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Abstract Mathematical modeling is becoming ever more important to assess the
potential, guide the design, and enable the efficient operation and control of
industrial-scale microalgae culture systems (MCS). The development of overall,
inherently multiphysics, models involves coupling separate submodels of (i) the
intrinsic biological properties, including growth, decay, and biosynthesis as well as
the effect of light and temperature on these processes, and (ii) the physical properties,
such as the hydrodynamics, light attenuation, and temperature in the culture med-
ium. When considering high-density microalgae culture, in particular, the coupling
between biology and physics becomes critical. This chapter reviews existing models,
with a particular focus on the Droop model, which is a precursor model, and it
highlights the structure common to many microalgae growth models. It summarizes
the main developments and difficulties towards multiphysics models of MCS as well
as applications of these models for monitoring, control, and optimization purposes.
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1 Introduction

The renewal of phytoplankton-based processes over the last decade has mainly been
driven by the great promises of these microscopic plants. Both microalgae and
cyanobacteria show a great potential for industrial applications, including food,
pharmaceuticals and cosmetics, chemicals, and even biofuel [74]. Contributing the
most to this popularity is perhaps the fact that microalgae present high photosynthetic
yields compared to terrestrial plants and that certain species can reach a very high
lipid content, above 50 % dry weight [73]. With the prospect of achieving lipid
productivities several-fold higher than those of terrestrial plants [111], many have
started envisioning large-scale microalgae culture systems (MCS) for biodiesel
production [22]. Nonetheless, these predictions are often based on crude extrapola-
tions of the productivities obtained in the lab, where conditions differ drastically from
those of outdoor production systems, and thus far they could not be confirmed
experimentally on pilot- or larger-scale demonstration plants. In this context, math-
ematical modeling can be a great help to understand, and in turn remedy, the gap
between lab-scale observations and the industrial-scale reality. Not only can these
models be used for monitoring, control, and optimization of the actual production
systems, but they could also drive the choice of a particular microalgae species that is
best suited to the local environment or even to a particular season of the year.

Modeling of high-density MCS, together with their control and optimization,
proves more challenging than that of bacterial or yeast culture systems. To a large
extent, this added complexity stems from the wide range of mechanisms used by
microalgae to respond to, or protect themselves from, light and other local envi-
ronmental factors. This is particularly so in outdoor production systems, where
microalgae are permanently subject to unsteady conditions, for example, due to
diurnal light and temperature variations. The dynamics induced by this periodic
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forcing are difficult to model accurately and also make it hard to devise effective
control strategies. Another modeling challenge is tied to the way microalgae access
light in order to sustain their growth. Because of light-absorption mechanisms and
shadowing effects, a higher microalgae concentration will reduce the amount of
light available to the culture. This sets an upper limit on the theoretical (steady)
concentration of microalgae, whereby the average growth over the light column is
exactly balanced by respiration; that is, the net growth rate is zero. However,
predicting this limit is not at all straightforward as microalgae also undergo
photoacclimation via the adaptation of their pigments to the available light [2, 65].
In other words, light attenuation, as driven by pigment concentration and cell size,
is itself dependent on light. Moreover, under nitrogen-limited growth conditions—
often used to stimulate the production of a valuable metabolite [90]—both the
pigment composition and concentration vary [42, 96, 108] and the cells increase
their size, further affecting light attenuation [102].

Advances in the dynamic modeling of microalgae populations are scattered
across various fields, including oceanography, ecology, and biotechnology. An
early dynamic model of phytoplankton was proposed by Riley [89] for describing
phytoplankton populations on Georges Bank. Quite remarkably, Riley modeled
both nutrient- and light-limited growth by considering an exponential decrease of
light along depth. A growing number of kinetic models describing the rate of
photosynthesis have been proposed ever since, ranging from simple hyperbolic
expressions [3] to complex representations accounting for the photoinhibitory
effects caused by an excess of light [79, 81, 101, 110]. The processes of nutrient
uptake and nutrient-limited growth likewise have been described by a number of
semiempirical models [19, 30–32], and these models have later integrated light-
limitation effects in order to represent the nonlinear couplings between photosyn-
thesis and nutrient limitation (especially nitrogen) [36, 42, 78].

Regarding MCS, perhaps the first dynamic model of a raceway pond was pro-
posed by Sukenik et al. [105] within the scope of the Aquatic Species Program [99].
This model was later extended to encompass discrete-time photoacclimation
dynamics [106]. Other, less detailed, models were also proposed in the meantime
[8, 45, 49]. By and large, high-density MCS present many challenges and oppor-
tunities for their reliable modeling as well as in applications of these models for
control and optimization purposes [10].

This chapter starts by outlining the principles and building blocks of microalgae
culture models (Sect. 2). Models that describe the main processes involved in
microalgae growth and bioaccumulation are reviewed in Sect. 3, namely carbon and
nitrogen internalization (and loss), carbohydrate and lipid storage, and pigment
adaptation. The focus in Sect. 4 is on the physical characteristics of MCS, including
models of the light distribution, flow pattern, and temperature evolution. Following
this review is a discussion about the combination of the biological and physical
properties into the overall modeling of outdoor, possibly high-density, MCS
together with open issues (Sect. 5). Finally, a number of monitoring, control, and
optimization strategies that take advantage of the available mathematical models are
considered (Sect. 6).
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2 Building Blocks of Microalgae Culture Models

Within the context of bioprocesses, the most natural way of building a model that
captures the main process dynamics is to consider conservation principles. Mass,
energy, and momentum balances normally come in the form of ordinary differential
equations (ODEs) for lumped systems, or partial differential equations (PDEs) in
the case of distributed systems, for instance, due to imperfect mixing or advection.
An important feature of balance-based models is the presence of conversion terms
(e.g., to describe biochemical reactions) as well as transfer terms (e.g., to account
for liquid–gas exchange).

