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Abstract Recent progress in using DNAzyme-functionalized gold nanoparticles
(AuNPs) for biosensing is summarized in this chapter. A variety of methods,
including those for attaching DNA on AuNPs, detecting metal ions and small
molecules by DNAzyme-functionalized AuNPs, and intracellular applications of
DNAzyme-functionalized AuNPs are discussed. DNAzyme-functionalized AuNPs
will increasingly play more important roles in biosensing and many other multi-
disciplinary applications.
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1 Introduction: DNAzymes and Gold Nanoparticles

Deoxyribonucleic acid (DNA) is a biopolymer made of four types of deoxynu-
cleotides: adenosine (A), thymidine (T), guanosine (G), and cytidine (C). Com-
plementary DNA strands assemble into a double helix (DNA duplex) via the
formation of A–T and G–C base pairs [1, 2]. Such DNA was long considered
solely a genetic material to encode the inheritable information of many organisms
through its sequence. However, this understanding was challenged in the 1990s
when DNAs with catalytic activities [3–5] and ligand-binding abilities [6–9] were
discovered from libraries containing random DNA sequences through combina-
torial techniques such as in vitro selection (Fig. 1) or systematic evolution of
ligands by exponential enrichment (SELEX) [3–9]. The DNAs with catalytic
activities are DNAzymes (also called deoxyribozymes or catalytic DNAs). Since
their discovery, many different DNAzymes have been isolated by different
research groups to catalyze the cleavage [3, 10–18], ligation [4, 19, 20], phos-
phorylation [21], adenylation [22], depurination [23], and thymine dimer repair
[24, 25] of nucleic acids, as well as formation of nucleopeptide linkage [26, 27],
porphyrin metallation [28], and other chemical reactions [29–31]. DNAzymes are
generally more stable than protein and ribozymes due to the prominent stability of
DNA against hydrolysis and denaturation, and many artificial modifications can be
further introduced into DNAzymes to enhance their resistance to nuclease deg-
radation [32, 33]. As a result of these properties, DNAzymes have been widely
applied in many research fields, including biosensing [34–45], logical DNA
computing and machines [39, 46–48], gene therapy [49–54], and others [55–60].

Among many nanomaterials, gold nanoparticle (AuNP) is one of the most
studied [61]. The growing research interest on AuNPs is mainly because of their
excellent properties such as high stability, strong plasmonic effects, good catalytic
activities, and low cytotoxicity [62]. Many techniques have been developed for the
synthesis of AuNPs of different sizes and shapes [63–68], including Au spheres
[69–72], rods [73–80], prisms [81–84], cages [85–87], and wires [88, 89]. AuNPs
are widely applied in nanoassembly [90–99], chemical catalysis [90, 100–106],
sensing [96, 107–122], and biological applications [90, 123–131].

In this chapter, we focus on DNAzyme-functionalized AuNPs in biosensing and
dynamic assembly [43, 96, 98, 121, 132–138]. The related works that have been
conducted in our group are also introduced. Readers are directed to other out-
standing reviews about more general perspectives of DNAzymes [34–60, 139–
172], AuNPs [61, 62, 90], and biomolecule-functionalized nanomaterials [92, 95,
97–99, 122, 173–178].
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2 DNAzyme-Functionalized Gold Nanoparticles for Biosensing

2.1 Fabrication of DNA-Functionalized AuNPs

Before AuNPs can be used with DNAzymes, they have to be functionalized with
DNA through strong ligand–Au bindings or in some other cases by weaker DNA–
Au interactions. AuNPs synthesized by various methods are generally coated by
ligands to stabilize the colloid aqueous solutions [62, 63, 71]. These ligands on the
surface of AuNPs can be efficiently replaced by thiol-containing molecules
because of the thiophilic nature of Au [179–181]. Based on this principle, thiol-
modified DNAs (thiol-DNAs) were successfully functionalized onto the surface of
AuNPs to direct the assembly of AuNPs via DNA hybridization (Fig. 2a) [182,
183]. After DNA functionalization, the AuNPs were stabilized by the strong
electrostatic repulsion between negatively charged DNA strands. A fluorescence-
based method could be utilized to quantify the surface coverage and hybridization
efficiency of thiol-DNAs on AuNPs, using mercaptoethanol to displace the sur-
face-bound fluorophore-labeled thiol-DNAs [184]. DNA loading on AuNPs of
different sizes can be significantly enhanced by aging in concentrated salt solution
or introducing a PEG spacer to the DNA [185]. Gel electrophoresis was used to
study the conformation of thiol-DNA attached on AuNPs [186] and separate
DNA-functionalized AuNPs containing different DNA coverage or in different

