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Discovery and History of Amino Acid

Fermentation

Shin-ichi Hashimoto

Abstract There has been a strong demand in Japan and East Asia for L-glutamic

acid as a seasoning since monosodium glutamate was found to present umami taste

in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum
in 1956 enabled abundant and low-cost production of the amino acid, creating a

large market. The discovery also prompted researchers to develop fermentative

production processes for other L-amino acids, such as lysine. Currently, the amino

acid fermentation industry is so huge that more than 5 million metric tons of amino

acids are manufactured annually all over the world, and this number continues to

grow. Research on amino acid fermentation fostered the notion and skills of

metabolic engineering which has been applied for the production of other com-

pounds from renewable resources. The discovery of glutamate fermentation has had

revolutionary impacts on both the industry and science. In this chapter, the history

and development of glutamate fermentation, including the very early stage of

fermentation of other amino acids, are reviewed.
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Amino acid fermentation is a huge industry. More than 5 million metric tons of

amino acids (more than 2 million metric tons of glutamate, around 2 million metric

tons of lysine, etc.) are manufactured annually all over the world [1]. Amino acids

find application in a wide range of fields: seasoning, animal feed, medicine, and

starting material for chemicals including pharmaceuticals. A number of scientific

paper and patent on amino acid fermentation have been published every year. These

studies have been contributing to widen our knowledge on the science of meta-

bolism, genetics, and physiology.

The discovery of glutamate fermentation by Corynebacterium glutamicum in

1956 was the inception of amino acid fermentation. This discovery was a major

breakthrough not only for glutamate production but also for research, demonstrat-

ing that amino acid fermentation is possible. In this chapter, the history of amino

acid fermentation (glutamate fermentation is mainly focused on) before and after its

discovery is reviewed.

1 Prehistory of Glutamate Fermentation

Although glutamate was isolated from gluten in 1866, its major applicational value

was found in 1908 by Kikunae Ikeda [2]. He studied taste presenting substance

derived from kelp, whose soup has traditionally been used as a basic seasoning in

Japan, and identified the monosodium salt of L-glutamate as an umami substance.
An entrepreneur, Saburosuke Suzuki, collaborated with Dr. Ikeda and commercial-

ized the discovery; he began selling monosodium glutamate (MSG) as a new

seasoning “AJI-NO-MOTO®” in 1908 (Fig. 1).

Because umami is a traditional taste component in Japan, the new product got a

great sales success. However, there were several difficulties in manufacturing

MSG, for which wheat gluten was hydrolyzed using hydrochloric acid and L-

glutamate was isolated following the recrystallization as the monosodium salt.

Because there were scarce materials that could tolerate acidic conditions under

high temperature during hydrolyzation in the early twentieth century, obtaining

suitable vessels for hydrolyzation was a big issue. After several trials and errors, a

certain type of ceramic pot was found to be suitable. Hydrogen chloride gas

released during the hydrolyzation process was very hazardous. Furthermore, the
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formation of a large volume of waste (the remaining fraction of the hydrolyzate)

presented additional issue [3].

Therefore, there was a strong demand for a new manufacturing process for MSG

or L-glutamate. During the mid-1950s, a decade after the end of World War II, the

economy and life of people in Japan was returning to normal. Corresponding with

the social situation, the demand for MSG had increased rapidly; the production of

MSG by Ajinomoto Co., Inc jumped from 6,662 metric tons in 1955 to 13,586 met-

ric tons in 1959 [4].

Several attempts were made to establish a new method for manufacturing L-

glutamate. Because of the necessity of optical resolution, chemical synthesis was

not advantageous while it was used commercially for a particular period. Chemical

synthesis coupled with enzymatic resolution was a feasible method [5]. Izaki

Fig. 1 The first product of

umami seasoning, “AJI-

NO-MOTO®.” The photo is

reprinted under the kind

permission of Ajinomoto

Co., Inc.
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et al. have reported specific degradation of D-glutamate by Aerobacter [6]. The

optical resolution of N-acyl-DL-glutamate by D-specific acylase activities derived

from Aspergillus tamarii and Penicillium vinaceum presented additional

approach [7].