In the context of MCS, the solutions to the balance equations characterize
concentration fields for key species inside the culture medium (mass balance of
nutrient and biomass), along with velocity (momentum balance) and temperature
(energy balance) fields in the liquid phase. In addition to transport and accumula-
tion terms, the other critical terms in these equations are those describing:

(i) Intrinsic biological properties, including the rates of nutrient internalization,
microalgae growth and decay, and intracellular storage. These rates are
dependent upon both current and past conditions in terms of culture medium
concentration, light, temperature, and so on. Note, in particular, that this
dependence is with respect to local conditions in nonhomogeneous culture
media.

(ii) Physical properties, including the light transmitivity, the viscosity, and the
mass and thermal diffusivities in the culture medium. All these properties
depend on the (possibly local) compositions of the culture medium and the
characteristics of the microalgae cells themselves. They are also dependent on
the geometry and mode of operation of the reactor.

The fact that the aforementioned biological and physical properties are strongly
coupled and span multiple timescales (ranging from milliseconds to days) makes
high-fidelity simulation of an overall microalgae culture system particularly chal-
lenging. An important feedback mechanism here is the effect of light on the local
growth rate, which modifies the concentration of microalgae, affecting the way light
is absorbed and scattered in the culture medium in turn. Even the hydrodynamics in
the reactor can have an effect on light distribution as the waves at the surface create
a complex air–water interface that can punctually concentrate solar rays. Regarding
timescales, light effects on microalgae growth range from milliseconds for photo-
production, to minutes or hours for photoinhibition and photoregulation, and to
days or weeks for photoacclimation. On top of this, MCS are subject to various
periodic forcings, such as diurnal cycles or mixing inside the reactor leading to fast
light variations.

The next two sections give an overview of available models describing the
biological and physical properties of MCS. Then, we discuss various ways of
coupling these models.
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3 Modeling of Intrinsic Biological Properties

The dynamics that underlie microalgae growth—including internalization of the
main nutrients (N, P) and carbon (inorganic and/or organic) as well as the effect of
light and temperature—can be described in numerous ways.

Detailed metabolic models have been developed by accounting for all available,
yet still partial, knowledge about the metabolic pathways of particular microalgae
species. These models usually rely upon the principle of balanced growth, which
precludes internal storage of metabolites. This assumption dramatically reduces the
number of kinetic parameters needed to describe the individual reactions in the
model. Nonetheless, the fixation of inorganic carbon (CO2 or bicarbonate) in
autotrophic microalgae is dependent on the incoming photon flux, thus this
assumption should therefore be limited to constant light culture conditions from a
strict point of view. Despite these limitations, some authors have considered using
metabolic modeling tools under transient light conditions [23, 57, 98, 113]. Others
have expanded the approach to allow for internal storage and reuse of metabolites
such as neutral lipids and carbohydrates [24, 58].

A second kind of growth model, often referred to as compartmental models,
describes the physiological status of microalgae cells in terms of quotas for key
components, such as nutrients, chlorophyll, lipid, carbohydrate, and so on. These
macroscopic (semiempirical by nature) models are simpler than their metabolic
counterparts, yet they do not call for any assumption about balanced growth. As
such, they are well suited for coupling with detailed hydrodynamics models for
flow and temperature computations (see Sect. 5), and they are equally well suited
for development of model-based monitoring and control strategies (see Sect. 6).

The emphasis in the remainder of this section is more specifically on this latter
class of models, focusing successively on nutrient-limited growth, light effects, and
temperature effects, and assuming the other factors constant.

3.1 Nutrient-Limited Growth and Decay

In a classical batch experiment, microalgae continue to grow for several days after
key nutrients are depleted from the culture medium. This apparent uncoupling
between the processes of nutrient uptake (inorganic nitrogen, phosphorus, vitamins,
etc.) and growth in microalgae is well documented [95], and it has led to the
development of so-called quota models, which account for nutrient storage (pool-
ing) inside the cells. For instance, the internal cell quota qn of a limiting nutrient
(substrate) s can be described by a simple mass-balance equation of the form:

_qn ¼ qðs; �Þ � lðqn; �Þqn ; ð1Þ
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where ρ and μ denote the uptake rate of nutrient s and the corresponding nutrient-
limited growth rate, respectively.1 The quota q represents the intracellular amount
of nutrient per unit cell mass. In the case where nitrogen is the limiting nutrient, for
instance, the internal nitrogen quota can be defined in units of g(N) g(C)−1.

Initially introduced to describe the limiting effect of Vitamin B12 on the growth
rate of phytoplankton [30], the Droop model has also been found to predict the
effect of macronutrient limitation accurately, including nitrogen or phosphorus
limitation, and it has been widely validated [13, 31, 97, 109]; see, for instance,
Fig. 1. Although applicable to a single limiting nutrient and constant light condi-
tions only, the simplicity of the Droop model is a big help in practice as it enables
detailed mathematical analysis [12, 14, 62]. Moreover, the meaning of its param-
eters makes it easy to relate to measurable quantities such as minimal and maximal
internal quota and maximum growth rate.

