright-green, greenish-yellow, reddish-brown or

black). From these data, olives were assigned a maturity index ranging from 0 to

4. The citrus colour index (CCI) is an industrial standard index to estimate the

maturity of oranges and mandarins based on Hunter Lab coordinates. Vidal et al.

[12] developed a computer vision system for on-line estimation of this index at a

rate of eight fruits per second. The algorithm converted RGB coordinates into

Hunter Lab coordinates and calculated the CCI of each fruit individually. Four

images from each fruit were acquired as they rotated under the camera, the CCI

being assigned an average of the four images.

Apart from colour, other external properties of fruit can be related to maturity

and quality. The advantage of image analysis is that it allows several of them to be

estimated simultaneously from the same image. For instance, Surya Prabha and

Satheesh Kumar [13] developed an image analysis system to assess colour intensity

and different geometric features (area, perimeter, major axis length and minor axis

length) of bananas.

Furthermore, colour has often been combined with other information for better

assessment of ripeness. For example, Vélez-Rivera et al. [14] classified Manila

mangoes into four stages of ripeness. They built a PCA-based model that included

colour information (CIELAB and HSB colour coordinates), soluble solid contents,

total acidity, firmness and a ripening index based on these physical properties.

2.2 Detection of External Defects

Most consumers associate fruit and vegetable quality with good appearance, that is

colour, shape and total absence of external defects. Deformations and presence of
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skin damage or diseases are the most influential factors affecting price. However,

skin damage and diseases are more difficult to assess or detect than colour, shape or

size because of the wide diversity of potential defects that can be found in packing

houses [15]. Moreover, particular types of defects may present diverse colourations

in the same piece or batch, or even coincide with the colour of the sound skin of

other fruit of the same commodity [16]. This can be seen in Fig. 2, which shows

images of different types of external defects in oranges cv. ‘Navel’ and the images

after a segmentation process.

Many authors report inspection systems based on colour information alone.

Al-Rahbi et al. [17] classified dates into three categories (no-crack, low crack

level, high crack level) depending on the extension of the damaged surface found

by image analysis. They used the R coordinate of the RGB colour space and the H

and V coordinates of the HSV space after selecting the most discriminant ones

using LDA. They achieved more than 70% accuracy and more than 80% when the

problem was reduced to only two classes (sound and cracked dates).

In some machine vision applications, the calyx or the stem-end can be confused

with some skin defects. The colour of the stem/calyx region often differs from the

typical colour of the skin of the fruit and it is therefore identified as a defect. For this

reason, authors report exploiting other information sources such as morphological

or multispectral parameters. Blasco et al. [16] developed a system to detect these

elements and 11 different types of defects in oranges developing a region-growing

algorithm. A region of the image was considered to be a defect when its colour

Fig. 2 External defects in oranges cv. ‘Navel’ and the images after a segmentation process
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diverged from the colour of the largest region of homogenous colour, which was

assumed to be the sound skin. The system could detect the defects in 94% of cases,

with only 4% of false detections, the stem being distinguished from the defects in

100% of cases. Later, Blasco et al. [18] identified these types of defects, achieving

70% correct identification using colour information alone and 76% on adding

multispectral information. These results increased to 86% when morphological

information about the regions was included in the decision algorithm [19]. How-

ever, correct identification of the stem was achieved in only 66% of cases. Li et al.

[20] described a system to discriminate seven types of common defects in oranges

with a 99% rate of success by employing colour and morphological information.

However, they could not discriminate between these types of defects.

Rokunuzzaman and Jayasuriya [21] also used morphological information to differ-

entiate skin defects and calyxes for the automatic inspection of tomatoes at a rate of

180 fruits per minute. They used colour thresholding to detect blossom end rot and a

shape factor to discriminate between cracks and calyxes with 87% success. Xu et al.