Since glutamate is biosynthesized from 2-oxoglutarate through amination, it was

natural to pursue the process that consisted of microbial production of

2-oxoglutarate and microbial amination of the oxoacid.

The earliest report on fermentative production of 2-oxoglutarate can be found in

1946; Pseudomonas fluorescens accumulated 16–17 g of the acid per 100 g of

glucose [8]. The yield was increased to 41 g of the acid per 100 g of glucose [9].

Formation of small amounts of glutamate in the presence of 2-oxoglutarate and

ammonium salts was reported in Clostridium [10], Escherichia coli [11], Bacillus
subtilis [12], P. fluorescens [13], and Pseudomonas ovalis [14]. Attempts to per-

form the conversion using amino acids as amino donors were also reported [13, 15].

The combination of 2-oxoglutarate fermentation and amination of the oxoacid

appears to be just one step away from direct fermentation of glutamic acid (direct

fermentation refers to the process of producing the product from a low-cost carbon

source, such as sugar, and a nitrogen source, such as ammonia, through the

cultivation of microorganisms). It was known that accumulation of small amounts

of glutamate occurred in the cultivation medium of certain bacteria. Morrison and

Hinshelwood and Dagley et al. have observed very small amount of accumulation

of the amino acid in the cultivation broth of E. coli and Aerobacter aerogenes
[16, 17]. Thorne et al. have reported that B. anthracis formed glutamate (2 g/L)

under the conditions in which polyglutamate formation was hampered [18]. Asai

et al. screened for a glutamate producer and found Micrococcus varians to be the

best producer although the accumulation was far lower (2.9 g/L at the optimal

efficiency) for industrial application [19].

2 Discovery and Industrialization of Glutamic Acid

Fermentation

M. J. Johnson, an emeritus professor at the University of Wisconsin, described the

situation in 1955, “there is, in many quarters, great interest in fermentative glutamic

acid production” [20]. However, there was a strong notion that it is irrational to

expect a microorganism to accumulate a large quantity of the amino acid extracel-

lularly because (1) glutamate is an essential component for the organism, (2) excre-

tion of glutamate is an economical loss for the cell because the biosynthesis of the

amino acid is energetically expensive, and (3) secretion of glutamate would not be

expected to have suppressing effect against surrounding microorganisms like anti-

biotic dose. Researchers in Kyowa Hakko Kogyo Co., Ltd. have overcome this

conceptual obstacle.
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Dr. Udaka, a researcher of Kyowa Hakko Kogyo Co., Ltd. at that time, has set

the following screening method [21]. Bacteria isolated from the environment were

replicated on nutrient agar plates and several types of defined medium plates (test

plates). After colony formation, the test plates were exposed to UV radiation to kill

the organisms. Then, soft agar medium containing the glutamate auxotroph

Leuconostoc mesenteroides was overlaid on the test plates. The halo of growth

development around the colony on the test plates indicated glutamate excretion by

the colony (Fig. 2).

After screening only approximately 500 isolates, they found the superior strain,

Corynebacterium glutamicum (originally reported under the name of Micrococcus
glutamicus). The strain accumulated 10.3 g of glutamate per liter when cultivated in

a flask with liquid synthetic medium with 5% glucose [22], and the accumulation

was easily increased to >30 g/L [23] with >25% yield against glucose input,

indicating that the strain is applicable for industrial glutamate fermentation.

When the study was scaled up, however, the researchers faced a puzzle; the

bacterium produced only trace amounts of glutamate. Several months of intensive

research revealed important characteristics of glutamate fermentation: the bacte-

rium is a biotin auxotroph and produces glutamate only under biotin-limited

conditions. It was assumed that the cells grew in screening and flask cultivation

using a trace amount of biotin carried over from the pre-culture and, thus, resulted

in biotin-limited conditions.

