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Abstract Terpenoids (isoprenoids) represent the largest and most diverse class of
chemicals among the myriad compounds produced by plants. Plants employ ter-
penoid metabolites for a variety of basic functions in growth and development but
use the majority of terpenoids for more specialized chemical interactions and
protection in the abiotic and biotic environment. Traditionally, plant-based terpe-
noids have been used by humans in the food, pharmaceutical, and chemical
industries, and more recently have been exploited in the development of biofuel
products. Genomic resources and emerging tools in synthetic biology facilitate the
metabolic engineering of high-value terpenoid products in plants and microbes.
Moreover, the ecological importance of terpenoids has gained increased attention to
develop strategies for sustainable pest control and abiotic stress protection. Toge-
ther, these efforts require a continuous growth in knowledge of the complex met-
abolic and molecular regulatory networks in terpenoid biosynthesis. This chapter
gives an overview and highlights recent advances in our understanding of the
organization, regulation, and diversification of core and specialized terpenoid
metabolic pathways, and addresses the most important functions of volatile and
nonvolatile terpenoid specialized metabolites in plants.
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1 Introduction

Introductory chapters on terpenoid biosynthesis usually highlight the large number
of terpenoid compounds found in nature. Indeed, the structural diversity associated
with at least 40,000 compounds makes the class of terpenoids one of the most
impressive examples in the divergent evolution of plant chemicals. The evolu-
tionary success of this compound class is in part based on the simplicity of con-
structing different size molecules. According to the isoprene rule recognized by
Wallach and Rutzicka in the late nineteenth and mid-twentieth centuries [1], all
terpenoids are derived from the universal five-carbon building blocks, isopentenyl
diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP). The
prenyl diphosphate intermediates built by condensation of these five-carbon units
are used as precursors for the biosynthesis of terpenoids with fundamental functions
in growth and development and for the formation of a large number of terpenoid
compounds with more specialized roles in the interaction of plants with their
environment. It is the latter group of terpenoids that is characterized by its tre-
mendous structural diversity as a consequence of divergent biosynthetic gene
evolution. Specialized terpenoids have a long history of being used as flavors,
fragrances, pharmaceuticals, insecticides, and industrial compounds, several of
which are addressed in this book. With the growing need for sustainable production
platforms of plant-based drugs and the emerging use of terpenoids in the production
of alternative fuels, substantial progress has been made in the engineering of ter-
penoid biosynthetic pathways in microbes and plants [2, 3]. Advanced functional
genomics approaches provide unlimited access to the biosynthetic genes and
molecular regulators of terpenoid-producing plants, and, at the same time, allow
deeper insight to the complexity of plant terpenoid metabolism and regulation. In
this chapter, I provide an overview of the organization of the early and core ter-
penoid metabolic pathways and give updates on the regulation and functional
diversification of their genes and enzymes. Furthermore, I summarize the function

64 D. Tholl



of terpene synthases and describe aspects of their coordinated and tissue-specific
regulation in specialized metabolism prior to addressing the diverse roles of ter-
penoids in plant–environment interactions.

2 Core Terpenoid Biosynthetic Pathways and Their
Regulation

Successful engineering of terpenoid products in plants critically depends on the flux
of precursors delivered by the core isoprenoid biosynthetic pathways and, conse-
quently, on the dynamic regulation of these biosynthetic routes. Plants use two
independent pathways to produce IPP and DMAPP: the primarily cytosolic mev-
alonic acid (MVA) pathway and the plastidial methylerythritol phosphate (MEP)
pathway (Fig. 1). The MVA pathway predominantly provides the precursors for the
cytosolic biosynthesis of sesquiterpenoids, polyprenols, phytosterols, brassinoster-
oids, and triterpenoids, and for terpenoid biosynthesis in mitochondria (e.g.,
ubiquinones, polyprenols), and the five-carbon units derived from the MEP path-
way are preferably used for the biosynthesis of hemiterpenoids (e.g., isoprene),
monoterpenoids, diterpenoids, carotenoids and their breakdown products, cytoki-
nins, gibberellins, chlorophyll, tocopherols, and plastoquinones (Fig. 2). It has
become evident that both pathways are heavily regulated at multiple levels as was
discussed in two recent reviews by Hemmerlin and coworkers [4, 5]. In addition to
the transcriptional regulation of MVA and MEP pathway genes and their different
paralogues, isoprenoid-pathway fluxes are controlled at posttranscriptional/-trans-
lational levels and by feedback regulation. Recent studies have given a more global
view of the dynamics and networks of the core isoprenoid pathways and the reg-
ulation of metabolic flux during plant development and in response to external
stimuli (reviewed in [6, 7]). Therefore, this chapter primarily gives an overview of
both pathways with some emphasis on those in Arabidopsis and provides updates
on the different modes of regulation.

2.1 MVA and MEP Pathways—A Brief Summary of Their
Biosynthetic Steps

The MVA pathway in plants (Fig. 1a) consists of six steps and starts with the
Claisen-type condensation of two molecules acetyl-CoA to acetoacetyl-CoA
(AcAc-CoA) catalyzed by acetoacetyl-CoA thiolase (AACT). In a subsequent aldol
condensation reaction catalyzed by HMG-CoA synthase (HMGS), AcAc-CoA
is combined with a third molecule of acetyl-CoA to form the C6-compound
S-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Response to different stresses,
feedback regulation, and the role of HMGS in sterol metabolism (see below)
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support a key function of HMGS in the MVA pathway. In the following
rate-limiting step, HMG-CoA reductase (HMGR) catalyzes the conversion of
S-HMG-CoA to R-mevalonate in two NADPH-dependent reduction steps. All plant
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HMGR proteins are membrane-bound with two membrane-spanning sequences and
a highly conserved catalytic C-terminal domain. The presence of ER-specific
retention motifs indicates a primary association of the membrane-spanning domain
with the ER, whereas the N-terminal and C-terminal ends are positioned on the
cytosolic side [8–13]. The association of HMGR to membranes seems to regulate
its activity negatively, thereby limiting the accumulation of terpenoid end products
such as sterols (e.g., [14, 15]). Many studies have reported on the critical regulatory
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role of HMGR in the biosynthesis of phytosterols, triterpenoids, and sesquiterpe-
noid phytoalexins, although flux control often involves additional downstream
enzymes such as sesquiterpene synthases (e.g., [16–21]). MVA produced by
HMGR is finally converted into IPP via three enzymatic steps: two ATP-dependent
phosphorylation steps, catalyzed by mevalonate kinase (MK) and phosphomeval-
onate kinase (PMK), and an ATP-driven decarboxylative elimination catalyzed by
mevalonate diphosphate decarboxylase (MVD or MPDC).

The MEP pathway (Fig. 1b), which occurs in all photosynthetic eukaryotes and
in cyanobacteria, apicomplexan protozoa, and most eubacteria [22–25] consists of
seven enzymatic steps. In the first reaction, 1-deoxy-D-xylulose 5-phosphate (DXP)
is formed by DXP synthase (DXS) from (hydroxyethyl) thiamine diphosphate,
which is derived from pyruvate, and glyceraldehyde-3-phosphate (GAP) in a
transketolase-like condensation. Plant DXS enzymes carry a highly conserved
thiamine phosphate binding domain and are divided in the class-I type enzymes
with primary expression in photosynthetic and floral tissues and the class-II type
enzymes with more distinct roles in specialized metabolism (see below). Numerous
studies have confirmed that DXS functions as an important regulatory and rate-
limiting enzyme in the biosynthesis of plastidial terpenes [26–31]. Consequently,
DXS mutants such as those of the single functional Arabidopsis class-I type DXS
gene (DXS1) exhibit albino phenotypes [32–34].

The enzyme 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) catalyzes
the second step of the MEP pathway, in which DXP is converted into 2-C-methyl-D-
erythritol 4-phosphate (MEP) by an intramolecular rearrangement of DXP into 2-C-
methyl-D-erythrose 4-phosphate, followed by an NADPH-dependent reduction
[35, 36]. The reaction can be specifically inhibited by fosmidomycin, a structure
analogue of the DXR substrate [37–39] thereby blocking the biosynthesis of
downstream plastidial terpene biosynthesis [40–42]. The reaction catalyzed by DXR
is in some cases considered a rate-limiting step depending on the species, tissue, and
developmental stage. In Arabidopsis, DXR1 is expressed in different plant organs
[36] and dxr mutants show, similar to those of DXS1, an albino phenotype and
deficiencies in gibberellin and abscisic acid (ABA) biosynthesis [43].