[22] reported a complete machine vision system to grade kiwifruits based on their

appearance, including the presence of skin defects. The system was able to grade

them by size, shape and defective surface at 1.2 kg/min, with a success rate of 89%,

91% and 94%, respectively.

3 Use of Hyperspectral Imaging for Qualitative Assessment

of Fruit and Vegetables

Systems based on the visible spectrum have been described in the previous para-

graphs. Such systems have been designed with the intention of emulating the

human eye. Nowadays they are relatively low-priced and fast. However, current

technology offers the possibility of going far beyond the capabilities of the human

eye. For instance, some damage or the presence of contaminant agents can often be

observed in particular regions outside the visible spectrum, or their detection may

be enhanced at certain specific wavelengths. Initial approaches found in the liter-

ature took advantage of the acceptable sensitivity to near-infrared (NIR) of most

charge-coupled device (CCD) sensors in many cameras, and combined this infor-

mation with colour information. The first successful applications were aimed at

detecting visible and invisible blemishes [23].

Multispectral systems have been considered to be the first based on non-standard

optical devices for simultaneously processing the same scene in different spectral

regions. Originally, they consisted of a series of interferometric filters coupled to a

wheel placed between a monochrome camera and the scene [24]. These systems

had several drawbacks, such as their low acquisition speed and the small number of

images that could be acquired. Recent technological progress has allowed faster

simultaneous acquisition of images, thereby opening up the possibility of develop-

ing new applications in fields such as remote sensing [25] and pest detection
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[26, 27] among others. Moreover, the price of the equipment has gradually become

more affordable, thus enabling the use of related technologies in many applications

to agriculture [28].

Although capturing images in stationary applications can be accomplished by

swapping narrow band pass filters in front of the camera lens, a more sophisticated

and versatile solution is offered by the use of electronically tuneable filters, capable

of acquiring a large number of images at different consecutive wavelengths, thus

making it possible to develop new inspection systems based on hyperspectral

images [29]. Hyperspectral imaging systems allow spatial and reflectance informa-

tion to be acquired at the same time, which can be decisive for certain applications

[3]. Such systems acquire a huge amount of information, but this is also their major

drawback because some of this information is redundant or unnecessary

[30, 31]. For this reason, much work using this technology has focused on reducing

the amount of redundant information by projecting the high-dimensional data space

into a lower-dimensional space and trying to preserve most of the meaningful infor-

mation [10, 32]. In parallel, spectroscopy has been used to assess certain properties

of food and even to detect some pathogens [33, 34]. Figure 3 shows a hyperspectral

imaging of an orange with a windscar defect captured in the range 430–1,050 nm

with a resolution of 10 nm.

Fig. 3 Hyperspectral image of an orange cv. ‘Navelate’ with an external defect captured in the

range 430–1,050 nm

J. Blasco et al.



Electronically tuneable filters are devices whose spectral transmission can be

electronically controlled by applying a voltage or acoustic signals. Three main

technologies are currently available for acquiring hyperspectral images for fruit

analysis: image spectrophotometers [35], Acousto-Optical Tunable Filters (AOTF)

[36–38] and Liquid Crystal Tunable Filters (LCTF) [39]. AOTF consist of a crystal

in which selected wavelengths of light are separated from a broadband source using

acoustic waves at specific radio frequencies. Alternative compression and relax-

ation of the crystal lattice generates density changes that produce refractive index

variations which act as a transmission diffraction grating. Unlike a classical dif-

fraction grating, AOTF only diffract one specific wavelength of light, so they act

more as a filter than a diffraction grating. LCTF use a stack of successively thicker,

polariser birefringent liquid crystal plates which can generate a tuneable retardation

of light transmission. Switching speed is limited by the relaxation time of the

crystal and is of the order of 50 ms. Spectral resolution of LCTF is typically of

the order of several nanometres.