Fig. 1 A scheme of in vitro selection technique for selecting DNAzymes specifically using
uranyl ions (UO2

2+) as a cofactor to catalyze nucleic acid cleavage. The random DNA library is
amplified by PCR using primers P1 and P2, and repeated using P3 and P4 containing rA as a
cleavage site and an overhang/spacer as a tag, respectively. After PCR and PAGE purification,
the DNA library is incubated with UO2

2+. DNA sequences (containing both DNAzyme (bold and
green) and substrate (black and rA) motifs) that undergo cleavage in the presence of UO2

2+ are
isolated and used for the next round of selection. After a few rounds of selection, UO2

2+-specific
DNAzymes are identified by cloning and sequencing (Adapted from Ref. [16])
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assemblies [183, 187–190]. In addition to the DNA-functionalized AuNPs with
multiple DNA strands on each AuNP, mono-DNA-functionalized AuNPs (one
DNA strand per AuNP) could also be prepared and purified [183, 187, 191, 192].
In addition to thiol-DNA, DNA with a poly A block was found to bind AuNPs with
sufficient affinity to form DNA-functionalized AuNPs, and the lateral spacing and
surface density of DNA strands on AuNPs was controlled by adjusting the length
of the poly A block (Fig. 2b) [193].

In our lab, DNAzymes and their nucleic acid substrates were used as cross-
linkers to form assemblies of DNA-functionalized AuNPs via DNA hybridizations
on both binding arms, and the assemblies underwent disassembly upon cleavage of
the substrates by the DNAzymes in the presence of metal ion cofactors [194, 195].
In addition to the postsynthetic methods that attach DNA on the surface of pre-
formed AuNPs, our lab developed a new in situ method to prepare DNA-func-
tionalized AuNPs simultaneously during the growth of AuNPs in the presence of
DNA (Fig. 2c) [196, 197]. In this approach, DNA noncovalently bound to the
surface of spherical Au nanoseeds through its poly A or poly C blocks, and then
Au salts and reductants were added to initiate the growth of the nanoseeds into
larger flower-shaped AuNPs. DNA was partially embedded in the newly formed
Au layers during the growth of these Au ‘‘nanoflowers’’, and the DNA fragment on
the surface of the AuNPs was still active to hybridize with AuNPs functionalized
with a complementary DNA strand to form nanoassemblies [196]. One advantage

Fig. 2 Functionalization of
DNA on AuNPs through
a thiol–Au interaction, b poly
A tags, and c in situ
embedding during AuNP
growth (Adapted from
Ref. [182, 193, 196])
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of this in situ DNA-functionalization method over postsynthetic methods is that
the attachment of DNA on the AuNPs by embedding is so stable that the treatment
of high concentrations of coadsorbed diluent molecules such as mercaptoethanol
could not displace the DNA from the AuNPs [196], whereas under this condition
thiol-DNA on the surface of AuNPs was efficiently removed from the AuNPs
[184]. The mechanism on how DNA is embedded and which sequence is preferred
for the embedding during the growth of Au nanoseeds is currently not clear.
Further studies are under way in our lab to answer these questions to enable more
efficient DNA functionalization on AuNPs and better preservation of DNA
activities.