MEP is further converted in a CTP-dependent reaction to 4-diphosphocytidyl-2-
C-methyl-D-erythritol (CDP-ME) by the enzyme 4-diphosphocytidyl-2-C-methyl-D-
erythritol synthase (MCT or IpsD) [44, 45]. Phosphorylation of CDP-ME by the
enzyme 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (CMK, IspE) then leads
to the formation of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-
ME2P) [46–48], which is subsequently cyclized by 2-C-methyl-D-erythritol 2,4-
cyclodiphosphate synthase (MDS, IspF) into 2-C-methyl-D-erythritol 2,4-cyclodi-
phosphate (MEcPP) upon loss of CMP. In the last two steps of the MEP pathway,
the enzyme 4-hydroxy-3-methylbut-2-enyl diphosphate synthase (HDS, IspG) first
converts MEcPP in a two-electron reduction to 4-hydroxy-3-methylbut-2-enyl
diphosphate (HMBPP). In a final branching step, HMBPP is converted by
4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR, IspH) to a mixture of
IPP and DMAPP with a ratio of 5 to 6:1 [49–51].
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Mutants of MCT, MDS, and CMK exhibit similar albino phenotypes and
downregulation of photosynthetic genes [52, 53]. Likewise, hds and hdr-1 mutants
have defects in chloroplast development [54, 55]. Interestingly, a partial loss-of-
function mutant of Arabidopsis HDS, hds-3 (csb3), was shown to be more resistant
to biotrophic pathogens suggesting a link between the MEP pathway and plant
defense responses [56].

2.2 Differential Expression of MVA and MEP Pathway
Isozymes

Several enzymes of the MVA and MEP pathways, especially those with important
regulatory roles, are encoded by small gene families, which allow for functional
redundancy and divergence (summarized in [4]; Fig. 1). In the MVA pathway,
paralogues have been identified for AACT, HMGS, HMGR, and MPDC, whereas
the MEP pathway enzymes DXS, DXR, MCT, CMK, MDS, or HDR were found to
be encoded by two or more isogenes [4]. The different roles of many of the MVA
and MEP pathway isozymes depend on their expression in specific cellular tissues
and are often divided into essential functions to provide terpenoid precursors in
primary metabolism, growth, and development, and more specific functions in
stress response and specialized metabolism. For example, in Brassica juncea,
HMGS is represented by a four-member gene family. Two genes are highly
expressed at early stages of floral development [57–59] and play a role in repro-
duction, as was also shown for the single HMGS gene in Arabidopsis, [60] whereas
expression of the two other paralogues is restricted to leaves [58, 59].

Notably, paralogues of the HMGR family exhibit different developmental and
tissue-specific expression patterns and can be distinguished by their response to
endogenous molecules such as phytohormones and sterol metabolites as well as
external stimuli that include light, wounding, elicitor treatment, and pest and
pathogen attack (Fig. 1; reviewed in [4]). The differential expression of HMGR
isozymes, as demonstrated by early studies of the HMGR gene families in Sola-
naceous plants (tomato, potato) [61, 62], is important for channeling and counter-
balancing carbon flux to the different downstream pathways of stress response or
development. This functional differentiation, however, does not seem to occur in all
plants inasmuch as both HMGR genes in Arabidopsis do not respond to stress but
are essential for the production of sterols for cell elongation, senescence, gameto-
phyte development, and fertility [63, 64].

Functional divergence of MEP pathway genes has been primarily observed in
the DXS gene family. Class II-type DXS genes respond to biotic interaction and are
induced in the biosynthesis of apocarotenoids upon mycorrhizal colonization in
legumes and other plant families [30, 65, 66]. Several studies also demonstrated that
type II DXS genes are induced in response to pathogen and herbivore attack in
association with the production of specialized metabolites (summarized in [4]).
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2.3 Metabolic Regulation and Networks

There is clear evidence for the role of pathway intermediates and downstream
metabolites in the regulation of the core terpenoid biosynthetic steps at transcrip-
tional and posttranslational levels (Fig. 1). Feedback inhibition by free CoA has
been demonstrated for AACT and HMGR and for the enzymatic products of
HMGS [59, 67, 68]. Furthermore, plant MKs respond to feedback inhibition by the
prenyl diphosphates, IPP, DMAPP, geranyl diphosphate (GPP), and farnesyl
diphosphate (FPP) that modulate enzyme activity by acting as competitive inhibi-
tors of ATP [69]. Similarly, in vitro feedback inhibition was found for a DXS
protein from poplar by IPP and DMAPP and a structural analysis suggested pos-
sible binding of the prenyl diphosphates to the enzyme in competition with its
thiamine pyrophosphate substrate [70]. This feedback inhibition has also been
supported in vivo by recent metabolic flux studies in poplar [71].

The complexity of the regulatory network also becomes apparent when meta-
bolic disturbances and changes in metabolic flux generated by overexpression or
reduced expression of genes of the core isoprenoid pathways promote pathway
feedback or feedforward signals that modify the expression of up- or downstream
genes. For example, overexpression of B. juncea wild-type and mutated HMGS1 in
Arabidopsis caused an upregulation of HMGR and genes in sterol biosynthesis such
as sterol methyltransferase 2, delta-24 sterol reductase, and C-22 sterol desaturase,
which led to an elevated sterol content in leaves and seedlings and increased stress
tolerance [57]. A similar response was observed for HMGS overexpression in
tobacco resulting in improved sterol content, growth, pod size, and seed yield [72].
Conversely, knockdown of AACT2 expression led to lower levels and altered
profiles of sterols and caused reduced expression of downstream genes encoding
FPP synthases and sterol methyltransferase [73]. HMGR activity also exhibits a
positive feedback response to downstream metabolic changes such as reduced
cycloartenol levels in transgenic tobacco expressing sterol methyltransferase type 1
(SMT1) and the depletion of endogenous sterols due to the inhibition of squalene
synthase [74, 75].

The simultaneous response of several genes to pathway perturbations is further
observed in mutants of the MEP pathway. For instance, silencing of CMK in
Arabidopsis causes upregulation of MCT, MDS, and HDS expression [76]. More-
over, in rice, MEP pathway genes were found to be coexpressed with downstream
genes in carotenoid and phytyl biosynthesis [77]. In line with these observations,
detailed transcriptional coexpression network analyses in Arabidopsis demonstrated
that gene modules in both MVA and MEP pathways are coregulated together with
genes of downstream pathways and these findings have set the stage to identify
regulatory elements of these gene modules [78–80]. Consequently, cis elements
were mapped showing that the promoters of the Arabidopsis genes DXS, DXR,
CMK, HDR, and phytoene synthase share a cis-regulatory element interacting with
RAP2.2, a member of the ethylene response factor B-2 subfamily [6].
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In conjunction with their regulation by light (see below), MEP and MVA
pathways respond to regulators in sugar metabolism. Arabidopsis mutants of
pleiotropic regulatory locus 1 (PRL1), a global regulator of sugar, stress, and
hormone responses, accumulate MEP pathway-derived end products (Fig. 1a) [81].
The same mutants have reduced HMGR activity but no change in HMGR transcript
or protein because of posttranslational modification. PRL1 inhibits the SNF1
(sucrose nonfermenting)-related protein kinase 1 (SnRK1), which negatively reg-
ulates HMGR1 by phosphorylation and inactivation of the catalytic domain
(Fig. 1a) [82]. HMGR1 is also negatively regulated during normal development and
in response to salt stress by protein phosphatase 2A (PP2A), which dephospho-
rylates the HMGR protein (most likely at a site different from the phosphorylation
by SnRK1; Fig. 1a) [83]. Modulation of HMGR transcripts at the initiation of
translation [84] and glycosylation of HMGR isoforms [11], respectively, have been
discussed previously as other mechanisms of posttranscriptional or posttranslational
regulation of stress-induced HMGR genes.

There are several possible connections of the isoprenoid pathway to other
metabolic routes by delivery and competition for carbon precursors (e.g., amino
acid degradation) [4], which will require further attention to gain a more compre-
hensive understanding of flux in terpenoid biosynthesis. A link of isoprenoid
metabolism with lipid biosynthesis was described by Nieto et al. [85], who found
that inhibition of sphingolipid biosynthesis in Arabidopsis caused posttranslational
downregulation of HMGR activity decoupled from HMGR transcript and protein
levels and a reduction in sterol content. Recently, an unexpected simultaneous
downregulation of flavonoid and terpenoid metabolite levels was observed in
trichomes of tomato mutants of the flavonoid biosynthetic enzyme chalcone
isomerase (CHI) [86]. These results have led to several hypotheses about the reg-
ulatory connections between both pathways. It is possible that changes in the levels
of flavonoids by accumulation (upstream of CHI) or depletion (downstream of CHI)
modify terpenoid biosynthetic gene expression or directly inhibit biosynthetic and
regulatory proteins [87, 88]. Based on previous findings, there is also the possibility
that CHI itself might interact with proteins involved in terpenoid production or its
regulation [89]. Furthermore, it will be important to examine regulatory factors that
coordinate the metabolic flux through both pathways [90].