Image spectrophotometers acquire spectral data by scanning the scene line by

line, making use of the relative movement of the objects in the scene with respect to

the instrument. These sensors usually offer an excellent spectral resolution, but

require precise synchronisation of the image acquisition with the movement of the

sample or the instrument [40]. This is probably the most extended configuration of

AOTF-based systems, offering good tuning times (around 50 ms) and accurate

frequency selectivity. However, they have a limited field of view [41]. In general,

LCTF-based devices are usually more compact than those based on AOTF and

provide a wider field of view. Nonetheless, their major drawback is related to their

greater requirements in terms of time needed for tuning [42].

Even if the use of this equipment is expanding, one has still to take into account

important requirements for them to work properly, such as adequate spatial and

spectral distribution of the lighting, correct focusing of the scene across all the

different wavelengths or spectral regions and proper spatial matching of the images,

or at least of the objects in the scene, when using changeable filters or when the

object of interest is moving during the acquisition. Furthermore, the sensitivity of

the different components of the acquisition sensors is not uniform across the

spectrum, and this should be taken into account in the design. Suitable calibrations

and adjustments are always necessary to keep the results of the image analysis

independent of undesired phenomena [43].

Proper lighting is also crucial when acquiring hyperspectral images. Unwanted

bright spots must be prevented when providing high-quality, homogenous scene

illumination. Light sources have different characteristic spectral emissions.

Daylight-type fluorescent tubes rarely go beyond 700 nm and should be discarded

in work that uses near-infrared (NIR). Incandescent lamps generate strong NIR

emissions but produce directional light which is difficult to diffuse. In addition, it is

important to take into account the shape of the object to be analysed to avoid

specular reflections. This is particularly important for spherical or quasi spherical

shapes. On the other hand, cameras should be sensitive to the specific spectral

region used in each application. Standard CCD cameras are almost insensitive to
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wavelengths from 900 nm and beyond, which can make it impossible to take full

advantage of the possibilities of tuneable filters. Cameras based on InGaAs sensors

with a stabilised temperature are sensitive beyond 1,000 nm, thus enabling an

optimal use of NIR information. Lenses are also critical and must be properly

selected for each particular application. Optical paths through the lens change

depending on the frequency of the transmitted light (refraction indexes depend on

wavelength). This makes the focus planes vary considerably between bands that are

separated by relatively far distances in the spectrum (e.g. between some visible and

some infrared bands), resulting in scenes that are focused in some bands being out

of focus in others.

3.1 Automatic Assessment of Bio-Chemical Properties
of Fruit and Vegetables

Assessment of the ripening stage of many fruits still relies on trained people’s
experience or on destructive measurements of certain physicochemical properties.

These approaches are inefficient and incompatible with large-scale production and

trading. Machine vision systems based on hyperspectral imaging offer new tools to

assess the concentration of some chemical compounds or properties related to

maturity. This is the case of the work reported by Schmilovitch et al. [44], who

presented a method for the non-destructive measurement of total soluble solids

(TSS), ascorbic acid, chlorophyll and carotenoid contents in three bell pepper

cultivars using hyperspectral images obtained using AOTF cameras. By means of

partial least squares (PLS) regression models developed throughout the grooving

session and specific to each variety, they managed to estimate the distribution of

such internal components in whole peppers. Rajkumar et al. [45] analysed hyper-

spectral images of bananas at different ripening stages, and stored at different

temperatures, to develop calibration models for the prediction of some quality para-

meters (moisture content, TSS and firmness). Munera et al. [46] used hyperspectral

images to predict astringency in persimmons and to build the astringency distri-

bution maps.

Hyperspectral image processing can also be used to obtain information about the

presence of biochemical substances related to certain damage or physiological

disorders of some agricultural produce. For instance, Gaston et al. [47] investigated

the potential of visible and near-infrared (VIS/NIR) (445–945 nm) hyperspectral

imaging for the prediction of polyphenol oxidase (PPO) enzyme activity, which

produces browning on mushroom caps and is the major cause of their quality loss,

accounting for a reduction in their market value. Yang et al. [48] studied the antho-

cyanin contents of the pericarp of lychees, because it is related to postharvest

browning. They processed hyperspectral images of fruits in the range

308–1,105 nm by removing differences in light intensity between different areas

of the samples, extracting the average spectra from the regions of interest (ROI) and
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selecting two sets of optimal wavelengths using successive projection and stepwise

regression algorithms. Finally, they built models for mapping the anthocyanin

distribution in the samples.