The first commercial fermentation of glutamate was conducted in 1958 at a plant

of Kyowa Hakko Kogyo. There were still problems to be solved for commercial-

ization, such as the downstream process, particularly the control of the crystal form.

In that way amino acid fermentation took the first step.

Fig. 2 Bioassay screening

of glutamate-producing

microorganisms. Glutamate

productivity of the test

strain can be estimated by

the scale of the halo formed

around the strain. The photo

is reprinted under the kind

permission of Kyowa

Hakko Bio Co. Ltd.

Discovery and History of Amino Acid Fermentation



3 Establishment of Glutamate Fermentation

Glutamate fermentation by C. glutamicum was first presented at the International

Symposium on Enzyme Chemistry held in Japan in 1957. As the congress was the

first major international scientific meeting held in Japan after World War II, the

presentation attained great attention from Japanese researchers in the field of life

sciences. Once the discovery of glutamate fermentation was public, several

researchers and companies rushed into the research. It looks like a “gold rush,”

which is observed in Figs. 3 and 4.

Until 1970, Japanese researchers enthusiastically conducted research and held a

monopoly on the scientific papers on glutamate fermentation (Fig. 3). Japanese

research activity appeared to steady down by the 1980s; however, it showed

resurgence during the 2000s. In contrast, reports from other Asian countries,

particularly from China and India, showed an increase from the 1980s. Several of

these studies have outlined the discovery of a new strain (most strains are under

Corynebacterium sp.), the application of a new raw material, and improvement of

the production system, suggesting a strong economical demand of glutamate

fermentation in these areas. Research from Europe began to emerge from the

1990s. Most of the European research focused on the mechanism of glutamate

fermentation and played an essential role in understanding the mechanism.

Figure 4 shows the “gold rush” in Japan from a different angle. A rapid increase

of patents in 1960 suggests that companies began research on glutamate fermenta-

tion after the announcement of the discovery of C. glutamicum. Representative
strains and carbon source are shown in Table 1. Most of the important aspects of the

fermentation appeared before 1980, which are summarized below. These insights

are closely or directly related to the elucidation of the mechanism of glutamate

production discussed in [35].
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Fig. 3 Trends of scientific paper publication on glutamate fermentation in English. For each

decades (except for 1957–1970 and 2001–2014), the number of papers are counted by country.

Reviews, patents, and oral presentations are not included
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3.1 Producer Strain

Many species were claimed as glutamate-producing microorganisms such as

Brevibacterium lactofermentum, Brevibacterium flavum, Corynebacterium
callunae, Corynebacterium lilium, etc. Most of them were aerobic, gram-positive,

nonacid-fast, nonspore-forming, rod-shaped, and biotin-requiring bacteria. These

“new” species were categorized in the spices of Corynebacterium glutamicum by
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Fig. 4 Numbers of Japanese patents (black bar) and oral presentations (white bar) in the annual

meeting of Japan Society for Bioscience, Biotechnology, and Agrochemistry from 1957 to 1967

Table 1 Glutamate fermentation from different carbon sources by different microorganisms

Carbon source Microorganism Titer (g/L) Reference

Glucose 12% C. glutamicum 30 [24]

Glucose ?% C. glutamicum 195 [25]

Cane molasses 13% C. glutamicum 63 [26]

Acetate 9% C. glutamicum 23 [27]

Ethanol ?% Brevibacterium sp. 53.1 [28]

Methanol 11% M. methylovora 6.8 [29]

Methanol ?% B. methanolicus 69 [30]

n-Paraffin 3% Corynebacterium sp. 5 [31]

n-Hexadecane 8% C. hydrocarboclustus 19.6 [32]

Benzoate ?% Brevibacterium sp. 75 [33, 34]

The earliest scientific report (patents and oral presentations are not included) on each carbon

source is listed. For glucose and methanol, reports of the highest titer are also shown. Symbol “?”

in the carbon source indicates no description of the amount of input carbon source in the report
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thorough taxonomic investigation in later years [36–38]. Thus, the name of

C. glutamicum is used for these bacteria hereinafter. It became a shared sense

within several years after the discovery of the bacterium that the bacterium (even

wild-type strain) produces glutamate at a yield of >40% against input sugar

(Table 1) under appropriate conditions.