2.4 Regulation by Light and External Stimuli

Thanks to recent efforts to identify MVA and MEP pathway gene expression
patterns by transcriptome and hierarchical cluster analyses it was shown that the
genes of both pathways have opposite expression patterns during light or dark
(Fig. 1) [6]. Whereas exposure to light leads to the downregulation of MVA
pathway genes and reduced levels of sterols [79], it stimulates transcript accumu-
lation of MEP pathway genes and genes in the carotenoid and chlorophyll bio-
synthetic pathways such as PSY (phytoene synthase) and HEMA1 (glutamyl-tRNA
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reductase), which are essential for chloroplast differentiation [79, 80, 91–94]. Light
also upregulates tocopherol, and plastoquinone biosynthetic genes such as VTE3
(vitamin E defective 3) [79]. The results are supported by studies that observed an
increased carbon flux through the MEP pathway under enhanced light conditions by
measuring the accumulation of MEcDP when 2-C-methyl-D-erythritol 2,4-cyclod-
iphosphate reductase activity was inhibited [95]. In contrast to the upregulation by
light, expression of MEP pathway genes with the exception of HDR [55] is reduced
during light–dark transition [6]. Dark exposure can induce HMGR activity as was
shown in ginseng where HMGRs play a regulatory role in triterpene ginsenoside
biosynthesis [96]. The light-dependent response of Arabidopsis MEP and MVA
pathway genes is controlled by phytochrome B (PHYB) because phyB mutants
have enhanced transcript levels and enzyme activity of HMGR but reduced levels
of MEP pathway products [92]. Consequently, phytochrome interacting factors
(PIFs) of the basic helix–loop–helix (bHLH) transcription factor family were
identified as regulators that are involved in the light control of MEP and carotenoid
biosynthetic pathway genes [93, 97]. Turnover of the MEP pathway enzymes DXS
and DXR was also found to be correlated with the activity of Clp, a major plastid
stromal protease (Fig. 1b) [98].

Downregulation of MEP pathway enzymes in the dark provides a dilemma for
the biosynthesis of carotenoids and gibberellins required for the development of
etiolated seedlings. Supported by observations from treatments with the MEP
pathway inhibitor fosmidomycin, Rodriguez-Concepcion and coworkers suggested
that during seedling germination in the dark, prenyl diphosphates derived from the
MVA pathway are transported into etioplasts for gibberellin and carotenoid syn-
thesis prior to the induction of MEP pathway enzymes upon illumination [92].
Given the responses of MEP and MVA pathway genes in light and dark, it is not
surprising that the expression of several genes is under circadian control [7].
Coexpression analyses in Arabidopsis photosynthetic tissue connect several MEP
pathway genes with core circadian oscillators (LHY, CCA1, PRR9) whereas only
AACT2 of the MVA pathway follows the expression of circadian regulators peaking
in the dark [6]. However, in roots, expression of several MVA pathway genes such
as HMGR1 is correlated with that of circadian regulators (TOC1, TIC) showing
clear differences in the circadian control of early pathway genes in above- and
belowground tissues. Interestingly, in triple mutants of the TOC1 related pseudo-
response regulator (PRR) proteins PRR9, PRR7, and PRR5, genes and metabolites
of carotenoid, chlorophyll, and tocopherol pathways are upregulated, which sug-
gests a function of these proteins as negative regulators of the MEP pathway-
dependent metabolic routes [99]. To what extent the oscillation of MVA and MEP
pathway gene transcripts directly corresponds to changes in enzyme activity and
downstream metabolites requires further attention. In snapdragon flowers, the
rhythmic emission of volatile monoterpenes in plastids and sesquiterpenes in the
cytosol depends on the MEP pathway that is controlled by the circadian clock
[100].

In addition to their differential response to light, MVA and MEP pathways
respond to multiple other external stimuli at gene transcript and posttranslational
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levels (Fig. 1; summarized in [4]). To support the production of terpenoids for
protection against temperature stress, carbon flux through the MEP pathway
increases under elevated temperatures [95]. In the MVA pathway, not only HMGR
but other enzymes such as AACT show induced responses under abiotic stress and
appear to be involved in MVA pathway-mediated abiotic stress adaptation [68].
Changes in redox state also directly affect MVA and MEP pathway enzymes. Both
HDS and HDR, which function as iron–sulfur reductases, have been identified as
targets of the redox protein thioredoxin [101, 102] and thioredoxin-dependent
regulation has also been suggested for DXR [102]. Moreover, it has been shown
that HDS can receive electrons directly through the photosynthetic electron-trans-
port chain via ferredoxin without any reducing cofactor, which is different from the
flavodoxin/flavodoxin reductase and NADPH-dependent reducing system of HDS
in bacteria [103].

Biotic stress such as pathogen attack often upregulates individual genes of
HMGR families to direct flux toward the production of sesquiterpene phytoalexins
under simultaneous downregulation of squalene synthase and sterol biosynthesis
[62, 104]. Studies in tobacco showed that the regulation of pathogen-activated
expression of HMGR involves the MEK2-SIPK/WIPK MAP kinase cascade [105,
106]. Another example highlights the importance of HMGR in root nodule
development. The HMGR1 protein of Medicago truncatula directly interacts with
NORK, which is a receptor-like kinase required for Nod factor signaling. Reduced
expression of HMGR1 in transgenic plants causes a severe decrease of root nod-
ulation [107].

2.5 Regulation and Metabolite Exchange Across Subcellular
Compartments

The compartmentalization of MEP and MVA pathways and associated downstream
pathways allows for the subcellular regulation and coordination of photosynthesis-
dependent and independent terpenoid biosynthetic routes. Despite the general
notion that the MVA pathway enzymes are located in the cytosol or associated with
the ER, peroxisomes have been discussed as localization sites for AACT (partic-
ularly AACT1 in Arabidopsis), PMK, and MVD based on the prediction of per-
oxisomal PTS targeting peptides and transient protein peroxisome import studies in
Catharanthus roseus cells [108–110]. For MVD1 in Arabidopsis, however, mass
spectrometry analysis suggests a cytosolic localization and MVD2 is predicted to
reside in the cytosol [6]. In the absence of additional evidence for a partial local-
ization of the MVA pathway in peroxisomes and possible transporters of isoprenoid
precursors between the compartments, our current view on the subcellular orga-
nization of the MVA pathway remains incomplete.

The exchange of intermediates between the cytosol and plastids is usually not
sufficient to rescue Arabidopsis mutants of biosynthetic enzymes in the MVA or
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MEP pathways [31, 43, 64]. However, studies on dxs2 mutants in tomato suggested
that both pathways can, to some extent, compensate each other [66]. Moreover, in
numerous cases, some degree of exchange of isoprenoid intermediates between
plastids and the cytosol has been demonstrated based on the application of MEP
and MVA pathway-specific inhibitors and the incorporation of stable-isotope pre-
cursors in primary and specialized terpenoid metabolites (e.g., [100, 111–117].
There is frequent evidence for trafficking of isoprenoid intermediates from the
plastid to the cytosol in photosynthetic tissues (e.g., [113]). However, the contri-
bution of the MVA pathway to the biosynthesis of plastidial isoprenoids can be
substantial in the absence of light as was demonstrated by Opitz et al. [118] in roots
of cotton seedlings or in dark-grown Arabidopsis seedlings [92].

To date, no specific transporters of isoprenoid precursors have been identified in
the plastid membrane. The export of IPP from plastids to the cytosol was suggested
to proceed by a plastidial proton symport system [119]. Studies by Flügge and Gao
[120] indicated that IPP is not transported by plastidic phosphate translocators but
depends on phosphorylated counter-substrates. In addition to the transport of IPP,
there is evidence that longer prenyl diphosphates such as GPP and FPP are moved
from plastids to the cytosol in tomato [121], the grape berry exocarp [122], and
glandular trichomes of Stevia rebaudiana [116]. Genomic and proteomic analyses
of single cells such as trichomes could be a promising approach to identify the
isoprenoid transporter machinery between both compartments.