On the other hand, despite the above progress made to attach DNA on AuNPs,
few methods are capable of modifying the DNA sequences already attached [189,
198–203]. The ‘‘post-attachment’’ modification can enable more flexible trans-
formations of DNA sequences to control AuNP nanoassemblies and tune their
functions [189, 198–203]. We have recently developed a DNAzyme-based method
to modify the sequences of DNA on AuNPs (Fig. 3). The DNA is processed by
DNAzymes to cut off (cleave) unwanted fragments and then add (ligate) desired
new fragments, enabling DNA sequence modifications to provide new DNA
functions to the DNA-functionalized AuNPs [204]. More importantly, the DNA
sequence modifications catalyzed by the DNAzymes are sequence-specific [3, 4],
so that multiple DNA sequences on one AuNP can be modified selectively and in a
stepwise manner [204]. Another advantage of this method is that the size of
DNAzymes is comparable to that of DNA attached on AuNPs, thus little steric
effect is present [203, 204]; whereas protein enzymes that catalyze sequence-
specific DNA cleavage and ligation are much larger and may encounter low
efficiency or incomplete cleavage of DNA on AuNPs [198–201]. In our current
method, a ribonucleotide (rA) serves as the designed cleavage site in the DNA
when DNAzymes are present. This rA is not necessary if a recently discovered
new DNAzyme that can catalyze the cleavage of unmodified DNA is utilized [18].

Fig. 3 Selective and
stepwise modification of
DNA sequences immobilized
on AuNPs using DNAzymes
(Adapted from Ref. [204])
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2.2 DNAzyme-Functionalized AuNPs for Biosensing

The major application of DNAzyme-functionalized AuNPs is biosensing [43, 98,
121, 132, 135, 137]. DNA-functionalized AuNPs were first found to assemble via
DNA hybridization between complementary DNA strands in 1996 [182, 183],
where a color change from red to blue was observed. A red shift in absorption
spectra was observed when discrete AuNPs assembled into macroscopic aggre-
gates [182]. Due to the extremely large extinction coefficient of AuNPs compared
to organic dyes and their other prominent properties such as light scattering,
surface enhanced Raman spectroscopy (SERS), and surface plasmon resonance
(SPR), AuNPs have been widely applied for highly sensitive enzyme-free detec-
tion of nucleic acids [205–240].

By introducing DNAzymes into such DNA–AuNP systems and taking advan-
tage of AuNPs, a new series of DNAzyme-based biosensors has been developed
for a broad range of targets [194, 221, 241–278]. In most of these studies,
DNAzymes have played two distinct roles in target recognition and in signal
enhancement. In the former case, nucleic acid cleaving or ligating DNAzymes
[3, 4, 165] are used to recognize specific cofactors such as metal ions and small
organic molecules; then the DNAzyme-catalyzed cleavage or ligation of the
nucleic acid substrates alters AuNP assemblies, producing physically detectable
signal changes for sensing the cofactors as targets [194, 241–252, 255–261, 263,
265–267, 269, 271–275, 277, 278]. In the latter case, peroxidase-mimicking
DNAzymes [28, 29, 40, 169], usually containing G-quadruplex motifs, serve as
signal generators or enhancers on AuNPs to transform target recognition by other
molecules into physically detectable signals [221, 253, 254, 262, 264, 268, 270,
275, 276].

In addition to the above examples of in vitro detection, cellular or in vivo
biosensing is also an active field of research and can provide useful information of
the analytes in live cells and organisms. Although DNA-functionalized AuNPs
have been successfully applied to biosensing of nucleic acids and small molecules
in cells based on nucleic acid hybridization and aptamers [230, 279–282], such
application based on DNAzymes and AuNPs for metal ion detection in live cells is
still very challenging and has been reported only recently [283].

2.2.1 Nucleic Acid Cleaving/Ligating DNAzymes and AuNPs for Biosensing

In 2003, a colorimetric biosensor for lead ion (Pb2+) was developed based on the
DNA-directed assembly of 13 nm AuNPs in our lab (Fig. 4a) [194]. DNA-func-
tionalized AuNPs were mixed with 8–17 DNAzymes and nucleic acid substrates.
The nucleic acid substrates cross-linked the AuNPs into aggregates via DNA
hybridization after mild heating at 50 �C and annealing, resulting in a blue solution
and an absorption band around 700 nm. However, in the presence of the target
(Pb2+, the cofactor of the DNAzyme), the nucleic acid substrates that crosslinked