The growth rate lðqn; �Þ in the Droop model is expressed as an increasing
function of the internal quota qn:

lðqnÞ ¼ l1 1� Q0

qn

� �
; ð2Þ

Fig. 1 Comparison between measurements and model predictions of the nitrate concentration
(s) in the culture medium and the nitrogen quota (qn) under nitrogen-limited conditions in a
chemostat culture of Isochrysis aff. galbana. Reproduced from [67]

1 We use the notation ð�Þ here to recall that these rates can also depend on other key parameters,
such as light, temperature, and so on.
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where Q0 stands for the minimal cell quota, below which no growth is possible, and
l1 represents the growth rate at an hypothetical infinite quota. Alternative for-
mulations have been proposed on the basis that a minimum (nonzero) internal quota
is required in order for microalgae to grow. In a model due to Geider [42], for
instance, the growth rate is simply a linear function of the internal quota,
lðqnÞ ¼ l1ðqn � Q0Þ.

The uptake rate qðsÞ, on the other hand, is traditionally expressed in terms of
Michaelis–Menten kinetics [19]:

qðsÞ ¼ qm
s

sþ ks
; ð3Þ

where ks is the half-saturation constant for substrate uptake associated with the
maximum uptake rate qm. In Geider’s model [42], an extra multiplicative term of
the form ðQmax � qnÞp is appended to the uptake rate expression (3), usually with
p ¼ 1 [10, 17], so nutrient uptake comes to a stop as soon as the maximum internal
quota Qmax is reached. Nonetheless, it is not hard to show that the original uptake
rate expression (3) defines a maximum quota in a natural way, too. For instance, the
internal cell quota is upper bounded by the value Q0 þ qm

l1
under nonlimiting

nutrient conditions (qðsÞ ¼ qm) and using the growth expression (2).
In addition to uptake and growth rates, one must account for the loss of carbon via

respiration. The corresponding rate of respiration can be expressed as the sum of a
basal respiration rate and a term proportional to the cost of biosynthesis. The latter
is typically assumed to be proportional to either the growth rate or the uptake rate
[42, 92]. Although respiration is often accounted for indirectly as part of the “net”
growth rate l, it becomes necessary to distinguish the respiration rate from the growth
rate more specifically when considering the effect of light. One possible approach
involves defining the basal respiration as proportional to the cell concentration, while
accounting for the rate of biosynthesis in the net growth rate. Note also that nitrogen is
assumed to be released at the same rate as carbon in many models [42, 78], meaning
that cell mortality and excretion are accounted for in the respiration rate.

3.2 TAG Synthesis

Among the various classes of lipids produced by microalgae, triacylglycerols
(TAGs) are considered the preferred class in most applications, including algal-
derived biofuel. Many microalgae strains have the ability to accumulate large
quantities of lipids in the form of TAGs under environmental stress conditions such
as nitrogen starvation. TAGs serve as energy and carbon storage compounds and as
an electron sink in situations where the electron supply provided by photosynthesis
exceeds the requirements for growth [54].

A number of models describing carbon storage in microalgae cells have become
available in recent years [29, 47, 67, 77, 92]. Among them, the model in [67]
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presents a simple structure based on the Droop model for representing TAG pro-
duction in response to nitrogen deprivation and under constant light. It divides
intracellular carbon into three pools, namely a functional pool (quota qf ), a sugar
pool (quota qs), and a TAG pool (quota ql). The carbon fluxes between these pools
lead to complex dynamics describing the storage and utilization of both sugars and
TAGs. The way the model builds upon the Droop model is via a cascade structure,
whereby the pool dynamics depends on the nitrogen quota qn as well as the uptake
rate q and growth rate l:

_qf ¼ �qf lðqn; �Þ þ ðk1 þ k3Þqðs; �Þ
_ql ¼ ½k2 qn � ql�lðqn; �Þ � k3qðs; �Þ
qf þ qs þ ql ¼ 1;

ð4Þ

where k1, k2, and k3 are (pseudo-)stoichiometric coefficients. This way, the model
inherits the Droop model properties, taking advantage of its track-record validation,
and only adding a limited number of extra parameters. Another interesting feature
of the model is its ability to reproduce experimentally observed hysteresis in the
dynamics of TAG accumulation, as shown in Fig. 2. This behavior contributes to
making biolipid optimization complex and rather counterintuitive.

Other recent experimental studies have shown that TAG dynamics can become
even more intricate when applying periodic light conditions in combination with

Fig. 2 Comparison between measurements and model predictions of the TAG (ql) and sugar (qg)
quotas under nitrogen-limited conditions in a chemostat culture of Isochrysis aff. galbana.
Reproduced from [67]
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nitrogen deprivation. In particular, TAGs accumulate at a much slower pace than
when exposed to continuous light; the lipids that are produced after a nitrogen
starvation are consumed during dark phases (probably through a respiration pro-
cess), thus maintaining the TAG pool at a low level [61]. Understanding how the
mechanisms involved in cell synchronization interfere with the dynamics of TAG
accumulation, and being able to model these interactions in turn reliably, clearly
calls for further research.

3.3 Pigment Synthesis

A key mechanism used by microalgae to adapt their photosynthesis response to the
available light involves modification of their pigment content. This photoacclima-
tion strategy takes place at a timescale of days or weeks [25] and it can lead to a
dramatic variation in the rate of photosynthesis. For instance, Fig. 3 shows PI-
response curves for a microalgae culture preacclimated at different light irradiances,
either normalized in terms of carbon or chlorophyll. On top of this, pigment syn-
thesis can be strongly disrupted under nitrogen-limited growth as the pigment
content is related to the protein content, which is itself related to the nitrogen status
(nutrient quota qn); this is especially so under complete nitrogen deprivation.