Despite some degree of exchange of isoprenoid intermediates between the
plastid and the cytosol, the spatial separation of terpenoid biosynthetic pathways
has been of benefit for the engineering of terpenoid end products. Expression and
targeting of an FPP synthase and sesquiterpene synthase to plastids in tobacco did
prevent carbon flux competition with sterol biosynthesis in the cytosol and pro-
moted sesquiterpenoid yields by a thousandfold [123]. The same approach was
successfully applied to produce high levels of the triterpene squalene in plastids and
in tobacco trichomes although the latter case came at the cost of severely reduced
growth [124]. Efforts have also been made to insert the entire MVA pathway in the
tobacco chloroplast genome resulting in increased levels of mevalonate and
carotenoids, but also squalene and sterols [125].

As mentioned above, expression of the MEP and MVA pathway genes is
coordinately regulated by external stimuli. Other interdependent mechanisms of
regulation between the pathways have been detected at posttranslational levels.
Recent studies in tobacco demonstrated that blocking MEP pathway-dependent
protein geranylgeranylation by treatment with the monoterpene S-carvone sup-
presses signaling to induce the MVA pathway-dependent formation of the ses-
quiterpene phytoalexin capsidiol [126]. Other possible roles of multicompartment
networks in regulating the MVA pathway have been addressed by Verbitskiy et al.
[127]. Work by these authors on proteins involved in RNA editing suggests that
retrograde signaling between mitochondria and the cytosol might modify MVA
pathway activity and, according to Tang et al. [128], this interaction seems to
involve the mitochondrial respiratory pathway. Most notably, the MEP pathway
intermediate, MEcPP, was found to function as a retrograde signaling molecule
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between plastids and the nucleus. MEcPP elicits the expression of stress-responsive
nuclear-encoded plastidial proteins which suggests that the MEP pathway functions
in stress sensing and coordinating stress-induced nuclear genes [129].

3 Isomerization and Condensation of the C5 Building
Blocks

The construction of terpenoids with more than five carbons requires a sufficient
supply of IPP and its more reactive, electrophilic isomer DMAPP. Therefore, IPP
derived from the MVA pathway needs to be converted to DMAPP by the activity of
an IPP isomerase (IDI; Figs. 1 and 2). Type I IPP isomerase isoenzymes in plants
have been localized to mitochondria and plastids and shorter isoforms have been
predicted to remain in the cytosol [130]. In analogy to mammalian cells, an alter-
native localization of IPP isomerases in peroxisomes has been discussed [108] but
additional evidence for the role of peroxisomes in plant isoprenoid metabolism is
needed. Although the formation of DMAPP from IPP derived from the MVA
pathway is essential for downstream reactions in the cytosol and mitochondria, IPP
isomerization seems less important in plastids where both C5 building blocks are
produced by the MEP pathway. However, plastidial IPP isomerase activity might be
necessary to produce an optimal ratio of IPP and DMAPP for the downstream
condensation reactions and to provide precursors for a possible transport to the
cytosol.

In the second major stage of terpenoid biosynthesis, IPP and DMAPP units are
fused by the catalytic activity of prenyltransferases (isoprenyl diphosphate syn-
thases) to form prenyl diphosphates as the linear central precursors of all terpenoids
(Fig. 2). The initial reaction catalyzed by a prenyltransferase is a head-to tail (1′–4)
condensation of IPP with the allylic cosubstrate DMAPP based on an ionization–
condensation–elimination mechanism to produce a C10-allylic diphosphate. Addi-
tional rounds of head-to-tail condensation of the allylic product with more IPP units
lead to the formation of short-chain (C15–C25), medium-chain (C30–C35), and
long-chain (C40–Cn) prenyl diphosphates. The cis- or trans-stereochemistry of the
double bonds of the prenyl diphosphate product determines whether the enzyme
operates as cis-prenyltransferase or trans-prenyltransferase, which belong to families
of structurally unrelated enzymes [131]. Much knowledge has been gained on the
biochemistry and evolution of short-chain trans-prenyltransferases, which synthe-
size C10-geranyl diphosphate (GPP), C15-trans,trans-farnesyl diphosphate ((E,E)-
FPP), or C20-all-trans-geranylgeranyl diphosphate (all-trans-GGPP) as the main
precursors in terpenoid metabolism, although more recent work has discovered
similar roles of previously undetected short-chain cis-prenyltransferases (see below).
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3.1 Geranyl Diphosphate Synthases

As a precursor in the biosynthesis of C10-monoterpenoids, GPP is synthesized from
IPP and DMAPP by the activity of GPP synthase enzymes (GPSs), which are
usually targeted to plastids (Fig. 2). Different classes of homodimeric and heterodi/
tetrameric GPSs have been identified in plants [132–136] (Fig. 2). A heterotetra-
meric GPS from peppermint was the first GPS to be discovered in plants [137] and
since then related heterodimeric proteins have been found in a variety of other
species such as Anthirrinum majus, Clarkia breweri, and Humulus lupulus
[137–139]. The enzymes consist of a large subunit (LSU), which has significant
homology (*50 %) to GGPP synthases (GGPS, see below) and can exhibit GGPP
synthase activity as a recombinant protein, and a small subunit (SSU I) that shares
only *20 % sequence similarity with homomeric prenyltransferases and is func-
tionally inactive. It is generally thought that binding of SSU I modifies the activity
of the LSU to produce GPP. The importance of the physical interaction of both
subunits to make GPP has been confirmed by structural analysis of the heterotet-
rameric GPS from peppermint [134]. In Arabidopsis, Wang and Dixon [139]
identified a separate lineage of SSU (SSU II) genes encoding GGPS-related proteins
(GGR). Arabidopsis GGR modifies the in vitro activity of GGPS 11 to produce
GPP and contains two conserved CxxxC motifs that are essential for the interaction
of both subunits [139]. In contrast to the role of SSU I-containing GPSs in
monoterpene formation in peppermint or hops, the function of heterodimeric GPSs
carrying SSU II subunits is less clear because of the absence of a tight correlation
between protein expression and the biosynthesis of monoterpenes in different tis-
sues [139].

Engineering of GPS activity has been achieved by the expression of GPS.SSU
I from snapdragon in tobacco and tomato fruits. The expressed subunit recruits
plastidial GGPS proteins to form functionally active heterodimeric GPS proteins
[121, 140]. The study on tomato also revealed that GPP produced in plastids is
exported to the cytosol, where it can be used for monoterpene biosynthesis [121].
However, the exchange of GPP between both compartments might be limited in the
absence of engineered GPP pools as was shown for a bifunctional Arabidopsis
monoterpene/sesquiterpene synthase (TPS02), which is located in the cytosol and
produces sesquiterpenes but no monoterpenes in planta [42].

Homodimeric GPS enzymes have been described from angiosperms and gym-
nosperms [135, 136, 141, 142]. These proteins belong to different lineages and are
evolutionarily related to GGPSs (see below). The existence of a homodimeric GPS
in Arabidopsis has been discussed controversially. A single GPS1 gene was orig-
inally identified to encode a functionally active GPS enzyme [143]; however, more
recently the GPS1 protein has been characterized as a multiproduct medium-/long-
chain prenyl diphosphate synthase. The latter activity was observed when IPP was
supplied in excess to the allylic substrates DMAPP, GPP, and FPP and was
supported by the structural analysis of an active-site cavity with sufficient size to
accommodate the medium-/long-chain products [144]. The GPS1 protein (renamed
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by Hsieh et al. as polyprenyl di(pyro)phosphate synthase, PPS) is targeted to
plastids [143] where IPP and DMAPP are produced at ratios of approximately 5:1
by the MEP pathway. Thus, it is possible that this enzyme exhibits a PPS activity
in vivo.

3.2 Farnesyl Diphosphate Synthases

Trans-FPP synthases (FPSs) catalyze the formation of (E,E)-FPP as a central pre-
cursor in the biosynthesis of terpene primary metabolites (phytosterols, brassinos-
teroids, dolichols, ubiquinones), for protein prenylation, and in the production of
specialized metabolites such as sesquiterpenoids and triterpenoids (Fig. 2). As type
I (eukaryotic) FPSs, plant trans-FPSs build a superfamily of homodimeric enzymes
that are often encoded by small species-specific gene families (e.g., [145–147]).
FPS isozymes of different size that are produced as a result of differential gene
transcription have been localized to the cytosol or the mitochondria where they
produce FPP pools for the biosynthesis of cytosolic and mitochondrial downstream
products [148] (Fig. 2). Targeting of FPSs to peroxisomes has been discussed based
on YFP fusion experiments in Catharantus roseus cells [149]. However, no per-
oxisomal targeting has been demonstrated for fluorescent FPS fusion proteins in
Arabidopsis, which is consistent with results from proteomic studies of the cytosol
and purified peroxisomes [150, 151].