Long-distance transoceanic shipment of fruit requires delivery of high quality,

consistent fresh fruit in the country of origin so as to meet the quality standards

upon arrival at the destination. Hua et al. [49] investigated the potential of hyper-

spectral imaging to study how the mechanical properties of blueberries are related

to their organoleptic quality, storability, transportability, resistance to mechanical

damage and susceptibility to spoilage during postharvest and marketing handling.

They tried to link spectral data to mechanical properties obtained from texture

profiles and puncture analysis. Similarly, Leiva-Valenzuela et al. [50, 51] acquired

reflectance and transmittance hyperspectral images of blueberries in the range

400–1,000 nm to build calibration models to predict TSS and firmness, and to

assess the effect of fruit orientation on the durability of the fruit during

transportation.

Consumers are willing to pay higher prices for fruit with health-stimulating

properties such as bioactive compounds or antioxidant ingredients, for example

lycopene and phenolic compounds. Liu et al. [52] reported an application of

multispectral imaging for predicting the contents of such compounds in tomatoes,

and compared the performance of different prediction models based on PLS, least

squares support vector machines (LS-SVM) and back-propagation neural networks

(BPNN).

Similarly, anthocyanins are phenolic components of red wine grapes which have

a great influence on the quality of wine. Nogales-Bueno et al. [53] developed a

non-destructive method, based on hyperspectral images, for the assessment of the

important parameters that determine the technological and phenolic maturity of

white and red grapes (pH, total acidity, sugar concentration and total phenols).

Later, Nogales-Bueno et al. [54] used a similar approach to estimate maturity and

sugar content and investigated the possibility of using anthocyanin profiles, colour

image analysis and near-infrared hyperspectral imaging tools to distinguish

between the varieties Tempranillo, Graciano, Garnacha and Mazuelo. Chen et al.

[55] developed a model to estimate the anthocyanin contents of wine grape skins

using NIR hyperspectral imaging. They used this information to assess the phenolic

maturation stage of grapes after veraison, with the final goal of predicting the best

harvest time. Baiano et al. [56] also used hyperspectral imaging to predict the

physicochemical indices and sensory characteristics of table grapes. Furthermore,

Leiva-Valenzuela et al. [50] studied the potential of VIS/NIR spectroscopy and

hyperspectral imaging to estimate the internal or external constituents of potato

tubers, which are important to the processing industries.
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3.2 Detection of Skin Defects and Diseases

Machine vision systems based on hyperspectral imaging open up the possibility of

automatically detecting early stages of fruit damage invisible to the human eye

because they can provide information from outside the visible spectrum. For

instance, Lü et al. [57] developed a VIS/NIR hyperspectral imaging system cover-

ing the spectral region 408–1,117 nm for the automatic detection of bruising caused

by excessive mechanical loading and stress of kiwifruits during harvest, transport,

handling and storage. Such bruises are very difficult to detect in the first hours after

they have been produced. For this purpose they selected particular wavelengths to

develop algorithms to differentiate between bruised and sound tissues. Likewise,

Baranowski et al. [58] worked on the early detection of bruises in apples, using

VIS/NIR and short-wave infrared (SWIR) wavelength ranges. Similarly, Vélez-

Rivera et al. [59] reported on the feasibility of an automatic system for early

detection of mechanical damage in ‘Manila’ mangoes using specific spectral

bands. Lee et al. [60] investigated an extended range of NIR to detect bruises on

pears.