Bacteria capable of producing glutamate from sugar and not belonging to

C. glutamicum have also been reported. Chao and Foster have reported productivity

of 13.5 g/L from 3% glucose by Bacillus megaterium [39]. It is interesting that this

strain is also biotin auxotroph. Some Arthrobacter [40] and Streptomyces [41]

strains were also reported to produce glutamate. Recently, it was reported that

metabolically engineered E. coli, Enterobacter agglomerans, Klebsiella planticola,
and Pantoea agglomerans produce significant amounts of glutamate [42, 43].

3.2 Carbon Source

As C. glutamicum readily utilizes glucose, fructose, and sucrose, these sugars are

initially used as a carbon source. Molasses, a more economically desirable source,

was mainly used after the discovery of an alternative method of biotin limitation

because it contains excess amount of biotin. Ethanol and acetic acid have also been

reported to provide the bacterium a good productivity. Recently, it was demon-

strated that the spectrum of usable sugar of C. glutamicum can be expanded by

expressing heterologous genes [44].

Carbohydrate obtained by petrochemistry was studied as an alternative carbon

source. Shiio and Uchio have reported several kinds of bacteria capable of forming

glutamate from paraffin [32]. C. hydrocarboclustus was reported to have relatively

high productivity (Table 1). Ghosh and Banerjee have described the production

from n-alkane by the Serratia marcescens strain [45]. In addition, aromatic com-

pounds, such as benzoate, have been investigated as a carbon source [33, 34, 46].

Glutamate fermentation from methanol has been attempted since the 1970s

[29, 47]. As C. glutamicum cannot assimilate methanol, various microorganisms

such as Methanomonas methylovora [29], Methylobacillus glycogenes [48], and

B. methanolicus [30] have been screened and used. The B. methanolicus strain

M168-20(pHP13) appears to be the highest producer from methanol (Table 1).

Glutamate production through photosynthesis (carbon source is CO2) has also been

investigated using algae [49, 50].

3.3 Production Conditions

As described above, biotin limitation was the crucial factor of glutamate fermen-

tation by C. glutamicum. This feature made it impossible to use some economically

desirable raw materials, such as molasses. Attempts to clarify the underlying
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mechanism and finding alternative methods of biotin limitation have been made

since a very early period. Shiio et al. first reported that biotin limitation causes the

change of cellular permeability of amino acids including glutamate [51]. Reports

that followed confirm the association between biotin limitation and glutamate

permeability [52, 53].

Several alternative methods of biotin limitation were devised in the 1960s. One

of the major breakthroughs was the addition of penicillin; adding an appropriate

amount of penicillin at an early stage of cultivation triggers glutamate production

under biotin excess conditions [54]. Addition of surfactant was an alternative

method. Because the effect of surfactant depends on its chemical composition,

specific surfactants were chosen, such as polyoxyethylene sorbitan monostearate

[55, 56] and cetyltrimethylammonium bromide [57].

Penicillin inhibits cell wall synthesis. The first action point of a surfactant should

be the cell surface. Putting these and the biotin effect together, the “permeability

hypothesis” or the “leak model” was claimed to be the mechanism of glutamate

fermentation; change in cellular permeability of glutamate caused by some treat-

ment triggers the leak out of the amino acid, which shifts intracellular metabolism

toward glutamate formation [53, 58]. The finding of the relationship between fatty

acid composition in the cell membrane and glutamate productivity [59, 60]

supported the notion. It was also supported by the finding that an oleic acid-

requiring mutant produces glutamate under biotin-sufficient conditions

[26, 61]. Based on these lines of evidences, the mechanism of glutamate fermen-

tation seemed to have been settled around 1970. However, further contention

emerged later (see below and [35]).