As with the isozymes of the MEP and MVA pathways, it has been a primary
interest to elucidate the possible functional differences of prenyltransferase iso-
forms. In Arabidopsis, the two FPS paralogues, FPS1 and FPS2, have overlapping
expression patterns and can rescue each other’s loss, whereas double mutants are
impaired in male genetic transmission and arrested at early embryo development
[152]. However, there is no complete functional redundancy between the two
isozymes inasmuch as FPS2 is the predominantly expressed isozyme in mature
seeds and early seedling development, and FPS1 appears to be only expressed in
the maternal seed coat [153]. Consequently, seeds of fps2 mutants have a reduced
sterol content [152]. Keim et al. propose that the specific expression of FPS2 in
mature seeds is related to its higher enzymatic activity and thermal stability. The
authors further speculate that during early development of the embryo (in the
absence of FPS2 expression), FPP might be imported from the seed tissue where
FPS1 is expressed [153].

3.3 Geranylgeranyl Diphosphate Synthases

Similar to (E,E)-FPP, all-trans-GGPP synthesized by all-trans-GGPSs is a major
branching point for several downstream terpenoid pathways in primary and spe-
cialized metabolism. These include the biosynthesis of carotenoids and their
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breakdown products (abscisic acid, strigolactones), chlorophylls, tocopherols,
gibberellins, plastoquinones, and diterpenoids (all synthesized in plastids), gera-
nylgeranylated proteins and poly-/oligoprenols (synthesized in the cytosol), and
poly-/oligoprenols synthesized in the plastids and mitochondria (Fig. 2). Compared
to FPSs, GPPS isozymes are represented by larger gene families. For example, the
Arabidopsis genome contains 12 GGPS paralogues, of which 10 have been iden-
tified to encode functional GGPS proteins of most likely homodimeric architecture
and with GGPP as the primary or sole product [154]. The different GGPS isozymes
are located in the plastids, mitochondria, and the ER consistent with the subcellular
compartmentalization of the diverse GGPP-dependent terpenoid pathways. With
the exception of two of the Arabidopsis isozymes (GGPS1-mitochondrial,
GGPS11-plastidial), which are expressed in the whole plant, the remaining family
members exhibit distinct spatiotemporal expression patterns [154]. Seedling-lethal
albino and embryo-lethal phenotypes are found in ggps1 mutants, indicating that
GGPS1 has essential functions in development and the chlorophyll biosynthetic
pathway [155]. Although possible redundant or more specific functions of most of
the GGPS isozymes are not well understood, it is apparent that the divergence in the
Arabidopsis GGPS gene family is the result of functional specialization and fine-
tuning of metabolic pathways in different cellular compartments and in tissues at
different developmental stages or under different environmental conditions.

Both FPPS and GGPPS proteins have been expressed in modules with sesqui-
terpene synthases and diterpene synthases, respectively, to engineer the biosyn-
thesis of sesquiterpenoids and diterpenoids in microbial systems and in planta [123,
156]. Specifically, the buildup of FPP pools in plastids improved the precursor
supply and allowed for a substantial increase in yield of the desired sesquiterpene
products [123]. Other strategies to improve pathway productivity include generat-
ing combinatorial mutations in prenyldiphosphate synthase and downstream ter-
pene synthases. For example, prokaryotic expression of pathway variants of a
GGPPS and a terpene synthase, which produces a levopimaradiene diterpene pre-
cursor in ginkgolide biosynthesis, led to a more than 2,000-fold increase in the
levels of the levopimaradiene product thereby stressing the importance of protein
engineering in these approaches [157].

3.4 Chain Length Regulation and Evolution
of Prenyltransferases

Structural analysis combined with random or site-directed mutagenesis has pro-
vided substantial insight to the chain length regulation of short-chain prenyltrans-
ferase products [158]. Based on crystal structures of several homodimeric FPPs and
GGPS from eukaryotes and prokaryotes [159–165], short-chain prenyltransferases
share a common protein fold composed of 13 α-helices with 10 helices surrounding
the active site cavity. IPP and the allylic substrate are bound by two highly
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conserved aspartate-rich regions, a first DDx2-4D motif (FARM) and a second
DDxxD motif (SARM), which are positioned on opposite walls of the cavity.
Product chain length is in part regulated by amino acid residues upstream of the
FARM motif (position –4, –5), which change the size of the hydrophobic substrate
binding or elongation pocket of the polyisoprenoid chain [166, 167]. According to
this mechanism, type I FPSs such as Arabidopsis FPS1 and FPS2 have a smaller
binding pocket because of the presence of “bulkier” aromatic amino acid residues.
In type II GGPSs, which comprise eubacterial and plant GGPSs, these aromatic
amino acids are replaced by smaller residues such as alanine, serine, and methio-
nine allowing the formation of a longer C20 chain. Studies of yeast GGPS indicated
that chain termination at C20 depends on residues located deeper in the catalytic
cavity [162]. Poulter and colleagues recently employed a large-scale bioinformatics
approach combined with experimental enzyme characterization, protein crystalli-
zation, and computational modeling to predict the chain length specificity of a large
number of putative polyprenyl transferases [168]. The approach, which resulted in a
high rate of correctly predicted functions, largely supported the notion that steric
hindrance in the elongation cavity is the main criterion determining chain length
specificity. It is important to note that the study also suggested a chain-length–
determining effect of “second shell” residues that are positioned in the vicinity of
the residues lining the elongation pocket. Depending on their size, these neigh-
boring residues may or may not provide flexibility for bulkier aromatic residues that
protrude into the cavity to be moved or displaced by the growing polyprenyl
chain [168].

Phylogenetic analyses of prokaryotic and eukaryotic prenyltransferases place
plant FPSs in a clade with other eukaryotic FPSs that is distinct from a cluster
containing plant GPS and GGPS proteins [158]. A comprehensive phylogenetic
study of GGPS and GPS homologues of land plants and green algae demonstrated a
lineage and species-specific expansion of GGPS families indicating gene duplica-
tion events and functional divergence [169]. The phylogeny shows several evolu-
tionary transitions from proteins with GGPS to GPS activity. For example,
gymnosperm homodimeric GGPSs, which form a distinct clade among plant
GGPSs, can produce shorter prenyldiphosphates or synthesize exclusively GPP
[133, 142]. In comparison to GGPSs from green algae and mosses that possess the
FARM and SARM motifs and a conserved CxxxC motif, the gymnosperm GGPSs
have acquired a second CxxxS (bifunctional GGPS) or CxxxC (GPS) motif. The
two CxxxC motifs are characteristic of most proteins that are associated with GPS
activity. Thus, they are present in the SSU I and SSU II subunits of heteromeric
GPS proteins and critical in binding the LSU. The binding of both subunits limits
access to the elongation cavity and terminates chain elongation at the formation of a
C10-product [134]. SSU I and SSU II proteins have lost both aspartate-rich motifs
or carry a mutated SARM, respectively, which is associated with the loss of prenyl
diphosphate activity [135, 169]. Interestingly, an earlier study reported a flower-
specific GPS from orchids with similarity to SSU II [136]. This protein lacks the
SARM but maintains GPS activity as a homodimeric enzyme (Fig. 2).
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Several proteins with homology to Arabidopsis PPS (former GPS1) have been
reported from other plants and designated as homodimeric GPSs (Fig. 2). These
proteins do not carry the CxxxC motifs and it remains to be determined whether
they function as true GPSs in vivo or may exhibit medium-chain or long-chain
polyprenyl diphosphate activity as was shown for the Arabidopsis enzyme. For
instance, GPS activity was demonstrated for a protein in tomato, but assays were
performed at a low IPP/DMAPP ratio [141]. Furthermore, silencing or mutation of
this enzyme and of PPS in Arabidopsis resulted in dwarfed or embryo lethal
phenotypes, which could be related to promiscuous GGPS activity to produce
GGPP for gibberellin biosynthesis or the synthesis of longer precursors in plasto-
quinone biosynthesis. The formation of longer chain products by Arabidopsis PPS
is also supported by the absence of aromatic amino acids near the FARM. Com-
putational predictions such as those presented by Wallrapp et al. [168] should
facilitate determining the chain length specificity of PPS homologues. In summary,
GPS activity appears to be the result of promiscuity and neofunctionalization of
GGPS (or PPS?) proteins in conjunction with the evolutionary adaptation of indi-
vidual plant lineages to produce monoterpenes as constituents of floral scent or for
chemical defense.

