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Network-Guided Key Gene Discovery

for a Given Cellular Process

Feng Q. He and Markus Ollert

Abstract Identification of key genes for a given physiological or pathological

process is an essential but still very challenging task for the entire biomedical

research community. Statistics-based approaches, such as genome-wide association

study (GWAS)- or quantitative trait locus (QTL)-related analysis have already

made enormous contributions to identifying key genes associated with a given

disease or phenotype, the success of which is however very much dependent on a

huge number of samples. Recent advances in network biology, especially network

inference directly from genome-scale data and the following-up network analysis,

opens up new avenues to predict key genes driving a given biological process or

cellular function. Here we review and compare the current approaches in predicting

key genes, which have no chances to stand out by classic differential expression

analysis, from gene-regulatory, protein-protein interaction, or gene expression

correlation networks. We elaborate these network-based approaches mainly in the

context of immunology and infection, and urge more usage of correlation network-

based predictions. Such network-based key gene discovery approaches driven by

information-enriched ‘omics’ data should be very useful for systematic key gene

discoveries for any given biochemical process or cellular function, and also valu-

able for novel drug target discovery and novel diagnostic, prognostic and

therapeutic-efficiency marker prediction for a specific disease or disorder.
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1 Introduction

Network biology has emerged as one of the most promising angles of systems

biology and systems medicine [1–4]. As realization of any biological function or

process is fully dependent on the interactions of small and macro molecules rather

than individual proteins, RNAs or metabolites, it is almost undisputed to require

biomedical researchers to work on interactions of cellular constituents and the

resulting networks composed of nodes and interactions. The researchers from

network biology, as the name suggests, mainly deal with various types of networks

in biology. The major conceptual contribution of network biology to the entire

biomedical community is to help and guide basic, translational and clinical

researchers to investigate systematically the functions of genes/proteins or meta-

bolites based on interlinked molecular networks rather than isolated single path-

ways or even individual genes. With the ability to gain a holistic understanding of

cellular activities, network biologists have a unique power in characterizing and

predicting robustness, flexibility, redundancy, and many other evolutionarily-

conserved systems features in various kinds of uni- and multicellular organisms.

There are numerous types of intra- and intercellular networks. For example, in the

classic metabolic networks, where metabolites react with each other to consume

and produce metabolites, the nodes represent metabolites and links between nodes

designate metabolic reactions between linked metabolites. Another important type

of molecular network is the gene regulatory network (GRN), in which one node

corresponds to one gene and one arrow from one gene to another indicates a

transcription regulatory relationship. In contrast to these directed networks,

researchers have also started to reveal undirected networks such as protein–protein

interaction (PPI) networks in which one node represents one protein and a link
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between two nodes indicates a physical interaction of the given two proteins. In real

life, not to mention intercellular networks, all the various network layers are

crosslinked with each other, introducing further complexity in understanding the

molecular mechanism underlying any biological process. To handle better the

obstacles to understanding the complex cellular mechanisms driven by dynamic

multiscale interlocked networks [5, 6], network biologists visualize, construct, and

analyze various molecular networks from different entry points.

Currently, the major trends in network biology are to infer and reconstruct

various types of molecular interaction networks, for example to reconstruct and

infer metabolic networks, GRNs, signaling transduction networks, PPI networks,

and other types of networks. Particularly, with the development of large-scale

‘omics’ measurement techniques, many types of genome-scale data from different

tissues and organs and cell types with and without different perturbations are

increasingly available, including genome, transcriptome, proteome, metabolome,

miRNAs, and others which further drives the fast advances in various compu-

tational approaches in network inference and reconstruction. For technical details

in network reconstruction and inference, also known as data-driven reverse engi-

neering, the reader should refer to other reviews [7–10].

Following the accomplishment of the reconstruction or inference of the given

molecular networks, we cannot just stay at the stage of being impressed by the

visualized large complex networks. Although it is apparent that the current avail-

able large-scale datasets, knowledge-based interaction databases, and compu-

tational approaches do not yet allow us to obtain a complete and fully-accurate

molecular network for a given organism or cell, it cannot stop us from going

forward. The next wave of objectives are to make use of these complex molecular

networks that are still incomplete and far from being fully accurate.