Conditions other than biotin were investigated in detail, but only effects of

oxygen and pH are mentioned here. Glutamate production by C. glutamicum
requires aerobic conditions. Under oxygen-insufficient conditions, the bacterium

produces succinic acid and/or lactic acid [62]. Medium pH should be maintained

slightly above 7.0. When pH is controlled to be acidic, around pH 5.5, the bacterium

produces mainly glutamine.

4 Recent Development in Glutamic Acid Fermentation

4.1 In C. glutamicum

In general, (a) genetic modification(s) is necessary for forcing a microorganism to

overproduce a certain amino acid, for example, deregulation of aspartokinase for

lysine production. Glutamate production by C. glutamicum is different. The wild-

type strain exerts high productivity under appropriate conditions as described

above. Although there have been a lot of patents claiming mutations beneficial

for glutamate production by the bacterium, none of them appear to improve the

productivity significantly. However, since the 1990s, genes essential for glutamate
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fermentation have been identified, which shed new light on the mechanism. Since

the mechanism is discussed in Chap. 4, a very rough sketch is presented below.

There have been two predominant hypotheses on the mechanism. The first idea

is the “permeability hypothesis” as described above. The other is the “flux hypo-

thesis,” claiming that change in carbon metabolism is the major cause of the

overproduction, which is a quite common concept among other amino acid fermen-

tations. Facts supporting each hypothesis are presented below; however, it should

be noted that the two hypotheses are not necessarily exclusive.

Before mentioning on the flux hypothesis, the biosynthetic pathway of glutamate

is briefly reviewed. Glutamate is formed by amination of 2-oxoglutarate. Glutamate

dehydrogenase (GDH) and the coupled reactions of glutamine synthetase and

glutamine synthase (GS/GOGAT system) are involved in the amination [63–

67]. While cell growth can be sustained either by GDH or GS/GOGAT system,

GDH is responsible for glutamate overproduction [67]. Carbon from sugar is

metabolized to 2-oxoglutarate through glycolysis and part of the TCA cycle.

Enzymes contributing to the flux have been clarified, although the flux around

oxaloacetate is complicated. Characteristics and regulation of these enzymes have

also been reported [68–73]. 2-Oxoglutarate is the important branch point, the

glutamate-forming direction by amination and the glutamate-degrading direction

by oxidative decarboxylation to succinate with 2-oxoglutaratedehydrogenase com-

plex (ODHC). ODHC is the focal point in flux control.

During the 1960s, it was assumed that C. glutamicum had no or very low activity

of ODHC [74]. This was the basis of the flux model during the early 1960s, but the

permeability hypothesis became dominant as described above. Later, it was con-

firmed that C. glutamicum possessed certain ODHC activity [75]. The flux hypo-

thesis was revived by the finding that deletion of the odhA gene (encoding E1o

subunit of ODHC) conferred the bacterium glutamate overproductivity ([76], oral

presentation was in 1996). Simultaneously it was reported that ODHC activity is

reduced under glutamate-producing conditions [77]. Kim et al. have reported the

supportive results [78]. Recently, it was revealed that ODHC activity is regulated

by OdhI/PknG [79] and that OdhI, the inhibitor of ODHC, is induced under

glutamate-producing conditions [80].

In parallel with the revival, supportive findings for the permeability hypothesis

have also been accumulated. In 1989, Hoischen and Kramer have demonstrated by

biochemical analysis that glutamate excretion is mediated by an active efflux

system and not by simple leakage [81]. They further demonstrated the importance

of alternation of membrane tension [82, 83]. Changes in the membrane components

cause such alternation of membrane tension, and there have been several reports

indicating the association between change in membrane composition and glutamate

overproductivity [84–86].