The presence of a few fruits infested by a pest or affected by fungus in a ship-

ment can render the entire consignment unmarketable. Furthermore, many other

kinds of skin damage must be detected during postharvest quality control because

they can be the starting point of fungal infestations. For instance, tomato cracking is

one of the main causes of produce rejection by retailers because it creates a path for

the potential entrance of pathogens. Cho et al. [61] investigated the feasibility of an

inspection system based on hyperspectral fluorescence and determined optimal

wavebands to distinguish between defective areas and sound surfaces to detect

cuticle cracks. Analogously, Yu et al. [62] investigated the potential of hyper-

spectral imaging for crack detection in fresh jujubes. They identified some wave-

lengths to develop image processing algorithms for locating the cracks, but reported

that the best option was to use ratios of bands instead.

Pests themselves are also a major cause of fruit rejection in the market. As an

example, the Mediterranean fruit fly causes damage to many different fruits and

significant economic losses for growers, processers and exporters, and is impossible

to detect using colour information alone [18]. Haffa et al. [63] proposed a system

for detecting infested mangoes using greyscale images generated from absorbance

levels at particular NIR wavelengths. Another approach was taken by Wang et al.

[64] who identified effective wavelengths for maximum discrimination of jujube

fruits affected by damage caused by insects. They created a discriminant function to

identify the stem-end/calyx-end, the sound cheek and insect damage, and finally a

method to distinguish damaged fruits from those free of infestation. This approach

has also recently been investigated by Gómez-Sanchis et al. [65, 66] with the aim of

detecting decay lesions in citrus fruits.

Physiological disorders and decay are a consequence of postharvest processes

which also generate important economic losses. Simko et al. [67] developed several

indices to estimate decay and freezing injuries of different cultivars of lettuces,
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based on ratios of particular wavelengths obtained from the spectral analysis in the

range 380–1,000 nm.

Fruit and vegetable diseases, often caused by bacteria, are also a major source of

trouble for fruit and vegetable exporters. For instance, citrus canker is a severe

disease of citrus fruit causing enormous socioeconomic loses for those countries

affected. Qin et al. [68] used spectral information divergence estimated from NIR

images as a method for detecting affected fruit, and Zhao et al. [69] introduced the

effect of the harvesting time and its influence on the detection of the damage. Later,

Qin et al. [70] exploited particular bands obtained from the PCA technique and used

ratios between bands to create a fast detection system. Subsequently, Qin et al. [71]

reported a real-time system to detect such canker lesions. A different approach was

taken by Wang et al. [72] who compared the spectral reflectance of onions affected

by sour skin (a bacterial disease) in the spectral region of 950–1,650 nm and

determined optimal bands for identifying infected onions.

3.3 Detection of Pathogens and Contaminants

Foodborne illnesses are also of major concern for consumers and, hence, interest in

methods and technologies for detecting contaminated food and preventing the

presence of pathogens causing such illnesses has grown significantly, both in the

agri-food industries and in regulatory agencies. Hyperspectral imaging offers a vast

potential for detecting contaminants and pathogens in food. For instance, Lee et al.

[60] determined two significant wavelengths and developed multispectral imaging

algorithms to detect faecal contamination on leafy greens (spinach and lettuces) in

an automated system for in-line inspection at the processing plants. At the same

time, Everard et al. [73] used ultraviolet (UV)-induced fluorescence, violet-induced

fluorescence, VIS/NIR reflectance and hyperspectral image processing, in combi-

nation with multivariate statistical analysis, for the detection of faecal contami-

nation on spinach leaves.

Tomato hornworm is one of the several types of large caterpillars that attack

tomatoes in the United States and whose faecal matter is closely related to the

presence of Escherichia coli and Salmonella. Yang et al. [74] studied the develop-

ment of a multispectral imaging algorithm to detect such contamination on the

surface of mature red tomatoes. In similar work, Yang et al. [75] developed a simple

multispectral algorithm to detect faecal contamination on the surface of apples.