Until now, many efforts have already been made mainly in analyzing metabolic

networks, which are relatively more accurate and complete than other types of

molecular interaction networks. Among many applications, in the metabolic net-

work it has been well established that one could calculate all the potential ele-

mentary pathways or extreme pathways between the starting metabolites and final

products [11–13]. Such pure stoichiometric and topological properties-based

approaches are extremely valuable for investigating the redundancy nature of

molecular networks. However, all the physiological and pathological processes

take place with certain resource constraints, indicating that the solution space

should hopefully narrow down. Based on the reconstructed metabolic networks

and given constraints, pioneers have already been able to predict effects of gene

deletions on cell viability of Saccharomyces cerevisiae with a pretty high accuracy

using flux balance analysis [14]. More practically, the metabolic network has

recently been used to predict drug targets or a combination of targets against

human cancer cells by identifying essential genes for cell proliferation or synthetic

lethal genes [15]. Predicting essential genes for cell proliferation or survival based

on metabolic networks is in fact the first successful application of network biology.

Possibly because of the nature and essential function of metabolic networks,

namely maintaining cell survival and multiplicity, one can hardly predict genes
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critical to other important functions rather than only viability and proliferation.

Many more functions can be executed even by bacterial cells, not to mention

mammalian cells. In the meantime, many more layers of molecular networks

fortunately exist to complement the onefold functions of metabolic networks. The

extra complexity also increases the difficulty for us to predict key genes for a given

cellular function or process.

It is important to notice the essential discrepancy between key gene predictions

for a given biological process or function and that for a specific disease. The latter

has been well reviewed [16, 17] whereas the former is still open to be summarized.

Although any dysfunction for the disease key genes often cause a catastrophic

consequence to human health, the expression or functional changes of key genes for

the former cases might only alter the activities of a particular biological pathway

which might not necessarily lead to a severe event at the whole cellular or organism

level. To identify those playing a quantitatively regulatory role, which might be

affected or compensated by the existence of redundant pathways of molecular

networks, is even more challenging than to identify the death-or-survival essential

nodes from the networks. Furthermore, the readout of particular activity changes in

many given cellular processes or functions is often not so obvious in contrast to

disastrous symptoms or not so easily examined by current techniques.

In this review we mainly summarize the recent advances in the key gene

discovery for a given physiological or pathological process based on GRNs, PPI,

and expression correlation networks. We also survey several selected examples in

the context of immunology and infection. Through comparisons we support more

implementation of expression correlation network-based key gene predictions that

are still non-mainstream. Furthermore, we present our views on potential chal-

lenges and future directions.

2 GRNs-Based Key Gene Discovery

2.1 Hub-Based Prediction

The long-term dream of biologists is to understand fully how one or multiple

transcription factors dynamically and quantitatively regulate the target genes [18–

20], the regulatory cascades composed of chains or trees of linked interactions, and

eventually the overall GRN in the given cell type or organism. In the last few

decades, enormous progress has been made in understanding the regulatory rela-

tionships between individual regulators and some of their target genes. Accumu-

lating results in individual regulatory interactions by finer-scale or large-scale high

throughput experiments cannot automatically help us to understand how the GRNs

control cellular functions and processes. To understand better these regulatory

processes systematically, the first step is to assemble and reconstruct the GRNs

from various public available or commercial interaction databases. In parallel,
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although significant progress has already been made, computational techniques also

need to be further developed to infer GRNs from a single type or multi-type of

genome-scale data such as ChIP-chip, ChIP-seq, RNA-seq/microarray, proteome,

metabolome, and others with or without time-series and knockdown/knockout

measurements [8, 21–23]. Following the reconstruction and inference of GRNs,

researchers aim to predict whether there are any novel key regulators for the

biological process or the given disease of interest. Biomedical researchers are of

course also highly interested in identifying novel drug targets for therapy of the

disease of interest by analyzing GRNs. The most easily acceptable and straight-

forward approach is probably to identify the most highly interlinked regulators, also

known as hubs [24]. It is intuitive that with more target genes of a given regulator in

the GRN network, the more important the corresponding regulator is in terms of

controlling or ‘influencing’ the given network or subnetwork, indicating the impor-

tant role of the hubs in the given cellular activities or diseases.