Geider et al. [42] were among the first to introduce chlorophyll as a state variable
in their models, in addition to the carbon and nitrogen contents. They expressed the
rate of pigment synthesis per carbon unit as proportional to the product between the
rates of photosynthesis and nitrogen uptake.

More recently, Bernard [10] presented a model whereby chlorophyll is propor-
tional to the cellular nitrogen content, used as a proxy of the actual protein content:

h ¼ cðI0Þqn; ð5Þ
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Fig. 3 Comparison between measurements and model predictions of the photosynthetic responses
of the diatom Skeletenonema costatum under different acclimation states: I0 = 50 μ mol m−2 s−1

(dark points/lines); I0 = 1,200 μ mol m−2 s−1 (light grey points/lines). The photosynthesis rate is
normalized by carbon (left plot) or chlorophyll (right plot). Data from [2]
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where the chlorophyll quota h represents the cellular chlorophyll-to-carbon ratio. In
this expression, c is a saturation function of the form

cðI0Þ:¼cm
kI0

I0 þ kI0
;

parameterized by cm and kI0 . Moreover, I0 is a conceptual variable representing the
irradiance at which the cells are photoacclimated. In [10], the adaptation mechanism
associated with I0 is assumed to be driven simply by first-order dynamics:

_I0 ¼ dlðqn; �Þ ½I � I0� ; ð6Þ

with I the current light irradiance, and d the photoacclimation rate constant. An
alternative way to account for photoacclimation, without introducing the conceptual
variable I0, involves replacing (5) and (6) with:

_h ¼ d0lðqn; �Þ ½cðIÞ qn � h� : ð7Þ

In yet another model of photoacclimation, Geider [43] proposed the following
alternative expression:

h ¼ ekT

ða� bTÞekT þ cI
; ð8Þ

relating the chlorophyll quota h to the current light irradiance and temperature.

3.4 Light-Limitation Effects

Notwithstanding its importance and significance, the Droop model, as well as other
models derived from similar considerations, does not account for the effect of light
on the growth rate. As such, it cannot be used directly to describe photolimited
microalgae cultures.

Many photosynthesis models describe the effect of light in terms of PI–response
curves. They use various proxies, such as the electron transfer rate (ETR), the O2

production rate, the CO2 consumption rate, or the growth rate itself. Although all
these proxies do not involve the exact same mechanisms, the corresponding PI
curves all have the same shapes.

Early photosynthesis rate models [3] considered simple hyperbolic expressions
and did not account for photoinhibition by excess light. Such photoinhibition can be
represented in a PI curve in either one of two main ways [79, 81, 101, 110]:

• The Platt model [81] is fully empirical and defines an exponential expression of the
form Ie�I , whereby the growth rate first increases with increasing light intensity up
to a certain optimal irradiance, and then decreases from thesemaximal values as the
light irradiance keeps increasing because of photoinhibition.
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• The Han model [50], originating in the works of [33, 34, 59], has a stronger
physical basis. It describes the chloroplasts in microalgae as arrays of photo-
synthetic units (PSUs), whereby each PSU is comprised of an antenna complex
made up of pigments that is associated with the reaction center of a Photosystem
II (RCII). The description of photoproduction and photoinhibition assumes that
an RCII can be in either one of three states, namely open, closed, or damaged,
and each RCII can transit from one state to another depending on the current light
irradiance. An interesting property of the Han model is that the PI–response
expression obtained by equilibrating the fast dynamics is of Haldane type.

The PI responses predicted by either of these representations are of course driven
by other factors acting on growth, including nutrient limitation, pigment compo-
sition, and temperature. Nonetheless, a peculiarity of the chlorophyll-specific
growth rate, lchlð�Þ:¼lð�Þ=h, is that the corresponding PI slope at vanishing light
irradiance is typically independent of the photoacclimation light, and therefore
independent of the chlorophyll quota h. This property, which was perhaps first
highlighted in [82], can be observed on the right plot of Fig. 3.

In particular, the foregoing constant initial slope property is key to understanding
the way models that relate photoproduction/photoinhibition to the acclimation state
are designed.

• The model by Geider and coworkers [65], which does not account for pho-
toinhibition, expresses the (carbon-specific) growth rate as

lðI; h; qnÞ ¼ lmaxðqnÞ 1� exp
�ahI

lmaxðqnÞ
� �� �

; ð9Þ

where lmax stands for the maximal growth rate (dependent on the nitrogen quota
qn and realized at high light irradiance); and a corresponds to the (constant)
initial slope of

lðI; h; qnÞ
h

:

• The model by Bernard [10] is based on the Han model and can be expressed in
the form

lðI; h; qnÞ ¼ lmaxðqnÞ
I

I þ lmaxðqnÞ
ah

I
Iopt

� 1
� �2 ; ð10Þ

from which it is readily checked that the initial slope of lðI;h;qnÞh is again given by a.

At this point, both light- and nutrient-limitation effects can be combined by
modulating the growth rate expressions (9) or (10) by a term dealing with substrate
limitation, namely, the linear term ðqn � Q0Þ for the Geider model and Droop-like
kinetics (2) for the Bernardmodel. Othermodels coupling chlorophyll production and

Modelling of Microalgae Culture Systems … 69



photosynthesis have been proposed [36, 40, 78], but they have not been used as much
so far. More complex models have also been developed [38, 116], but being more
accurate in the detail of the described mechanisms, they comprise more parameters
and state variables that render their calibration/validation more difficult, too.