Genetic findings supporting the permeability hypothesis have also been accu-

mulated. Kimura et al. have described the dtsR gene that restores detergent (Tween

40) sensitivity [87]. DtsR has a high similarity to the β-subunit of methylmalonyl-

CoA carboxyltransferase, and it is suggested to be the biotin enzyme involved in

fatty acid biosynthesis. The disruption of dtsR causes oleic acid auxotrophy and

S.-i. Hashimoto



glutamate production [88]. The ltsA gene was found to code a gene whose disrup-

tion causes the cell to be lysozyme sensitive and glutamate productive [89, 90];

however, the physiological role of the gene product is not known. Nakamura

et al. found a mechanosensitive channel Ncgl1221 for glutamate excretion [91–

95]. Mutation of the gene caused glutamate overproduction even in the presence of

intact OdhA [92, 94].

The production mechanism still remains elusive, but it will be comprehensively

understood in the near future.

Because glycolysis and the TCA cycle are the major carbon metabolic pathways

to glutamate, the relation between energy metabolism and glutamate production is a

point to be investigated. In this respect, Yokota et al. have reported that mutants

decreasing H-ATPase activity at below 1/4 the level of the wild type produce less

glutamate [96].

4.2 In Other Bacteria

It was a strong support of the flux hypothesis that the disruption of odhA confers

E. coli glutamate productivity [43, 74]. Since glutamate productivity by the disrup-

tion of the gene has known in other bacteria [42], at least, reducing the flux through

ODHC appears to be generally applicable.

Glutamate excreted in the medium is reimported by the glutamate import system

in C. glutamicum [97, 98] or other bacteria, such as E. coli [99]. Thus, an increase in
glutamate in the medium exerts a negative effect on glutamate synthesis through the

regulation of biosynthetic enzymes. When glutamate dissolved in the medium

forms crystals, it no longer has further effect on the regulation. Since isoelectric

point of glutamate is around pH 5.5, glutamate concentration dissolved in the

medium is lowest at the pH area. Thus, if a bacterium that grows and produces

glutamate in this pH, it must be advantageous for glutamate production by reducing

the negative effect of glutamate in the medium. Based on this idea, several bacteria

were found and constructed as the producers [100]. The entire genome sequence of

one strain has recently been published [101].

5 Amino Acid Fermentation

Whether it is a natural expectation or not, researchers in Kyowa Hakko Kogyo Co.,

Ltd. thought that C. glutamicummight produce other amino acids immediately after

the discovery of glutamate fermentation. They started delivering mutants for amino

acid producers. The attempt quickly resulted in the second amino acid fermen-

tation; a mutant requiring arginine accumulated ornithine [24]. This was the first

report releasing regulation on amino acid biosynthesis by amino acid auxotrophy.

Further, in the next year, the researchers reported lysine-producing mutants of
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C. glutamicum based on the same idea [102]. Earliest reports on each of the amino

acid fermentations are listed in Table 2.

The other important method liberating regulation is delivering analogue-

resistant mutants. Although it was known since the 1950s that analogue resistance

confers amino acid overproductivity [106, 108], the first clear and quantitative

example was presented by Sano and Shiio [103]. They demonstrated that an S-
(2-aminoethyl)-L-cysteine-resistant mutation makes aspartokinase of

C. glutamicum insensitive to feedback regulation by lysine, resulting in lysine

production. Since obtaining resistant mutants (positive screening) is easier than

obtaining auxotrophic mutants (negative screening), this method was a very pow-

erful tool for amino acid fermentation.

Producer breeding was not limited to C. glutamicum. Other bacteria, such as

E. coli and S. marcescens, were manipulated and used as amino acid producers.

In these enterobacteria, destroying the degrading activity of the target amino acid

was important at some times. For example, the construction of the threonine

producer of S. marcescens was initiated by getting a mutant incapable of meta-

bolizing threonine [116]. Destruction of the amino acid-degrading ability and

deregulation of the biosynthetic pathway can be regarded as the general strategy

of strain improvement.