For instance, by analyzing the hubs, Della Gatta et al. [25] identified a novel

tumor suppressor in T cell acute lymphoblastic leukemia (T-ALL) from the inferred

TLX interaction networks. The authors first predicted the potential interaction

network from T-ALL patient samples using the widely-used ARACNe approach

based on mutual information [26]. They further constrained such a huge general

network down to a subnetwork by using genes that match with both criteria, not

only direct targets of TLX1 and TLX3 based on ChIP-chip results, but also

differentially expressed in TLX1- and TLX3-expressing T-ALL samples. Extrac-

tion of such a subnetwork greatly helped them to pinpoint the most highly linked

regulator, RUNX1, the top ranked hub in that subnetwork, as a novel mediator in

T-ALL. Furthermore, both human RUNX1 mutation analysis and murine Runx1

heterozygous knockout mice analysis have confirmed that RUNX1 is indeed a

tumor suppressor in T-ALL.

It is also highly attractive for researchers to predict novel key regulators con-

trolling the mode of action for a novel drug. We recently attempted to identify novel

key mediators underlying the mode of action for a novel inhibitor Carolacton

against the biofilm formation of the lead human oral pathogen Streptococcus
mutans [27]. We first generated a time-series transcriptome following treatment

of Carolacton and predicted the time-shifted correlation network using a Trend

Correlation (TC) approach [28]. Furthermore, we combined a time-shifted corre-

lation network with computed regulator-binding site maps and consequently

obtained the Carolacton-response GRN. Following this, we identified CodY as

the top ranked hub, which is a well-known global master regulator and its deletion

in Streptococcus mutans signficantly reduces biofilm formation [29]. We thus no

longer need to validate CodY. Next to CodY, CysR is the most linked regulator and

has been selected as the most promising novel candidate. Interestingly, our experi-

mental results show that deletion of CysR has successfully reduced the sensitivity

of Streptococcus mutans to Carolacton treatment, indicating a successful prediction
of a novel key mediator underlying the mode of action for the inhibitor.
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2.2 Biological Feature-Based Prediction

Rather than simply checking the topological features, for example the top hubs of

the inferred GRNs, some groups have examined a combination of several biological

features for candidate regulators. For instance, Yoself et al. aimed to identify novel

regulators controlling Th17 cell differentiation [30]. They first generated a time-

series transcriptome dataset while they were reconstructing a general network of

regulator-target associations from various published genomics profiles. They then

assigned a regulatory interaction between a regulator and a given gene for a certain

time window if there is a significant overlap between the regulator’s putative targets
and the cluster in which the given gene is located. Following the inference of the

potential GRN controlling Th17 cell differentiation, they ranked all regulators by

emphasizing certain biological features over others (e.g., they first order the regu-

lators based on whether they are predicted regulators of key Th17 genes, then,

based on the criteria, whether they are differentially expressed over the time-series

data). It makes sense to order in that manner as, apparently, activities of many

transcriptional factors are mainly modulated at posttranslational and/or post-

transcriptional levels (also refer to the discussion below). With a joint effort from

different groups, they could successfully demonstrate at least 4 out of the

12 selected novel factors significantly mediate the Th17 program in knockout

mice models or knockdown cells.

2.3 Translated mRNA-Based Prediction

Researchers have recently moved beyond the classic transcriptome-based GRN

analysis. As it is now well known that a big fraction of mRNAs might not

necessarily be translated into proteins, Brichta et al. have aimed at identifying

neurodegenerative factors using the predicted regulatory networks from the

so-called translatome, that is all the translated mRNAs [31]. The authors have

first reverse engineered a general murine brain regulatory network from a mouse

whole brain transcriptome database. They then profiled the translatome by measur-

ing the translated mRNAs specifically expressed in dopaminergic neurons (DNs) of

a model of Parkinson’s disease in which DNs are under progressive loss. Projecting
the differentially expressed translatome to the general murine brain GRNs, the

authors predicted 19 candidate regulators which drive the molecular signature

mediating the degeneration of DNs at an early stage. Remarkably, none of the

19 are significantly differentially expressed in mRNAs based on classic statistical

analyses [32]. As substantia nigra pars compacta DNs are more vulenerable to

degeneration than ventral tegmental area DNs, the authors have further tested two

predicated regulators which were expressed higher in substantia nigra pars

compacta DNs. Interestingly, virus-mediated knockdown of the two selected
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genes has successfully caused loss of substantia nigra pars compacta DNs, recapitu-

lating the results obtained in a Parkinson’s disease murine model.