98 Y. Xiang et al.



the AuNP together were cleaved by the DNAzymes so that no AuNPs aggregates
could form. A red color and an absorption band at 522 nm were observed in this
case. When an inactive DNAzyme was used, the DNA-directed assembly of
AuNPs still occurred, but no color change was observed regardless of whether the
samples contained Pb2+. Interestingly, by changing the ratio of active and inactive
DNAzymes, the dynamic range of the biosensor could be tuned from 0.1 * 4 to
10 * 200 lM [194]. This method was further optimized by testing the biosensor
using different DNAzyme lengths, AuNP alignments, stoichiometries of DNA-
zyme to its substrate, buffer pH, and temperatures [242].

To enable fast Pb2+ detection at ambient temperature, the ‘‘tail-to-tail’’ align-
ment of 42-nm AuNPs was used for the biosensor design. The alignment and size
of AuNPs were the major determining factors to achieve fast color changes and
assembly of AuNP aggregates [241]. In another work, DNA functionalized AuNPs
first assembled into aggregates cross-linked by 8–17 DNAzymes and substrates.
Then, the aggregates were used as a biosensor system to detect Pb2+ by disas-
sembling them in the presence of Pb2+ with the assistance of invasive DNA,
resulting in color changes from blue to red and a blue shift in absorption spectra
[245]. Compared with the previous methods [194, 241, 242], this new design

Fig. 4 Colorimetric
detection of (a) Pb2+ and
(b) adenosine using
DNAzyme-functionalized
AuNPs by an 8–17
DNAzyme and an adenosine-
specific aptazyme,
respectively (Adapted from
Ref. [194, 244])
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exhibited a ‘‘light-up’’ response to Pb2+ rather than a ‘‘light-down,’’ and thus was
less vulnerable to interference from other species that could inhibit the DNAzyme
activity [245]. To eliminate the requirement of invasive DNA usage, an improved
design using asymmetric DNAzymes to form the AuNP aggregates as the bio-
sensor system was also developed [246].

In addition to Pb2+, the biosensor system was further modified to detect
adenosine by replacing the 8–17 DNAzyme with a DNA aptazyme (Fig. 4b). The
aptazyme was a combination of an 8–17 DNAzyme and an adenosine aptamer,
with the latter sequence inserted to one binding arm of the 8–17 DNAzyme. In this
case, only in the presence of both adenosine and Pb2+ could the DNAzyme motif
be activated to cleave its substrate and disassemble the AuNP aggregates [244].

In addition to the 8–17 DNAzyme that is specific to Pb2+, other DNAzymes
such as a nucleic acid ligating E47 DNAzyme for cupric ion (Cu2+) and a nucleic
acid cleaving 39E DNAzyme for uranyl ion (UO2

2+) were also functionalized with
AuNPs for the detection of Cu2+ and UO2

2+ through the color change of AuNP
assemblies [247, 248]. In the former case, the E47 DNAzyme catalyzed the
ligation of two short DNA strands into a long strand in the presence of Cu2+. The
long DNA strand could then bind two types of DNA-functionalized AuNPs by
linking two short DNA fragments via DNA hybridization, respectively, to form
blue colored aggregates as a response to Cu2+ in the solution [247]. In the latter
case, the 39E DNAzyme induced the cleavage of a nucleic acid substrate with
UO2

2+ as the cofactor. Upon the addition of UO2
2+ to AuNP aggregates cross-

linked by 39E DNAzymes and their substrates, the cross-linker substrates were
cleaved and caused the disassembly of the AuNP aggregates, resulting in color
changes from blue to red [248].

In contrast to the above examples of AuNP aggregate formation by DNA cross-
linkers [182], non-crosslinking DNA hybridization could also induce rapid
aggregation of AuNPs [284]. For example, Li and coworkers utilized the 8–17
DNAzymes and substrates to functionalize discrete AuNPs without cross-linking,
where Pb2+-induced cleavage of the substrates reduced the stability of the AuNP
colloid solution and caused aggregation. The detection of Pb2+ in this simple
method was successfully achieved by monitoring the color change from red to
purple or the red shift in absorption spectra due to the Pb2+-induced aggregation of
AuNPs [285].