Table 2 Earliest scientific reports on each of the amino acid fermentations

Amino acid Type of producer

Titer

(g/L) Reference

Ornithine C. glutamicum A-mutant 26.2 [24]

Lysine C. glutamicum A-mutant 14 [102]

C. glutamicum R-mutant 32 [103]

Tyrosine E. coli R-mutant ? [104]

Tyrosine,

phenylalanine

C. glutamicum R-mutants 2.2 [105]

Methionine E. coli R-mutant ? [106]

C. glutamicum A- and R-mutant 2 [107]

Histidine E. coli R-mutant ? [108]

C. glutamicum R-mutant 7 [109]

Valine Aerobacter cloacae strain isolated by

screening

12 [110]

Threonine E. coli A-mutant 3.7 [111]

Proline C. glutamicum A-mutant 11.4 [112]

Tryptophan C. glutamicum A- and R-mutant 2 [113]

Isoleucine S. marcescens R-mutant 6.7 [114]

Leucine S. marcescens A- and R-mutant 13.5 [115]

Patents and oral presentations are not included. For lysine, the first report of auxotrophic mutant

and that of the analogue resistant mutant are shown. For methionine and histidine, the first reports

describing the titer are also shown. A-mutant, auxotrophic mutant; R-mutant, analogue resistant

mutant. Symbol “?” in titer indicates no description on the titer in the report
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Since the 1980s, recombinant DNA technology has been available and appli-

cable for strain improvement. Gene dosage effect is the most instant use of the

technology. A gene coding for a key enzyme is amplified by cloning on a multi-

copy plasmid. An increase in the expression results in the increase of the activity,

enhancing the metabolic flux to the desired direction. Combining conventional

mutation and recombinant DNA technology enables the construction of a producer

strain for the amino acid whose biosynthesis is under multiple and complex

regulation, such as tryptophan [117].

Discovery of an amino acid exporter was noteworthy. The lysine exporter in

C. glutamicum was first predicted using biochemical analysis [118, 119] and then

confirmed genetically [120]. The finding is interesting not only because it is

counterintuitive but also because it raises a new key concept in amino acid

fermentation. Currently, over eight kinds of amino acid exporters have been

identified in C. glutamicum [121, 122] and E. coli [123–127].
Knowing carbon flux in the producer microorganism is important for strain

improvement. Carbon distributions between the hexose monophosphate pathway

(HMP) and the pentose monophosphate pathway (PPP) and around the oxaloacetate

supply have been the focal points of research interest. 13C-NMR analysis combined

with metabolic balance analysis has been widely used for this purpose, and much

insight has been accumulated [128–130]. One of the earliest finding of the analysis

is that the carbon distribution through HMP and PPP in C. glutamicum is different

between the glutamate producer and the lysine producer [131]. The carbon flux

distribution between HMP and PPP was 8:2 in the glutamate producer, whereas it

was 4:6 in the lysine producer, suggesting that the flux is controlled by the necessity

of NADPH. Subsequently, this finding led to cofactor engineering [132–134].

6 Feature Prospective

At the end of the twentieth century, the whole genome sequence determination was

initiated in various kinds of organisms including E. coli [135] and C. glutamicum
[136]. Genome data enabled a new way of strain improvement termed as “genome

breeding” [137–139] that creates a minimal set of mutations beneficial for produc-

tion by (1) comparative analysis of whole genomes of the wild-type strain and a

producer strain obtained from the wild-type via successive classical mutations,

(2) defining beneficial mutations, and (3) assembling them in the wild-type back-

ground. This enables the construction of a producer strain with high productivity

without undesirable traits of the classical producer mutant, such as slow growth and

stress sensitiveness.

Glutamate fermentation has been used mainly for production of MSG, a season-

ing. However, it may take part in wider areas of application because glutamate is

expected to be one of the basic chemicals from renewable resources [140]. Thus,

glutamate fermentation yet retains enough potential for contributing for the quality
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of human life in addition to its historical role in modern fermentation industry and

applied microbiology.
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