2.4 Multilayer Network-Based Prediction

Analysis based on a single layer of network, for example GRN, might be limited

because the activities of many transcription factors are mainly tuned at the post-

transcriptional and/or posttranslational levels [33, 34]. Therefore, we have recently

extended the analysis to integrate multilayer molecular networks. We aim to

identify novel factors contributing to survival of CD4+ cells following chronic

infection of SIV [35]. To this end, we first integrated a general human molecular

network by including GRN, PPI, and signaling transduction networks from various

databases. Then we projected the transcriptome measured from human CD4+ cells

with chronic infection vs acute infection of SIV to the general integrated molecular

network. We predict a regulator as a key regulator only if the number of

differentially-expressed putative targets are significantly enriched and meanwhile

there exist short length of significantly affected interactive molecular chains in the

upstream of the given non-differentially-expressed regulator. Consistent with the

discoveries aforementioned by Brichta et al. [31], we predicted 13 ‘hidden’ non-
differentially-expressed key regulators by using our network approach, named as

Inter-Chain-Finder (ICF). Six out of the 13 predicted key regulators are known to

interact with HIV. These predicted key ‘hidden’ regulators are all involved in the

regulation of cell growth, again underscoring the predictive power of the ICF

approach. These non-differentially expressed ‘hidden’ key regulators cannot be

detected or prioritized by other classic approaches, indicating the advantages of the

ICF approach.

3 PPI Network-Based Key Gene Discovery

3.1 Centrality-Based Approaches

With the development and wide application of high throughput techniques to

detect protein–protein interactions, for example yeast two-hybrid (Y2H) and

co-immunoprecipitation-mass spectrometry approaches, we are moving toward

generating comprehensive PPI networks for various organs, tissues, and cell

types. The availability of increasingly comprehensive PPI networks provides us

with another great opportunity to dig out novel key genes for a given biological

function or process as most, if not all, biological functions can only be realized

through physical interactions between various proteins and complexes. The ques-

tion is which characteristics of the PPI network are unique or helpful to predict key
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genes. To address this question one first needs to find out which general character-

istics the PPI networks possess for most organisms. In the early contribution of

Barabasi and others, it was found that the PPI networks for all the studied organisms

share a common characteristic, the scale-free property, namely most nodes have

only a few links whereas a few other nodes, the so-called hubs, have a very high

degree of connection [1, 36]. Similar to what researchers have done with the GRNs,

the first proteins predicted to be disease-relevant are also the hubs or nodes as

defined by other centrality measurements [37] as disease genes are more inclined to

encode hubs in the PPI networks than non-disease genes [38]. However, this

observation could be biased by the fact that researchers are more willing to

investigate disease-related genes and consequently mainly identify PPIs for those

disease-related genes, which is possibly further supported by all the leading funding

bodies. Furthermore, analysis shows that it is mainly lethal-causative or essential

disease genes that often cause spontaneous early severe diseases which are more

likely to be the hubs than genes mediating other types of diseases [39]. Parallel

ideas to distinguish the so-called date and party hubs, where the former appears

more dynamic than the latter, might be helpful in identifying non-lethal disease

genes [16, 40]. Last but not least, researchers are often interested in which genes/

proteins are important for the given biological process or disease of particular

interest rather than the general diseased conditions. Therefore, focusing on hubs

of the PPI networks alone might not be the best choice to predict key genes for a

given biological process. We need to develop better approaches or integrate more

data information to predict or prioritize key genes for a given biological process or a

given disease from the PPI networks. For instance, one could adapt the newly

developed epidemiology analysis approach, the so-called expected force to quantify

the spreading power of a protein, to evaluate the effects of the given proteins

because the expected force outperforms other centrality measurement, especially

for the non-hub nodes [41].