3.5 Cis-Isoprenyl Diphosphate Synthases

One of the surprising findings in the field of terpene biosynthesis in the past five
years was the identification of short-chain cis-prenyltransferases (CPTs) and the
conversion of their cis-prenyl diphosphate products to terpenoids by the activity of
terpene synthases (see below). Prior to this discovery, it was generally believed that
CPTs synthesize prenyl diphosphate products with a chain length of more than 50
carbons by using all-trans short-chain prenyl diphosphates as allylic primer sub-
strates [170]. Such prenyltransferases in plants include enzymes that produce C70–
C120 dehydrodolichol diphosphates or natural rubber (>C10,000) from (E,E)-FPP
by head-to-tail condensations in a cis orientation [170–172]. Functional genomics
studies of terpene biosynthetic genes in glandular trichomes of wild tomato then
revealed the presence of a short-chain (Z,Z)-FPP synthase that produces (Z,Z)-FPP
[173] (Figs. 2 and 3). Characterization of a nine-member CPT family in cultivated
tomato gave additional evidence for short-chain enzyme activity by the identifi-
cation of three genes encoding a neryldiphosphate (NPP) synthase (NDPS1 or
SlCPT1, expressed in trichomes), a (Z,Z)-FPP synthase (SlCPT6, expressed in root
and fruit), and a nerylneryl diphosphate (NNPP) synthase (NNDPS or SlCPT2,
expressed in the stem), respectively [174] (Figs. 2 and 3). All three proteins are
targeted to plastids [174]. Notably, the Z,Z-FPP pool produced by (Z,Z)-FPP syn-
thase in trichome-specific plastids in wild tomato is used by plastidic sesquiterpene
terpene synthases (santalene/bergamotene sesquiterpene synthase [173] and 7-ep-
izingiberene synthase [175, 176]), which are related to diterpene synthases. Engi-
neering of (Z,Z)-FPP synthase and 7-epizingiberene synthase in trichomes of
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cultivated tomato led to the production of 7-epizingiberene and increased resistance
to herbivores [175]. NPP has been shown to be converted by a monoterpene
synthase to β-phellandrene among other monoterpenes [177]. Consequently,
coexpression of the NDPS1 enzyme with phellandrene synthase 1 was used suc-
cessfully for metabolic engineering of monoterpene formation in tomato fruits
[178]. Intriguingly, expression of NDPS1 alone led to the reduction of carotenoid
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levels in fruits because of feedback inhibition of GGPS by NPP. Based on these
findings, it is plausible that NPP production is restricted primarily to trichomes to
avoid inhibitory effects on carotenoid biosynthesis.

The association of the tomato CPT genes with terpenoid biosynthetic gene
clusters [174] clearly indicates adaptive functional specialization in the tomato CPT
gene family to provide short-chain prenyl diphosphates for different terpene bio-
synthetic pathways including trichome-specific terpene biosynthesis. In line with
these findings, a cis-type prenyltransferase was identified in lavender that catalyzes
the head-to-middle condensation of two DMAPP molecules to synthesize lavandulol
diphosphate, the precursor of lavendulol [179]. Furthermore, in the nine-member
CPT gene family of Arabidopsis a multiproduct prenyltransferase (AtCPT6) has
been identified that makes polyisoprenoid diphosphates with six to eight isoprene
units as precursors of polyisoprenoid alcohols in roots [180].

As with trans-prenyltransferases, efforts have been made to determine amino
acid residues that control the chain length specificity of CPTs [170]. Sequences of
CPTs share five conserved regions and employ residues for substrate binding and
catalytic activity that are different from those of trans-prenyltransferases [170].
Kang et al. [181] exploited accession-specific sequence differences of NDPS and
(Z,Z)-FPP synthase in tomato coupled with homology modeling and site-directed
mutagenesis to identify four residues in region II that are important for product
specificity. These residues are part of helix II, which, together with helix III, lines a
hydrophobic cleft that influences product chain length [182, 183].

4 Conversion of Prenyl Diphosphates and Terpene
Synthase Function and Regulation

Trans- and cis-prenyldiphosphates are the entry points to various downstream
primary and specialized terpenoid biosynthetic routes in plastids, mitochondria, and
the cytosol (summarized in Fig. 2). It is beyond the scope of this chapter to address
all of these pathways and the reader is referred to other chapters in this series (e.g.,
carotenoid biosynthesis) or more specialized recent reviews in the field.

The tremendous diversity of terpenoids in specialized metabolism can to a large
extent be attributed to the activity of terpene synthases (TPSs; Fig. 3a). TPS enzymes
have, therefore, become a focus point of in planta and heterologous metabolic
engineering of terpenoid end products with use as pharmaceuticals, flavors, biofuels,
or plant chemical defenses [184] (see other chapters in this series). The TPS super-
family, which is divided into eight subfamilies (TPSa–h), comprises a large and still
growing number of enzymes from almost all taxa in the plant kingdom [185]. TPSs
convert acyclic C5 to C20 cis- or trans-prenyl diphosphate intermediates into
C5-hemiterpenes such as isoprene, C10-monoterpenoids, C15-sesquiterpenoids, or
C20-diterpenoids (Fig. 2). The primary enzymatic products are in most cases acyclic
or cyclic hydrocarbons (Fig. 3a) that are frequently modified by secondary enzymatic

82 D. Tholl



reactions such as hydroxylation, peroxidation, methylation, acylation, glycosylation,
or cleavage to produce biologically active end products of even larger structural
diversity [186]. TPS enzymes facilitate adaptations of terpene metabolism to the
changing environment because their promiscuous activity often results in the pro-
duction of more than a single compound (e.g., [187]) and TPS proteins easily acquire
new catalytic properties by minor structural changes [187–192].

Mechanistically, TPS proteins are divided into class I and class II enzymes. The
enzymatic reaction catalyzed by class I TPSs starts with the ionization of the prenyl
diphosphate substrate by a divalent cation-dependent subtraction of the diphosphate
moiety. The produced carbocation intermediate then enters different reactions that
can include cyclizations, hydride shifts, and rearrangements prior to a termination
of the reaction by proton loss or the addition of a nucleophile such as water [193]
(Fig. 3). By contrast, class II TPSs, which include oxidosqualene cyclases (see
below) and diterpene synthases, catalyze the ionization of their substrate by adding
a proton to an epoxide ring or via protonation at the 14,15-double bond of GGPP,
respectively. Class II diterpene synthases that fall into this category are ent-copalyl
diphosphate (CPP) synthases (CPSs), which are involved in gibberellin and phy-
toalexin biosynthesis [194] (Fig. 2). In the gibberellin biosynthetic pathway, CPSs
catalyze a protonation-induced bicyclization of the substrate GGPP to form ent-
CPP, which is further ionized and converted to ent-kaur-16-ene by a class I ent-
kaurene synthase (KS) activity. Detailed genomic studies of land plants revealed
that the gibberellin biosynthetic pathway gave rise to the biosynthesis of an array of
specialized labdane-related diterpenoids largely by gene duplication and divergence
of CPS and KS homologues [194]. The ability to produce kaurene arose early in
land plant evolution as can be assumed from the identification of a bifunctional
classII/I CPS/KS in the moss Physcomitrella patens, which catalyzes the formation
of ent-kaurene (and 16-hydroxykaurene) via a CPP intermediate in the biosynthesis
of kaurenoic acid [195, 196]. Similar class II/I diterpene synthases such as abiet-
adiene synthase occur in gymnosperms and can be considered early diterpene
synthases. These enzymes produce (+)-CPP from GGPP prior to an ionization-
initiated cyclization of (+)-CPP to the diterpene product [197]. An interesting new
view on the evolution of plant TPS genes comes from a genomic study of a large
TPS gene family in the fern Selaginella moellendorffii [198]. Two distinct types of
TPS genes were identified: a group of diterpene synthases that represent a new plant
TPS-h subfamily, and, surprisingly, a group of monoterpene synthases and ses-
quiterpene synthases that are more closely related to microbial TPSs and may be the
first indication for a horizontal gene transfer of TPS genes [198].

It should be noted here that, recently, a new mechanism for the enzymatic
formation of cyclic terpenes was discovered in the iridoid monoterpene biosynthetic
pathway [199]. Iridoids have pharmaceutical and antibacterial activities and are also
produced by aphids as pheromones [200, 201]. The iridoid synthase from Catha-
rantus roseus is a short-chain reductase that most likely generates a C5-iridoid ring
in the linear monoterpene 10-oxogeranial substrate by coupling a reduction step
with a cyclization step via a Diels–Alder cycloaddition or a Michael addition [199].
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This exciting finding may open the way for future discovery of similar reductase-
type terpene cyclases in plants and other organisms.