To make the metal ion detection more user-friendly, lateral-flow devices were
also developed based on DNAzymes and AuNPs for dipstick tests. In one design,
the 8–17 DNAzymes and substrates were modified with biotin and functionalized
on AuNPs. In the absence of Pb2+, the AuNPs in the lateral-flow device were
captured by the streptavidins immobilized on the device in the control zone, thus
showing a colored band in this zone as a sign of Pb2+ free samples (Fig. 5a).
However, when Pb2+ was present, the cleavage of the substrates removed the
biotin labels from AuNPs and allowed them to go through the control zone on the
device to reach the test zone containing immobilized complementary DNA, where
biotin-free AuNPs were captured and displayed a colored band, indicating the
presence of Pb2+ in the samples [256]. In another design by Zeng and coworkers, a
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Fig. 5 Lateral-flow devices using DNAzyme-functionalized AuNPs for the detection of (a) Pb2+

and (b) Cu2+ (Adapted from Ref. [255, 256])
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nucleic acid cleaving DNAzyme specific for Cu2+ and its substrate were used
without being prefunctionalized on AuNPs. The target Cu2+ interacted with the
DNAzyme and substrate first, releasing a single-stranded DNA (ssDNA) piece that
could link DNA-functionalized AuNPs to the test line by DNA hybridization
(Fig. 5b). In the absence of Cu2+, however, no release of the ssDNA occurred, thus
the AuNPs moved across the test line and were captured on the control line where
complementary DNA was immobilized. Therefore, a red line appeared on the test
line only when Cu2+ was present in the samples [255]. Later, the same research
group further incorporated a catalytic DNA circuit that could amplify the release
of a ssDNA by the 8–17 DNAzyme and its substrate, achieving the detection of
Pb2+ on a lateral-flow device with high sensitivity [277].

In addition to the lateral-flow device, an interesting study by Yu and coworkers
utilized a conventional compact disc as the platform for Pb2+ detection based on
DNAzymes and AuNPs. In their method, Pb2+-induced cleavage of the substrate
strand prevented the attachment of DNA-functionalized AuNPs onto the disc
coated with complementary DNA. When Pb2+ was present in samples, fewer
AuNPs were decorated on the disc to induce error in disc reading. Any optical
drive from a computer could be used as a reader for this Pb2+ detection with the
disc [265]. We also developed a method to use a low-cost commercial device, a
glucose meter, to detect Pb2+ using DNAzymes, although no AuNPs were involved
in the method [286].

In 2008, unmodified AuNPs were found to have the ability to couple with label-
free DNAzymes and substrates for Pb2+ detection (Fig. 6) [250, 251]. The
approach was based on a previous finding by Rothberg and coworkers that ssDNA

Fig. 6 Label-free detection of Pb2+ using DNAzymes and unmodified AuNPs (Adapted from
Ref. [250])
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and double-stranded DNA (dsDNA) had distinct binding affinities and stabilization
effects on unmodified AuNPs [218–220, 287]. Upon cleavage of the nucleic acid
substrate by the 8–17 DNAzyme in the presence of Pb2+, a ssDNA fragment was
released from the DNA duplex to bind unmodified AuNPs. Because this ssDNA
fragment had a stronger binding affinity to AuNPs to stabilize the colloid solution,
the red color of the solution was only preserved when Pb2+ was present. By
measuring the absorbance ratio at two wavelengths, the Pb2+ concentration was
quantified [250, 251]. Through a very similar design but using another nucleic acid
cleaving DNAzyme for Cu2+ with unmodified AuNPs, Yang and coworkers also
developed a label-free method for detection of Cu2+ [257].