As discussed above, it is apparent that hub- or centrality-based analysis has

weaknesses as do all the other approaches. Nevertheless, Wu et al. have recently

successfully demonstrated the value of centrality analysis from the extracted

network by integrating the general PPI network, knockout transcriptome, and

knowledge on the specific signaling transduction pathway [42]. From the general

PPI network, the authors have constructed a PPI network model connecting known

proteins of the key Th17-stablizing pathway, that is the IL-23R signaling pathway

to the transcription factors that have been dysregulated in murine Il23r�/� cells.

They then ranked the network nodes by centrality analysis and identified SGK1 as

the top 1 ranked node. Using the sgk�/� mice, they have already successfully

validated that SGK1 plays a critical role in the induction of pathogenic Th17

cells. Apparently, the essential reason behind their success in applying centrality-

based analysis is not attributable to the general PPI network but to the extracted

specific PPI network.
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3.2 Closeness-Based Approaches

In the last decade, enormous progress has been made in predicting disease genes

from PPI networks using approaches based on the widely-accepted ‘guilt-by-asso-
ciation’ hypothesis [17, 43]. The assumption ‘guilt-by-association’ can easily be

accepted because proteins having similar functions or sharing phenotypes have a

high chance of interacting with each other [44] or become ‘close’ in terms of

distance by certain measurements in the given PPI network. There are different

ways to measure proximity of proteins in the given PPI network. These methods can

be largely clustered into local and global distance measurements [17]. A well-

established local distance measurement is the so-called direct neighbor counting

(also known as first-degree neighbor counting) approach, which has at least two

variants, the absolute count on the number of given disease genes linked to the

candidate and the percentage of the number of given disease genes among all the

genes directly linked to the candidate in the PPI network [4]. Initially, researchers

employed such an approach to predict protein functions [45]. One of the first

successful showcases to predict key genes was performed by Oti et al., in which

they predicted disease genes by counting the number of proteins known to be linked

to the given disease among the first-degree nodes of the candidate gene [46]. As not

all the proteins in the same pathways directly interact with each other, the shortest

pathway measurement has been introduced to calculate the closeness between the

known disease proteins and the candidate proteins. For instance, as pioneers,

Krauthammer et al. once used the shortest pathway approach from the constructed

PPI network to predict candidate genes in Alzheimer’s disease [47]. Later on,

Guney and Oliva improved the shortest pathway approach by integrating not only

the pathway length but also the disease-associated nodes included in the pathway in

the PPI network [48]. They showed a high predictive power in prioritizing top genes

related to Alzheimer’s disease, diabetes and AIDS.

The global ‘closeness’ measurements such as random walk with restart and

diffusion kernel have also been successfully applied to predict disease genes. For

instance, Navlakha and Kingsford once demonstrated that random-walk approaches

outperformed clustering and neighbor counting methods when predicting disease-

related proteins from the constructed PPI network [49]. Interestingly, the compar-

ison of different ‘closeness’ calculation approaches demonstrates that not only do

different methods predict some unique novel key genes but also the prediction

performance varies a lot among different diseases [49]. Therefore, as already

proposed, a consensus approach combining various prediction methods into the

ensemble method, the random forest classifier, needs to be used for a higher

predictive performance. As it has been observed that the distance between known

disease genes/proteins is inversely correlated with the predictive performance [49],

the successful prediction of key genes is only favorable for some diseases in which

the known disease proteins are already observed to interact closely with others.

Such a variance among diseases might be biased by the incompleteness of the

current human PPI networks and be backed by current research focusing only on
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certain diseases. Therefore, given the fact that the current human PPI network is

still very incomplete, we need to incorporate further different types of data with the

PPI networks, for example genome, transcriptome, proteome, post-protein modifi-

cations, and other layers of molecular interactions, and in parallel develop alter-

native better approaches to predict genes important for a given disease.

A similar challenge to the prediction of disease genes is to infer key genes for a

given biological process or function from the PPI networks. As a starting point, one

can also use the ‘closeness’ measurement approaches to predict novel key targets

from the PPI networks. Compared with disease gene prediction, there are advan-

tages and disadvantages in predicting genes important for a given biological

process. On one hand, there is much more information available on the known

genes involved in most of the biological processes, indicating a higher predictive

power to infer key genes for most biological processes. On the other hand, genes

important for many biological processes except for those essential cellular pro-

cesses, for example RNA processing and protein synthesis, might have even less

chances to occupy the hub nodes than those non-lethal disease genes. It is fairly

understandable that imbalance caused by dysfunction of some key genes in certain

biological processes might be compensated by other pathways or functions. As a

result, identifying non-hub but key genes for a given biological process might be

even more challenging.