A situation under which the current light-effect models can become inaccurate
and should be reconsidered is in the presence of fast-changing light regimes
(flashing effect). The way photosynthesis reacts to high-frequency variations in
light intensity remains the subject of active research. In order to capture these
mechanisms, dynamic models describing the way photons are harvested (at a fast
timescale) are required. These models typically work at a lower level by consid-
ering the concept of photosynthetic yield [20, 33, 34, 70, 115] and also try to
account for nonphotochemical quenching (NPQ) regulation [75].

The effect of light flashes on microalgae growth has been studied experimen-
tally, yet mainly for caricatural light patterns consisting in a succession of on/off
periods at varying frequencies. Under such lighting protocols, the Han model—or
related models—are found to represent the cell behavior well. We also note that for
computational tractability reasons, the fastest timescale can be handled via singular
perturbation techniques [21, 88] when considering some typical periodic light
forcing [112].

3.5 Temperature-Limitation Effect

Like light, temperature too can play an important role in growth, and it is especially
important to take its effect into account when considering outdoor MCS [87]. Two
models have mainly been used to describe temperature effects on microalgae
growth to date [15, 76].

The model in [15], based on the cardinal temperature model with inflection
(CTMI) of [93], is detailed next. The main advantage of this model lies in its
calibration simplicity, despite its empirical nature. The growth rate expression lð�Þ
developed in the previous sections is simply modulated by a multiplicative
switching function /ðTÞ taking values in the range ½0; 1�:

lð�Þ/ðTÞ : ð11Þ

Moreover, the function /ðTÞ is given by

/ðTÞ

¼
ðT�TmaxÞðT�TminÞ2

ðTopt�TminÞ ðTopt�TminÞðT�ToptÞ�ðTopt�TmaxÞðToptþTmin�2TÞ½ � ; if T 2 ½Tmin; Tmax�;
0; otherwise,

8<
:

ð12Þ
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with Tmin and Tmax, the minimal and maximal temperatures, respectively, at which
cells can grow; and Topt, the optimal temperature for growth. Note that the fol-
lowing property must hold in order for the model to present the actual asymmetry
that is experimentally observed:

Topt [
Tmin þ Tmax

2
: ð13Þ

Shown in Fig. 4 is a switching function whose parameters Tmin, Tmax, and Topt
are calibrated under different light and temperature conditions [15].

In addition to having a global effect on growth, temperature is usually assumed
to have a similar effect on carbon and nutrient uptake, respiration, TAG synthesis,
and the like. In accounting for temperature effects, it is therefore necessary to
modulate the corresponding uptake, respiration, or biosynthesis rates, whose
expressions have been given in previous subsections, in the same way as in (11).

4 Modeling of Physical Properties

4.1 Light Distribution

The light distribution in a microalgae culture decreases progressively in moving
deeper into the culture medium due to photon absorption (mainly by pigments) and
diffusion (mainly by the particles in the medium). Because of the complex multi-
diffusive nature of the culture medium, classical theories such as the Mie theory do

Fig. 4 Effect of temperature on the growth rate of Nannochloropsis oceanica: switching function
/ðTÞ under various light irradiance and temperature conditions. Reproduced from [15]
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not readily apply, thereby making the computations particularly challenging.
Moreover, the optical properties are dependent on the light wavelength, explaining
that green light will be mainly found in the darkest zones of the reactor. A large
body of research has been devoted to high-fidelity simulation of the light distri-
bution in such complex media; see, for example, Csogor et al. [28], Fernandez et al.
[37], Suh and Lee [104]. In contrast, deriving analytical expressions, which can be
used more easily for monitoring and control purposes, proves more difficult.

In the case of simple planar geometry with a 90° illumination angle with respect
to the surface, one can use the Beer–Lambert law as a first approximation,

Iðz; �Þ ¼ I0 expð�nzÞ ; ð14Þ

where I0 and IðzÞ denote the irradiances at the surface level and at depth z,
respectively, and n is the light attenuation parameter. The latter appears to be
mainly correlated with the cell concentration x and the chlorophyll content hx,
leading to the following simple approximation:

n ¼ ða þ bhÞxþ c ; ð15Þ

with a, b, and c the specific light-attenuation coefficients due to biomass, chloro-
phyll, and background turbidity, respectively.

A key advantage of using the Beer–Lambert approximation is that it allows
deriving analytical expressions of the average light and growth rate in simple
photobioreactor configurations. Nonetheless, this model does not account for light
backscattering, which can become significant in dense microalgae cultures. More
accurate radiative transfer models based on the inherent optical properties of mic-
roalgae can be used in this context [27, 28, 39, 60, 84, 104].

In the remainder of this subsection, we consider a simple planar geometry of
thickness L with a 90° illumination angle with respect to the surface. On application
of the Beer–Lambert approximation, one can define the optical depth k ¼ nL,
which reflects the actual amount of light energy absorbed by the culture medium. In
particular, we have

k ¼ ln
I0
IðLÞ

� �
: ð16Þ

Under the additional assumption that all the concentrations are homogeneous
(perfect mixing), the average irradiance received by the microalgae across the
culture medium is given by

I ¼ I0
L

ZL

0

expð�nzÞdz ¼ I0
k
½1� expð�kÞ�: ð17Þ
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Finally, combining the two previous expressions gives

�I
I0

¼ 1� expðkÞ
k

¼
IðLÞ
I0

� 1

ln IðLÞ
I0

� � ; ð18Þ

which does not depend explicitly on the light attenuation parameter n. The evo-

lution of I
I0
versus IðLÞ

I0
is represented in Fig. 5.