Aspergillus flavus generates toxins on dates and logically causes food safety

concerns which greatly depreciate the value of the product. Teena et al. [76] studied

the presence of lesions caused by this fungus using NIR hyperspectral imaging.
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4 Specific Problems To Be Solved for Real-Time,

Automatic Quality Monitoring

To satisfy market demands, producers must inspect the quality of each piece of

fruit or vegetable before shipping. This task is traditionally carried out by workers

situated on one or both sides of a conveyor belt. They visually inspect the produce

and remove those pieces not meeting the quality standards. Pieces are transported

slowly enough to allow the workers to inspect all of them and even manipulate them

to ensure the inspection of most of their surface. The quality of the product is not

always fully guaranteed because workers have different tolerance criteria and, at

the same time, their criteria may vary during the day, as inspection requires concen-

tration and is a tiring, repetitive activity. For all these reasons, this operation is

normally time-consuming, subjective and expensive. The alternative is the use of

electronic sorters based on machine vision.

In most in-line applications, products travel rapidly under the machine vision

system, often carried by a conveyor belt or on top of rollers as shown in Fig. 4. In

such cases, the camera has to be able to acquire images at a very high rate when

freezing the scene, and computer hardware and software has to be set to cope with

very fast image processing. For example, Al-Mallahi et al. [77] developed an

automatic machine vision system for sorting potatoes using UV-induced fluores-

cence capable of discriminating potatoes from undesired material. They processed

one image every 94 ms with a success rate of 98%. ElMasry et al. [78] developed an

automatic system to sort potatoes by size and shape. Roundness and length features

as well as four other parameters calculated from Fourier analysis of the polar

signature of the potato boundary were found to be effective in describing potato

size and shape. The system achieved a high level of accuracy in estimating the

Fig. 4 Machine for the automatic inspection of fruit in-line using computer vision
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shape and size of potatoes travelling at 1 m/s. Nevertheless, real-time inspection

encompasses a number of problems which need to be solved. Some are related to

the need to avoid blurred images and freezing the movement of the pieces when

acquiring the images, whereas others are related to the exact positioning of the

piece. Both require very precise synchronisation between the camera shot and the

movement of the conveyor. Furthermore, adequate intensity and uniform illumi-

nation are always necessary. Other problems to be overcome are associated with

processing speed constraints, which require considerable effort in algorithm opti-

misation and sometimes the use of dedicated hardware. Moreover, the need to

inspect the whole surface of the pieces requires the use of specific mechanisms or

the use of multiple cameras situated to acquire several points of view.

The electronic shutters of the cameras allow proper synchronisation between the

movement of the pieces and the image acquisition and a short exposure time, both

required for a correct freezing effect. The fast development of powerful Light

Emitting Diodes (LED) has allowed the development of very uniform illumination

systems with multiple light sources. Furthermore, it has opened up the possibility of

generating accurate light pulses instead of continuously illuminating the scene.

Pulsed illumination helps to avoid the blurring effect of the movement of the

objects in the images and to save energy, which may be crucial for some appli-

cations, especially those related to machines working outdoors. The use of fast

shutters and strips of pulsed LEDs was reported by Vidal et al. [12] to take different

views of oranges moving at 0.4 m/s on a conveyor. Kohno et al. [79] used this type

of illumination on a mobile platform to inspect citrus fruits during harvesting, but

they needed 12–20 s to process a single fruit because an NIR spectrometer was also

used to estimate the sugar content of fruits. However, Cubero et al. [80] used this

type of illumination and settings for real-time inspection of oranges on a citrus

harvesting machine. The system was able to work at a rate of eight fruit per second,

and captured four images of each fruit to make a decision. They reported a 0.99

coefficient of determination (R2¼ 0.99) for size prediction and R2¼ 0.92 for

colour.