4 Expression Correlation Network-Guided Key Gene

Discovery

We would already be able to predict or prioritize successfully some key genes for a

given biological function or process, or even a specific disease, if the GRN and PPI

networks were virtually complete and accurate for mammals, especially for human

beings. However, the available GRN, PPI, and signaling transduction networks are

far from being complete, which severely affects the predictive power no matter

which advanced computational approaches we utilize. Fortunately, the proposal to

utilize expression correlation networks provides us with alternatives [28, 50,

51]. Expression correlation network (shortened as correlation network) is often

purely data-driven, being fully based on large-scale transcriptome data by using

various ‘distance’ measurements, for example the most-widely used Pearson cor-

relation or the variants partial Pearson correlation [52]. If the correlation coefficient

between two genes through various conditions or time points is higher than the

given thresholds, a link is assigned between the two genes. A systematic caculation

for each pair of genes generates a correlation network [8]. It is not always possible

to obtain an accurate and complete GRN, PPI, and signaling transduction network

for many types of cells and organisms. However, fortunately, with the decreasing

cost of microarray measurements and RNA-seq, obtaining a correlation network is

almost always possible for any type of cell or organism as long as genome-scale
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transcriptional profiling has been performed for a certain number of conditions or

time points. Athough undirected, the expression correlation network has its poten-

tial, as indicated by the early observation [44] that a high correlation between two

human genes has equal or even slightly higher power to predict the possible shared

phenotypes than the interacting protein pairs from the highly curated human protein

reference databse (HPRD) [53].

As the proteins stably interacting are intended to be coexpressed rather than

random pairs [54–56], one could use similar approaches as those applied to the PPI

networks, for example ‘centralities’ and ‘closeness’-based methods. For instance,

we have recently inferred a correlation network that only exist in CD4+ regulatory

T cells (Tregs) but not in CD4+ effector T cells (Teffs) to identify novel key genes

for the suppressive function of Tregs [57]. The correlation network is predicted

from high-time-resolution time-series transcriptome data of either Tregs or Teffs

followed by T cell receptor stimulation by using a combination of two different

association calculation approaches allowing time shifts using dynamic program-

ming [28, 58]. Before carrying out any deeper analysis, we first examined the

connection degrees of each node in the Treg-specific correlation and ranked all

the candidates based on a simple centrality measure, namely connection degrees.

Excitingly, the top-1 ranked gene, STUB1 (E3 ubiquitin ligase) was later indepen-

dently shown to mediate the Treg suppressive function using stub1 knockout mice

models [59]. Although this gene has never been emphasized in our original publi-

cation, the original table is available at our website (http://wwwen.uni.lu/lcsb/

publications/databases_networks_tools). Other groups have also investigated the

correlation networks in the cancer research fields. For instance, Yang

et al. constructed four correlation networks for four cancer types, respectively

[60]. Surprisingly, they found that almost all the prognostic genes are depleted

among the hub genes, indicating that it might be not so appropriate to predict

prognostic genes using hubs from correlation networks. This difference might be

not only because of the different research subjects but also because we used time-

series information rather than the static measurement they used. Incorporation of

time-shift information into the prediction of correlation edges, which might not

exist if calculation is solely based on synchronized correlation coefficients, in

reality allows the potential candidates to interact with known key genes from

different pathways. This in principle could increase the chances of identifying

some novel key genes from different pathways as most genes in the same pathway

might be coexpressed in a synchronizing way.