More insight to the evolution of “regular” TPS enzymes has been gained from
the analysis of an increasing number of crystal structures including those from an
isoprene synthase [202], monoterpene synthases [203–206], sesquiterpene syn-
thases [207, 208], a class I diterpene synthase (taxadiene synthase [209]), a class II
CPP synthase [210, 211], and a class II/I diterpene synthase (abietadiene synthase
[212]). Comparisons of the assembly of a class I type α-domain and class II type β
and γ domains led to the prediction of an evolutionary scenario according to which
an ancestral bifunctional classII/classI diterpene synthase (consisting of all three
domains with a functional α- and β-domain) similar to the CPS/KS enzyme of
P. patens gave rise to class II type diterpene synthases (consisting of all three
domains with a functionally active β-domain and an inactive α-domain) and class
I type TPSs (consisting of a nonfunctional β-domain and a functionally active
α-domain) [213, 214]. A functionally active class I α-domain carries the highly
conserved aspartate-rich motif, DDxxD, and a less conserved NSE/DTE motif,
which are located on opposite sides of the entrance of the catalytic side and help
position the diphosphate substrate by binding of a trinuclear magnesium cluster
[215]. By contrast, functional class II β-domains carry a conserved DxDD motif,
which is required for protonation-initiated carbocation formation [213].

Although TPS enzymes may convert more than one prenyl diphosphate substrate
in vitro, their function in vivo is largely determined by the substrate pool that is
available in the respective cellular compartment. In this regard, TPS enzymes
localized in plastids generally produce monoterpenoids or diterpenoids from plas-
tidial GPP and all-trans-GGPP, respectively, whereas TPSs in the cytosol primarily
convert (E,E)-FPP to sesquiterpenes (or squalene in the biosynthesis of C30 terp-
enes). However, this general rule has recently been challenged by the discovery of
plastidial (Z,Z)-FPSs and sesquiterpene synthases in tomato, the latter of which are
more closely related to kaurene synthases in the TPS-e subfamily [177].

The existence of medium-size to large TPS families in Arabidopsis and many
other plant species strongly supports the notion that TPS genes evolve by gene
duplication and neofunctionalization [185, 216, 217]. Such duplication events
combined with relocation in the genome can include other genes that encode
modifying enzymes such as cytochrome P450s, and thus lead to the assembly of
gene clusters. From the first discovery of a thalianol triterpene biosynthetic gene
cluster in Arabidopsis [218], several such clusters have been found in the arabidiol,
marneral, and avenacin triterpene biosynthetic pathways in Arabidopsis and oat,
respectively [219, 220] (Sohrabi et al. in preparation), and for the biosynthesis of
labdane-related diterpenoids in rice [221] or monoterpenoids and sesquiterpenoids
in tomato [222]. The triterpene biosynthetic clusters carry genes for oxidosqualene
cyclases (OSCs), which catalyze the cyclization of oxidosqualene to one or more
cyclic triterpene alcohols via formation of a carbocationic intermediate [223, 224].
Coexpression with other cluster genes (e.g., P450s, desaturase, acyltransferase) in
an operon-like manner then allows a consecutive derivatization of the triterpene
precursor [218–220]. The evolutionary forces driving this coordinated gene cluster
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assembly are believed to be twofold. Clustering of genes for pathway building
facilitates the regulation of multiple genes at the level of chromatin and/or prevents
the accumulation of possible cytotoxic products [219, 225, 226]. However, a strict
coregulation of gene expression does not seem to be the case in all clusters as was
shown for a diterpene biosynthetic cluster in rice containing P450s that are dif-
ferentially regulated and function in two different pathways [194].

Clusters that exhibit a coordinated expression of their genes have allowed the
identification of putative key regulators such as in the case of the basic leucine
zipper transcription factor, OsTGAP1, which is involved in regulating a diterpenoid
biosynthetic gene cluster in rice [227]. Another transcription factor that was iden-
tified previously to regulate terpene biosynthetic genes positively is a WRKY
transcription factor in cotton, GaWRKY1, which regulates the transcription of a
sesquiterpene synthase gene in the gossypol biosynthesis pathway [228]. More
recent studies on Artemisia annua suggest that APETALA2/ethylene-response
factors (AP2/ERF) are positive regulators of biosynthetic genes in the formation of
the sesquiterpene artemisinin, an insect deterrent and antimalaria drug produced in
leaf glandular trichomes [229]. However, these studies thus far do not place the
identified transcription factors into regulatory networks related to development and
cell specification.

A better understanding of the regulatory networks controlling terpene volatile
formation has been gained in the process of flower maturation in Arabidopsis. Two
R2R3 MYB transcription factors, MYB21 and MYB24, were identified that pro-
mote gynoecium growth and nectary development and positively affect expression
of the major floral (E)-β-caryophyllene sesquiterpene synthase TPS21 [230]. Both
MYB TFs respond positively to jasmonic acid (JA), the levels of which are induced
by the auxin response factor 6 (ARF6) and ARF8, both master regulators of flower
maturation. TPS21 and the second floral sesquiterpene synthase, TPS11 [187], also
respond more directly to JA by the direct binding of their promoters to the bHLH
transcription factor MYC2 [231], which is a central regulator of the JA signaling
pathway in developmental and stress responses [232, 233]. In addition, TPS21 and
TPS11 gene expression is indirectly regulated by gibberellins through the binding
of DELLA proteins (gibberellin signaling repressors) [231].

Similar to the tissue-specificity of terpene formation in flowers, terpene-spe-
cialized metabolism in roots appears to be a highly coordinated cell type-specific
process. Genes of the thalianol and marneral triterpene biosynthetic gene clusters
are coexpressed primarily in the root epidermis [218, 219]. Likewise, 14 genes of
the Arabidopsis TPS family are expressed in different root tissues. For example, a
recently identified rhizathalene diterpene synthase (TPS08; Fig. 4) was found to be
primarily expressed in the root stele (see below) [234]. In addition, two 1,8-cineole
monoterpene synthase genes are constitutively expressed in the stele of the root
elongation zone and differentiation/maturation zone and in the epidermis and cortex
of more mature roots; a similar expression pattern has been observed for two
closely related (Z)-γ-bisabolene sesquiterpene synthases [188, 235]. However, no
networks of temporal and spatial regulation have yet been defined for these root-
specific genes.
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5 Multifunctionality of Plant Terpenoids

Although terpenoids serve important primary functions as photosynthetic pigments
(carotenoids), electron carriers (side-chains of ubiquinone and plastoquinone), reg-
ulators of growth and development (gibberellins, abscisic acid, strigolactones,
brassinosteroids, cytokinins), in protein glycosylation (dolichols), or as elements of
membrane structure and function (phytosterols), specialized terpenoid metabolites
(covered here), in particular, have been recognized for an array of biological roles.
Volatile or semivolatile, low-molecular–weight terpenoids, which include isoprene,
monoterpenoids, sesquiterpenoids, and diterpenoids, are implicated in the protection
of plants against abiotic stress and in various biotic interactions above- and below-
ground [236] (Fig. 4a). The substantial emissions of isoprene and monoterpenes from
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various vascular and nonvascular plants have been associated with the protection
against thermal stress. This process is presumably based on an intercalation of the
volatile compounds with the photosynthetic membranes and thereby enhances
membrane functionality [237–239]. Moreover, transgenic approaches in tobacco and
poplar support a role of isoprene in oxidative stress protection [240–243] and are
addressed in a separate chapter by Vickers et al.

Volatile terpenoids as constituents of floral scent are implicated in mutualistic
interactions with plant pollinators. For instance, choice tests with bumblebees have
indicated a role of monoterpenoids emitted by monkeyflowers in pollinator
attraction [244]. Nevertheless, distinct evidence for a specific role of terpenoids in
pollinator attraction by the use of biosynthetic mutants is still missing, but it can be
assumed that attractive effects depend on mixtures of volatiles rather than individual
compounds. The notion that floral volatile terpenoids serve multiple functions has
been supported by their role in the defense of floral tissues against microbial
pathogens. This interaction was demonstrated in flowers of Arabidopsis mutants,
which lack the emission of (E)-β-caryophyllene from their stigmatic tissue. The
mutant flowers were more susceptible to infection by P. syringae, which resulted in
lighter and often misshaped seeds suggesting reduced plant fitness [245] (Fig. 4b).
Similar findings were made by Junker et al. [246] demonstrating that floral volatiles
play roles in the structuring of bacterial communities that colonize flower petals by
providing compound-dependent niches.