To achieve real-time operation, image segmentation and processing must be

carried out extremely quickly. The work of Aleixos et al. [23], who developed a

camera capable of acquiring multispectral images (VIS/NIR) from the same scene,

is an example of the use of specific hardware and algorithm optimisation to reduce

processing time. They used parallel image processing algorithms run on two digital

signal processors (DSP) to process 10 citrus fruits per second and sort them by

colour, size and presence of defects, using nonlinear discriminant procedures to

segment the images and to sort the pieces. However, the processing speed of current

hardware allows complex algorithms to be implemented in relatively low-cost

devices. Commercial cameras equipped with microprocessors can be used to create

smart equipment for in-line processing, as reported by Cubero et al. [80], who

achieved real-time colour image processing for citrus sorting by implementing

optimised algorithms in a camera with standard computing capability.

Several approaches have been made to solve the problem of inspecting most of

the surface of the pieces. Many inspection machines rotate the pieces when a series
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of images are captured. Leemans and Destain [81] used a roller conveyor to capture

images of apples. They adjusted the rotational speed of the rollers in such a way that

a spherical object with a diameter of 72 mm made one complete rotation in exactly

four images. Images were acquired at a rate of 11 per second. A hierarchical grading

method based on the analysis of 16 external properties including colour, shape,

texture and position was used to classify apples. Bennedsen et al. [82] developed a

system to capture six different views of each apple as the fruit was transported on a

conveyor. Other reported solutions include the use of different cameras to capture

different views of the fruit, as depicted by Xiao-bo et al. [83], who employed three

colour cameras to inspect rotating apples and classify them into two categories

depending on the presence of defects. A cheaper alternative is the use of mirrors

instead of cameras, as described by Reese et al. [84], who used parabolic mirrors to

show parts of the fruits that were hidden from the camera.

Soft or very small processed fruits are more difficult to handle and hence to

inspect, and so may require particular solutions. For instance, Blasco et al. [85]

developed a prototype to grade fragile mandarin segments and to separate market-

able segments from undesired material such as small pieces of peel, broken seg-

ments or segments with seeds. Segments travelled on narrow conveyor belts under

two cameras which acquired images every 48 ms. Their vision system was able to

process 20 images per second, but mechanical limitations related to the difficulty in

handling the segments reduced the operational speed to four images per second.

Semitransparent conveyor belts were employed to illuminate the scene from the

back, enhance the silhouette of the segments and detect the seeds easily. A similar

machine was reported by Blasco et al. [86] for real-time inspection of pomegranate

arils using front illumination and opaque blue conveyor belts. In this case, colour

parameters were used to detect rotten or immature arils and to grade arils into

uniform colour batches, which are more attractive to the consumer.

5 Conclusions

This chapter summarises the current state of the art in computer vision-based fruit

and vegetable inspection. The final aim of the technologies described here is the

implementation of machines capable of automatically inspecting the quality of

these products, removing those not reaching an adequate level of quality and

ensuring an objective sorting in categories that make them more attractive for the

consumer and optimise their value. To enhance current sorting systems giving high

added value to the products, the use of physicochemical and morphological infor-

mation other than simple visual appearance is becoming more and more relevant.

Machine vision-based systems are always under constant evolution thanks to the

development of new types of cameras and imaging devices. UV and NIR acqui-

sition systems are becoming easily available. Hyperspectral systems have demon-

strated their ability to capture information invisible to the human eye, such as the

presence of internal defects or the measurement of chemical compounds. However,
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despite all these technological advancements, a compromise between their increase

in performance (image acquisition rate, resolution) and costs must be found in the

forthcoming years.
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16. Blasco J, Aleixos N, Moltó E (2007) Computer vision detection of peel defects in citrus by

means of a region oriented segmentation algorithm. J Food Eng 81:535–543

Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality. . .



17. Al-Rahbi S, Manickavasagan A, Al-Yahyai R, Khriji L, Alahakoon P (2013) Detecting surface

cracks on dates using color imaging technique. Food Sci Technol Res 19:795–804
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