To utilize our Treg-specific correlation network better as a hypothesis generator,

we have used the naive Bayesian integration approach to incorporate various

information such as closeness measure and expression difference to obtain a

uniformed score to rank all the candidate genes [57]. To prioritize the candidate

genes (Fig. 1) we used the ‘closeness’ measure for the given gene in the correlation

network, called the queen-bee-surrounding (QBS) principle, defined as the chance

(calculated by cumulative binomial distribution tests) to obtain the number of

known potential T cell functioning genes among the total number of first-degree

neighbors. We have also calculated the expression difference of the candidate gene
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between Tregs and Teffs over the measured time period (Fig. 1). Remarkably, six

out of the top ten ranked key genes predicted from the Treg-specific correlation

network are known to be important for the Treg suppressive function or to play a

critical role in autoimmune diseases or disorders, encouraging us to validate further

the top-ranked novel key genes. Interestingly, we were able to demonstrate suc-

cessfully that the novel key gene PLAU plays an important role in Treg suppressor

function by using specific antibody against PLAU in human Tregs and PLAU�/�

murine Tregs [57]. One of the essential advantages of our QBS approach may lay in

Transcriptome data
of target cell type

Functional association
/linkage calculation

Functional association
/linkage calculation

Cell type-specific
correlation network
inference

Extraction of the first- or 
second-degree 
subnetwork surrounding 
each candidate gene

‘Closeness’-based 
calculation (e.g. ‘known’
neighbor frequency, 
by Binomial test)

Known genes for a given 
cellular function

Expression difference 
between target and 
control cells

Data integration 
(e.g., Naive Bayesian 
integration)

Top candidates ranking

Proof-of-concept
experimental validation

Validation by 
knowledge databases

Validation by interaction
or pathway databases

Transcriptome data
of control cell type

adjustment
of inference 
parameters 

Comparison

The pipeline of correlation network-based key gene discovery for a given cellular process 

ranking strategy 
adjustment

Fig. 1 Integrated pipeline abstracted from the original work [57] to predict key genes for a given

cellular process in a specific cell type based on correlation networks inferred from ‘omics’ data.
Red, representing computation-orientated steps; green, designating experiment-related steps
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its ability to prioritize key novel genes, for example the gene PLAU that does not

show a very strong expression difference between Tregs and Teffs, which thus

cannot easily stand out by classic differential-expression analysis. As demonstrated

here, another advantage of correlation network-based approaches is the ability to

predict key genes in the upstream of transcription factors, for example signaling

proteins (here PLAU), which is almost impossible by the GRN-based approaches

(Table 1). As both centrality- and ‘closeness’-based approaches were able to predict
some interesting novel key genes as exemplified in our Treg correlation network, it

might be worth checking whether it increases the predictive power by combing both

approaches into a consensus. So far, through the comparisons between correlation,

GRN, and PPI network-based key gene prediction approaches, correlation network-

Table 1 Comparisons between correlation, GRN and PPI network-based key gene discovery

approaches

Correlation network-

baseda GRN-baseda PPI-network baseda

Difficulty in net-

work inference or

reconstruction

Relatively

straightforward

Very difficult in both

computational and

experimental

techniques

Requiring a lot of

experimental

resources

Centrality-based

predictions

Difference is shown

when time-series data

is utilized compared

with static measure-

ments; application has

been shown using cell-

type-specific

networks.

Performance is very

good combining ChIP-

seq or transcription

binding sites, or other

layers of molecular

networks.

Performance is very

good when integrat-

ing conditional spe-

cific information (e.g.,

knockout

transcriptome); per-

formance is better for

predicting severe

lethal diseases.

‘Closeness’-based
predictions

Performance is very

good when integrating

expression difference

information and cell-

type-specific network.

Not done yet Performance is

dependent on diseases

and various ‘close-
ness’ measurements.

Consensus

approach-based

predictions

Not done yet Not done yet Performance is better

than that of a single

approach.

Biological-fea-

ture-based

predictions

Not done yet Performance is very

good

Not done yet

Ability to identify

key transcription

factors

Not done yet (regula-

tory network layers to

be incorporated)

Yes Possible

Ability to identify

upstream key

genes of transcrip-

tion factors

Possible Impossible Possible

aThe comparisons are based on the whole review and therefore we did not mention a particular

reference here
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based methods do not display obvious weaknesses, even if not showing apparent

advantages over the others (Table 1). Therefore, for some cases it is beneficial to

explore the use of correlation network-based key gene discoveries, as the inference

of correlation network is much easier than that of others.