4.2 Microalgae Cell Trajectories

Because MCS are both mixed and optically thick at the same time, the microalgae
cells are constantly crossing light gradients, which generates fast changes in the light
irradiance received by a particular cell. In practice, the cells are exposed to light
patterns with characteristic timescales that can be as small as a microsecond [83]. The
ability to represent such fluctuations calls for detailed hydrodynamics simulations.

A number of studies have become available in recent years that use computa-
tional fluid dynamics (CFD) [71, 83, 85] for characterizing the hydrodynamics in
MCS, for instance, based on commercial CFD codes such as ANSYS Fluent. In a
second step, Lagrangian trajectories are obtained by integrating the computed
velocity field. Although it has been applied mainly to simulate closed photobior-
eactors (PBRs), this approach has more recently been used to simulate open
raceway ponds too [52]. It is because of their larger scale that raceway ponds are

Fig. 5 Average light ratio I
I0

as a function of IðLÞ
I0

in a
simple planar geometry with
90° illumination angle
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more computationally challenging to simulate than PBRs. Using a novel discreti-
zation scheme of the Navier–Stokes equations, the model in Bernard [10] has
allowed reconstruction of the cell trajectories, and thus of the corresponding
received light pattern, over longer time horizons. An illustration of the outcome of
such simulations is shown in Fig. 6.

4.3 Temperature Variation

First-principles models describing temperature variations in MCS can be developed
based on energy-balance considerations. These models account for the incoming
solar energy on the one hand, and the energy dissipated through thermal re-emis-
sion, evaporation, and photosynthesis. In particular, this includes the direct and
diffuse solar radiation, the radiation from the air and from the ground, the radiation
of the culture medium, the evaporation flux, the heat flux in the CO2-enriched
bubbling gas, the conductive flux with the ground surface, and the convective flux
at the surface.

Dynamic models that assume an homogeneous temperature of the culture
medium have recently been proposed for both photobioreactors [5] and raceway
ponds [6]. By taking into account the location, reactor geometry, light irradiance,
air temperature, and wind velocity, these models can thus accurately predict the
temperature evolution of the culture medium in outdoor facilities throughout a
typical day, including the evaporative water losses. When not regulated, it has been
shown that the temperature in open raceway ponds (which have a lower thermal
inertia and where the benefit of evaporation is quite limited) can peak to values
approaching 40 °C, thereby threatening microalgae cell survival. An illustration of
these simulation results is presented in Fig. 7.

Fig. 6 3D Representation of the velocity field in a raceway pond along with a particular cell
trajectory (left plot), and variation of the depth of a single cell over time (right plot). Reproduced
from [52]
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5 Towards Multiphysics Models of Microalgae Culture
Systems

5.1 Chemostat Culture

Under the assumption that the culture medium is perfectly mixed, that is, when the
cells and limiting substrate concentrations are homogeneous, the main challenge
involves characterizing the effect of the light gradient on the growth of the entire
cell population. Note that, unlike light effects, the coupling on temperature is rather
straightforward in the case where an homogeneous culture medium temperature is
assumed.

The following equations describing the evolution of the cell concentration x and
substrate concentration s, possibly coupled with the quota Eq. (1) in the classical
Droop model, can be derived from mass-conservation principles:

_s ¼ Dsin � qð�Þx� Ds ð19Þ

_x ¼ ðlðI0; �Þ � rÞx� Dx ; ð20Þ

where D stands for the dilution rate; sin, the inlet substrate concentration; r, the
basal respiration rate, and �lðI0; �Þ, the apparent specific growth rate at (surface)
irradiance level I0. It is precisely the determination of �lðI0; �Þ that requires special
attention here. When separating the timescales of mixing and photosynthesis, two
limit situations can be distinguished:

(i) In the situation where mixing is much faster than the photosynthetic processes
(infinite mixing assumption), all the cells respond to the mean light intensity I,
as discussed earlier in Sect. 4.1:

Fig. 7 Simulation of the temperature evolution in a raceway (blue line) using a model [6] and
comparison with experimental measurements (red lines). On the right-hand side, the water level is
also represented, with the indication of the water supply (qin) and rain (qrain)
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lðI0; �Þ ¼ lðIðI0; �Þ; �Þ : ð21Þ

(ii) In the reverse situation where the photosynthetic response is now much faster
than the mixing, the apparent specific growth rate corresponds to the average
growth rate over the culture depth. For instance,

lðI0; �Þ ¼ 1
L

ZL

0

lðIðz; I0; �Þ; �Þ dz ¼ 1
L

ZIðLÞ

I0

lðI; �Þ
I

dI; ð22Þ

in the case of a simple planar geometry of thickness L with a 90° illumination
angle. The rightmost term in (22) provides yet another interpretation of lðI0; �Þ
as the average of the yield gðI; �Þ:¼ lðI;�Þ

I over the range of irradiance.

Assumption (ii) has been the basis for the theory of the “light-limited chemostat”
[55, 56]. Experimental evidence that the microalgae cells respond to all irradiance
levels within the light gradient range can be found in Huisman et al. [55], whereby
photosynthetic efficiency is shown to increase with decreasing light intensity, and
therefore with culture depth, using fluorescence measurement techniques.

Under this assumption, it can be shown [11] that, if the specific growth rate
lðI; �Þ attains its maximal value lmax at Iopt, then the average growth rate lðI0; �Þ
itself will attain its maximal value (which is lower than lmax) at Iopt

ffiffiffiffiffiffi
I0
IðLÞ

q
. Because

the latter irradiance level is always greater than Iopt, a microalgae culture system
with either a higher cell content or a larger water depth shall always be less prone to
photoinhibition.