Volatile terpenoids also serve important functions as constitutive or pathogen-
and herbivore-induced compounds in the defense of photosynthetic tissues. For
example, repellent activities have been reported for monoterpene volatiles that are
emitted by leaves of Chrysanthemum morifolium and, notably, herbivore-deterrent
effects have been observed for isoprene [247, 248]. Furthermore, volatile terpenoids
that accumulate in glandular trichomes function as insect repellents as was, for
example, found for the activity of sesquiterpenes in trichomes of wild tomato
against white flies [249] (Fig. 4a). In conifers, the production of terpenoid oleoresin
and terpenoid volatile emissions constitute an important chemical defense system
[250]. In a search for resistance factors, the monoterpene (+)-3-carene was found to
be associated with resistance of Sitka spruce (Picea sitchensis) to white pine weevil
(Pissodes strobi) [251]. Variation of the (+)-3-carene production in resistant and
susceptible trees was demonstrated to depend on the copy number of a (+)-3-carene
TPS gene, differences in gene transcript and protein levels, and variation in catalytic
efficiencies. Similarly, in Arabidopsis, ecotype-specific variation of the herbivore-
induced volatiles, (E)-beta-ocimene and (E,E)-alpha-farnesene, is controlled by
allelic variation and differences in subcellular targeting of the two terpene syn-
thases, TPS02 and TPS03 [42].

The role of herbivore-induced volatile blends in the attraction of natural enemies
of herbivores (Fig. 4a) and at higher trophic levels has been investigated in numerous
studies (reviewed by [252, 253]). Work with transgenic Arabidopsis provided strong
evidence for the role of volatile terpenes in these interactions [254–256]. However,
as indicated for floral scent, the effect of these compounds has to be considered in the
context of the entire herbivore-induced volatile blend, and actual fitness benefits to
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the plant host under natural conditions are still debated [252, 257, 258]. Indirect
defense responses mediated by volatile compounds also occur upon insect ovipo-
sition [259]. For example, egg deposition on the foliage of European field elm
(Ulmus minor) by the elm leaf beetle (Xanthogaleruca luteola) leads to the emission
of volatiles including the irregular homoterpene, (E)-4,8-dimethyl-1,3,7-nonatriene
(DMNT), which play a role in the attraction of the specialist egg parasitoid,Oomyzus
gallerucae [260].

In addition to their function in the interaction with herbivores and their enemies,
constitutive and induced volatile mixtures (including volatile terpenes such as
homoterpenes) can serve as interspecific, intraspecific, and intraplant “alarm” sig-
nals to prime or induce defense responses in neighboring plants or in unattacked
tissues of the same plant [261–264]. In these interactions, volatiles may not nec-
essarily need to enter the leaf tissue of the neighboring plant but remain on the leaf
surface. This effect was observed for sesquiterpenoids that are emitted by rhodo-
dendron leaves and adsorbed on the leaves of birch trees, where they exhibit direct
herbivore-repellent activities [265]. Moreover, terpenoids were suggested to be
involved in parasitic plant interactions, specifically, in the attraction of the parasitic
plant Cuscuta pentagona (dodder) to establish contact with tomato as its host [266].
The molecular mechanism of host plant detection in this response as in other
volatile-mediated plant–plant interactions is still poorly understood.

The described functions of volatile terpenoids in aboveground plant defense are
complemented by nonvolatile terpenoids. As an example, glycosides of geranylli-
nalool serve as potent antifeedants in the wild tobacco, Nicotiana obtusifolia [267],
and recently detected ent-kaurane–related diterpenoids inmaize named kauralexins as
well as acidic sesquiterpenes called zealexins function as pathogen-inducible phy-
toalexins [268, 269]. Similarly, metabolomics studies of Barbarea vulgaris revealed
that triterpene saponins contribute to resistance against flea beetle attack [270].

An increased interest in the role of specialized metabolites belowground has
shown that terpenoids serve functions similar to those aboveground. Recent studies
in Arabidopsis roots discovered semivolatile diterpene hydrocarbons with an
unusual tricyclic spiro-hydrindane structure called rhizathalenes [234] (Fig. 4c).
These compounds are produced in the root stele, from where they diffuse through
the surrounding cell layers to function as local antifeedants by reducing root her-
bivore damage on these cell layers [234] (Fig. 4c). The role of volatile terpenes in
belowground indirect defense has been well established based on studies in maize
showing that the sesquiterpene, (E)-β-caryophyllene, which is emitted from roots
upon attack by the Western corn root worm Diabrotica virgifera, attracts
entomopathogenic nematodes [271, 272]. These findings prompted attempts to
engineer (E)-β-caryophyllene production in nonemitting American maize cultivars,
which resulted in an increased attraction of nematodes and higher resistance to corn
root worm attack [273]. However, constitutive emissions of (E)-β-caryophyllene
were found to have additional costs inasmuch as they compromise seed germina-
tion, plant growth, and yield [274]. Therefore, more fine-tuned engineering
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strategies considering herbivore-induced emissions may have to be developed to
circumvent these cost effects.

Nonvolatile terpenoids can be exuded from roots into the rhizosphere and the
surrounding soil environment where they are involved in different defense
responses. Studies using rice mutants convincingly demonstrated that labdane-
related diterpenoids named momilactones exhibit allelopathic effects on barnyard
grass competitors [275]. Moreover, avenacins, which are triterpene saponins exu-
ded by the roots of oat, are known for their potent activity as phytoalexins [276].
Excitingly, a recent study by Osbourn and colleagues revealed that common tri-
terpene precursors have additional signaling functions in root development. Spe-
cifically, it was demonstrated that β-amyrin is involved with determining the
patterns of epidermal root hair cells [277]. These findings indicate that the roles of
specialized metabolites in biotic interactions and potential “primary” functions
become increasingly blurred. Signaling functions have also been demonstrated for
the abietane diterpenoid, dehydroabietinal, which is produced at picomolar con-
centrations in Arabidopsis leaf tissue and serves as a vascular signaling compound
and potent activator of systemic acquired resistance [278]. This activity seems to
depend on the association of dehydroabietinal with vascular sap proteins.

Finally, it should be noted that strigolactones have become an exciting model for
the multifunctionality of small molecules. As carotenoid-derived compounds
(reviewed by [279]), strigolactones have important roles as exogenous signals by
recruiting arbuscular mycorrhizal fungi in the rhizosphere [280]. Parasitic plants
such as Striga lutea (witchweed) eavesdrop on these compounds by using them as
germination signals [281]. As internal signals, strigolactones function as growth
and developmental hormones that suppress shoot branching [282, 283]. Other
processes that involve strigolactone signaling functions include root growth and
development, stem elongation, secondary growth, leaf expansion and senescence,
and responses to drought and salinity [279, 284]. Rapid progress has been made in
understanding the perception of strigolactones but many open questions remain
about downstream targets and the role of strigolactone-related compounds [279].

6 Outlook

In the past years, research in terpenoid metabolism has received a boost from
developments in synthetic biology to generate engineering platforms for the pro-
duction of high-value terpenoid products. Production systems in microbes have
been developed to result in substantial yields [285], however, engineering of ter-
penoids in plants still faces challenges because of the complexity of metabolic and
regulatory networks. Nevertheless, strategies to avoid metabolic flux competition
by targeting biosynthetic modules to different cellular compartments have proved to
be promising. Likewise, establishing pathways in specialized cells such as tric-
homes helps avoid metabolic competition and phytotoxic effects that could nega-
tively affect growth and yield. The discovery of trichome-specific CPTs and TPS
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enzymes with substrate specificity for cis-prenyl diphosphates most likely will
facilitate the engineering efforts in these tissues and provide new gene tools for
building synthetic modules. Despite the successful use of distinct organelles such as
plastids as “mini” subcellular factories, more efforts need to be made to understand
the compartmentalization of the core terpenoid pathway. Especially, additional
work should be performed to clarify the putative localization of the MVA pathway
and prenyltransferase enzymes in peroxisomes, which would add yet another
dimension to the compartmental complexity of terpenoid metabolism in plants.
Genomics-based efforts to better understand the regulation of the early terpenoid
pathways and terpenoid biosynthetic gene clusters are on their way and will be
essential to gain a better understanding of the regulatory networks and epigenetic
factors coordinating terpenoid metabolic routes in space and time. Finally, our
knowledge of the biological roles of terpenoids is still far from complete. The recent
findings of overlapping activities of terpenoids such as strigolactones or triterpe-
noids in biotic interactions and as internal signals indicate a need to use advanced
mutant-based approaches for elucidating the multifunctionality of plant terpenoid
compounds.
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