5 Concluding Remarks and Future Directions

The exponentially-increasing amount of genomic and functional genomic data,

such as coding and noncoding transcriptome (e.g., from microarray, RNA-seq,

and microRNA assays), proteome, metabolome, ChIP-seq, and others, empower

us with the possibility to unveil better than ever the cellular components, their

interactions, and the resulted molecular networks. The next essential task is to

interpret properly and make use of those large-scale datasets. To this end, many

excellent computational approaches, some of which we have already briefly

discussed here, have been developed to analyze those large-scale datasets. Some

of them allow us to infer or reconstruct molecular networks from large-scale

‘omics’ datasets. Following the network reconstruction or inference, some of the

reports have already successfully demonstrated the application value of various

types of molecular networks. One of the essential but challenging applications for

systems biologists is to predict key genes for a given biological process or,

eventually, for a specific disease. At first sight, predicting key genes seems to be

quite paradoxical because the way we predict key genes almost reverses the route

by which we infer networks. In fact, network prediction starts from a huge number

of potential genes and one does not know whether and how these genes interact or

regulate. However, key gene prediction is to seek and position precisely a few genes

or nodes among complex networks with a huge number of nodes and interactions.

As we have already discussed above, several network analysis approaches allow us

to predict novel key genes which are not easily made to stand out or even detected

by classic differential-expression-based statistical analyses. However, we are still a

long way off from being able to apply network analysis to predict successfully

novel drug targets or novel prognostic or diagnostic markers for a given disease.

Possibly because of the extremely long period required for drug development,

including all the phases of clinical trials (at least 10 years), to date there has been

no successful report on network-based novel drug target identification and subse-

quent drug development.

To predict more successfully novel key genes for a given cellular process from

the inferred or reconstructed molecular networks, we believe the following direc-

tions should be further developed:

1. First of all, context- and cell-type-specific network inference needs to be devel-

oped further by integrating various condition- and type-specific and various

layers of ‘omics’ data into the general molecular networks. The context- and

cell-type-specific networks should be highly relevant to human disease gene

F.Q. He and M. Ollert



prediction as particular human diseases are mainly driven by specific cell types,

at least down to specific tissues [61]. For instance, it is also only relevant to

utilize CD4+ T cell-specific networks rather than fibroblast cellular networks to

infer key genes important for CD4+ T cell differentiation and function.

2. We need to infer or reconstruct personalized or at least patient-subgroup-related

molecular networks as many patients with the same disease can be further

stratified into several subgroups based on their molecular patterns [62, 63]. For

instance, responders to the promising tumor immunotherapy checkpoint inhi-

bitors apparently have very different molecular patterns than those

non-responders [64, 65]. It only makes sense to predict novel key drug targets

from molecular networks inferred from samples of non-responders rather than a

general tumor molecular network. Current efforts have already started to predict

disease differential networks [66, 67], which might further increase the power to

predict some disease key genes. A further step to finely divide the disease-

specific networks or disease maps [68] into disease-subgroup networks is

needed, as discussed above.

3. A few examples of pioneering work [35, 69] have already been carried out to

integrate multiple layer molecular networks to infer novel key nodes for a given

biological process or specific disease. Nevertheless, there are still many

improvements needed and a few challenging questions to be addressed. For

instance, what is the minimal amount of information required for successful key

gene prediction? The more data we use, the better the predictive power we can

achieve. Possibly, the answer is not that simple, in that many different molecular

layers of data measured might generate redundant information, unfortunately

introducing more noise to the hide true signals. Another quite new and chal-

lenging problem is how to integrate various layers of molecular networks and

multilayer ‘omics’ data to predict novel key targets, as in our body all these

layers of networks intertwine together per se.

We are very confident that, with the further development of computational and

experimental techniques in revealing cell-specific and patient-specific cellular

networks, we can soon better predict and efficiently disclose novel key genes or

drug targets mediating any given biological process or function or a particular

disease by means of a combination of data-driven and knowledge-driven network

approaches, rather than classic trial-and-error methods. The network-based strategy

to discover key genes for a given cellular process should be the next driving force to

revolutionize biomedicine research, complementing the well-established GWAS or

QTL-based approaches or the newly-developed resource-intensive systemic pheno-

typing of murine mutants which, although with clear caveats [70], have already

substantially leveraged the systemic identification of key genes or loci associated

with a given disease or phenotype or symptom [71–76].
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