The foregoing considerations are illustrated in Fig. 8 displaying the apparent
specific growth rate for various impinging lights I0 and optical depths ranging from
k ¼ 0 (limit case that no shading effect occurs) to k ¼ 10 (almost complete light
attenuation). For example, k ¼ 3 corresponds to 95 % of the light being absorbed,
either due to a high culture concentration or a thick culture. Note that for such
optical depth levels (or higher), the apparent growth rate can be approximated well
with Monod-type kinetic rates, keeping in mind that the Monod half-saturation
constant should be biomass related. Of course, this does not mean that the mic-
roalgae are not subject to photoinhibition effects, but rather that these effects are not
directly visible due to the averaging process. Such averaging induces a clear loss of
productivity at higher optical depth nonetheless.

5.2 Open Questions

The analysis of a simple chemostat culture in the previous subsection has distin-
guished two limit cases in order to estimate the apparent growth rate, either as the
growth rate at the mean irradiance level, or as the average growth rate across the
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culture depth. The reality is probably halfway, yet predicting exactly where it
occurs calls for a new paradigm.

The light pattern received by a microalgae cell is strongly influenced by the
hydrodynamics in the culture medium [64, 80, 85, 91]. Both the average light and
the variation frequency between light and dark phases can indeed differ greatly
under different flow regimes, culture concentrations, and so on. This is illustrated in
Fig. 9 comparing the simulated light patterns received by a microalgae cell in a
tubular photobioreactor at two different cell concentration levels. Although fast-
scale photosynthesis models, such as the Han model (see Sect. 3.4), can in principle
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Fig. 8 Apparent specific growth rate (22) in a simple planar chemostat geometry as a function of
the impinging light I0 and for various optical depths k

Fig. 9 Simulated light patterns received by a microalgae cell in a tubular photobioreactor at two
different cell concentration levels: 0.5 g L−1 (dashed) and 2 g L−1 (solid). Reproduced from [80]
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be used with this kind of light signal in order to predict the indirect effect of the
hydrodynamics on microalgae growth, these models have not been validated with
realistic light signals as of yet.

In addition to their effects on fast photosynthetic processes, one should also
consider the combined effects of the light gradient and flow mixing on the dynamics
of photoacclimation (see Sect. 3.3). The question of the light irradiance at which the
cells are photoadapted—that is, which irradiance value I to use in Eq. (6)—is
indeed crucial and it still remains open [80, 85, 91, 114].

Finally, in order to predict the daily productivity of a microalgae culture system,
one has to combine multiple biological and physical models acting across a wide
range of timescales. These models have characteristic timescales ranging from
milliseconds for the light reactions, to minutes for the photodamage effect, and to
days for the growth and photoacclimation processes. Such an integration has been
investigated in Esposito et al. [35], where a coupled Han–Geider model is
embedded within a large eddy simulation (LES) framework. Likewise, a coupled
Han–Droop model [51] was used for the purpose of raceway light pattern recon-
struction and experimental simulation in Hartmann et al. [52].

By and large, the approach that involves coupling detailed hydrodynamics
simulators to fast timescale models describing the photosynthetic response holds
much promise for a better understanding and prediction of the actual productivity of
MCS. However, the added complexity and high computational burden has not yet
been compensated by more accurate predictions in the authors’ opinion.

6 Towards Model-Based Optimization and Control
of Microalgae Culture Systems

6.1 Model-Based Operations Optimization

In parallel with the development of accurate mathematical models describing MCS,
an increasing number of studies involving the application of systematic model-
based optimization techniques in order to gain process operational insights have
started to emerge. A natural optimization criterion in this context appears to be
maximizing biomass productivity per unit area, referred to as surface productivity
hereafter. Of course, alternative optimization criteria can be considered in the case
where TAG synthesis or other biosynthesis is to be optimized.

The following considerations are for a simple planar geometry of thickness L,
and our initial focus is for a steady-state microalgae culture under constant
impinging light I0 (and constant temperature). Using the Beer–Lambert law (14) as
a first approximation and assuming that the light attenuation parameter n varies
linearly with the microalgae concentration x, it is not hard to see that the optical
depth k is a function of the cell concentration per unit area 1:¼xL only (see
Sect. 4.1). It follows that the apparent specific growth rate �lðI0; �Þ given by (22) is
itself a function of 1, and the net surface productivity P can be expressed as
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PðI0; 1; �Þ ¼ ð�lðI0; 1; �Þ � rÞ1 : ð23Þ

In other words, only the cell concentration per unit area matters according to the
metric P: a thin culture (small L) with high cell concentration x is equivalent to a
thick culture (large L) with low cell concentration x. Also note that the net surface
productivity P in (23) attains its maximum for a finite, nonzero value 1�, due to the
productivity approaching zero for either very small or very large values of 1: in the
case of a small cell concentration per unit area, this is because only a tiny fraction of
the impinging light is actually absorbed, whereas there is nearly no residual light
inside the culture medium when the cell concentration becomes too big.

Using the property that the apparent specific growth rate is approximated closely
by Monod-type kinetics in dense cultures having an optical depth k� 3 (see
Sect. 5.1 and Fig. 8), it can be shown [56] that the optimal cell concentration per
unit area 1� maximizing surface productivity is such that the remaining light at
depth L corresponds to the compensation light, namely the light at which the growth
rate matches the basal respiration rate. Similar conclusions are obtained in [26, 107]
by means of different approaches.

Accounting for the light periodicity in determining the optimal productivity
introduces yet another layer of complexity. The optimization of cell productivity on
a diurnal basis is considered in Akhmetzhanov et al. [1], whereas optimization on
account of high-frequency light variations due to mixing and light gradient effects is
investigated in Celikovsky et al. [21].

More recently, optimal operation strategies for continuous microalgae cultures
have been investigated in Grognard et al. [46]. There the optimal operation is
mainly determined by the need to reach a periodic regime, whereby the cell con-
centration at the end of a 24-h period matches the initial cell concentration, and it is
no longer possible for the cell concentration 1ðtÞ to track the optimal cell con-
centration 1� for a given impinging light level perfectly. Instead, it is shown that the
optimal trajectory ~1ðtÞ should be such that it approaches 1� on average.

6.2 Monitoring and Control

In practice, the goal is often to maintain the culture conditions in such a way that the
productivity of microalgae is close to a maximum. A number of simple control
actions can be performed that do not interfere with the characteristic timescales of
microalgae growth:

• pH Regulation can be achieved via controlling the injection rate of inorganic
carbon (typically in the form of gaseous CO2), for instance, using online pH
measurements and a simple PI or PID controller [9, 18]. Alternatively, an MPC
controller reducing the CO2 losses in outdoor photobioreactors was proposed in
Garcia Sanchez et al. [41].
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• Regulation of the microalgae concentration can be achieved via a feedback
control loop measuring the cell density, for example, using an NIR light
transmittance sensor, and controlling the injection of fresh growth medium [94].
Turbidostats can also be used for this purpose [72].

• Temperature regulation can be achieved by means of low-level controllers, for
instance, by maintaining the culture medium temperature near the optimal
growth temperature Topt (see Sect. 3.5). In doing so, one must make sure that the
energetic penalty incurred by the temperature control does not overrun the
corresponding productivity increase nonetheless. For instance, it has been
estimated [5] that the energy needed to downregulate the temperature of a
photobioreactor in California to 25 °C (the temperature without control can raise
above 40 °C) is about 1.8 GJ year−1 m−2, representing the equivalent of 0.3 oil-
barrel per meter-square.

A major bottleneck for the implementation of more advanced control and online
optimization strategies in MCS appears to be the lack of online sensors that can
monitor the biological activity. The idea of using software sensors, also known as
observers, that infer key unmeasured bio/chemical variables based on readily
available online measurements and a mathematical model of the system, is quite
appealing in this context. A high-gain observer was developed in Bernard et al. [16]
for estimating both the internal quota and the remaining nutrient concentration.
More recently, an interval observer providing confidence intervals on the same
inferred quantities and taking into account the discrete nature of the measurements
was presented in Goffaux et al. [44]. Regarding TAG synthesis too, a nonlinear
interval observer was designed in Mairet et al. [68] for monitoring the internal TAG
content of microalgae.

Early work involving the online estimation of microalgae growth, and their
subsequent use in closed-loop control strategies in an objective to maximize mic-
roalgae productivity, can be traced back to the early 1980s [7, 48]. Since then, other
authors have investigated the use of inorganic carbon [4] or oxygen production
[103] as a proxy to estimate microalgae growth.

Concerning closed-loop control finally, a simple and near-optimal strategy that
enables microalgae productivity levels very close to their theoretical limit was
recently presented in [69]. This strategy was derived based on the actual model-
based optimal control strategy and involves controlling the optical depth in a
raceway pond by applying a dilution rate proportional to the productivity rate. The
latter can be inferred based on a software sensor that exploits direct measurements
of either the CO2 injection rate or the O2 production rate, with the proportionality
factor evaluated using online parameter estimation. The proposed strategy could be
validated numerically against a model coupling a high-fidelity physical model of an
open raceway pond with a biological model accounting for light and temperature
limitation effects, photoacclimation, and internal storage of carbon in the form of

80 O. Bernard et al.



TAGs and carbohydrates. Moreover, a mathematical analysis supports the design of
this controller by demonstrating its (global) stability with respect to the uncertain
initial conditions.

Despite a number of recent advances [53, 66, 69], the availability of robust
controllers remains scarce. This can be attributed to the complexity and high-
nonlinearity of Droop-like models, that make the derivation and analysis of the
controllers particularly arduous. However, the continued development of reliable
dynamic models of MCS presents many opportunities for optimization-based
control techniques, including nonlinear model predictive control (NMPC) and
dynamic real-time optimization.

7 Conclusions

Industrial exploitation of microalgae is just starting, motivated by their huge
potential, and by the diversity of innovative applications [86, 100]. However, such
photosynthetic organisms whose energy-harvesting strategy is strongly related to
light, are more difficult to model than more classical microorganisms (bacteria,
yeasts, or fungi). They have a strong aptitude to store nutrients, which motivates the
use of quota models (typically the Droop model) that are more complex than the
classical Monod model. The microalgae biomass contributes to attenuate light,
inducing then a strong coupling between biology (microalgae growth) and physics
(radiative transfer properties and hydrodynamics).

Some models exist that can describe separately some of these processes, but
there is a clear incentive to develop integrated predictive models, which could
realistically predict the behavior of a microalgae culture system, especially in a
context of bioenergy production from solar energy. It takes a lot of effort to validate
these models over long periods of time, due to the need for extensive measurement
datasets. Eventually, these models will support monitoring and optimization of
MCS and will guide the development of this promising technology. They will also
realistically support quantification and optimization of the reachable productivities,
depending on species, type of culture process, period of the year, and location and,
therefore, calibrate the corresponding investments. They will also contribute to
improve the environmental impact assessment [63] by better quantifying the bal-
ance between the requested energy to maintain the algae in suspension and inject
CO2, and the recovered energy through biofuel production.
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