In addition to the above colorimetric methods based on DNAzyme-function-
alized AuNPs, other analytical techniques have also been utilized to detect the
target-induced change of DNAzyme-substrate duplexes and AuNPs. For example,
AuNP-induced light scattering was used to develop biosensor systems for the
detection of Pb2+ (Fig. 7a) and Cu2+ [263, 271, 273, 274]. The approach was based
on the cleavage of substrates in the presence of metal ions by DNAzymes to either
disassemble the DNA cross-linked AuNP aggregates [263] or prevent the aggre-
gation of unmodified AuNPs [271, 273, 274]. In all these studies, the quantification
of metal ions was achieved by measuring the difference in light-scattering prop-
erties between discrete AuNPs and aggregates [263, 271, 273, 274]. SERS [267]
and SPR [275] (Fig. 7b) were also used to detect Pb2+ by measuring the release of
AuNPs [267] and the activation of catalytic motifs [275] by the DNAzyme-cata-
lyzed cleavage of substrates on surfaces, respectively.

Instead of generating signals directly, AuNPs can also serve as efficient fluo-
rescence quenchers for the design of fluorescent biosensors [224, 288]. Following
this principle, a Pb2+ sensor was developed by attaching fluorophore-labeled 8–17
DNAzymes and substrates to AuNPs, which underwent fluorescence enhancement
in the presence of Pb2+ as a result of the increase in fluorophore-AuNP distance
upon DNAzyme-catalyzed cleavage of the substrate [260]. Another study used a
similar design for a Cu2+-specific DNAzyme but was applied for ascorbic acid
detection rather than Cu2+, taking advantage of the requirement of ascorbic acid to
reduce Cu2+ for the DNAzyme’s activity [272]. Similarly, rod-shaped AuNPs
coated with positively charged surfactants acted as binders and quenchers for
flurophore-labeled 8–17 DNAzymes and substrates, allowing the detection of Pb2+

by fluorescence enhancement [266]. In addition to fluorescence quenching, AuNPs
could serve as fluorescence anisotropy generators for the coated fluorophores due
to the large size compared to free fluorophores and DNA. Based on this principle, a
fluorescence anisotropy sensor was constructed using DNAzyme-functionalized
AuNPs for the detection of Cu2+ and Pb2+ [259]. Finally, DNAzyme-functional-
ized AuNPs were also incorporated with electrochemically active substances for
biosensor applications. Electrochemical sensors for Pb2+ were reported using Pb2+-
induced cleavage of nucleic acid substrates on AuNPs by 8–17 DNAzymes to
enable the detachment (Fig. 7c) [249] or attachment [258] of AuNPs onto a DNA-
coated electrode. The DNA on AuNPs permits attachment of large amounts of
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electrochemically active metal complexes, thus providing a large signal
enhancement on the electrode in the presence of Pb2+ [249, 258]. Graphene sheets
decorated by DNAzyme-functionalized AuNPs were also used to detect L-histidine
and Pb2+ as the cofactors of two DNAzymes, respectively [261, 278].

Fig. 7 DNAzyme-
functionalized AuNPs for
the detection of Pb2+ using
(a) dynamic light
scattering, (b) SPR, and
(c) electrochemistry (Adapted
from Ref. [249, 263, 275])
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2.2.2 Peroxidase-mimicking DNAzymes and AuNPs for Biosensing

Unlike the nucleic acid cleaving or ligating DNAzymes mentioned above that
could recognize the target molecules and transform the recognition event into
changes of AuNPs, peroxidase-mimicking DNAzymes [28, 29, 40, 169] usually
serve as signal generators or enhancers by catalyzing the production of optically
active substances, with AuNPs as carriers of many such DNAzymes for signal
amplification. Willner and coworkers developed a telomerase activity assay using
DNAzyme-functionalized AuNPs (Fig. 8a). In their method, the DNA immobi-
lized on a surface was extended with telomere repeat units to capture the AuNPs
via DNA hybridization. Then, the DNAzymes on the surface-bound AuNPs cat-
alyzed the production of chemiluminescence. The more telomerase activity was
present in samples, the more DNAzymes and AuNPs were immobilized, gener-
ating more intense chemiluminescence [221].

A similar design using magnetic particles as the surface was reported for the
colorimetric detection of nucleic acids, where the target-induced immobilization of
DNAzyme-functionalized AuNPs catalyzed the production of colored ABTS+

from H2O2 and ABTS (Fig. 8b) [253]. By functionalizing AuNPs with both
DNAzymes and antibodies, sandwich immunoassays were successfully achieved
using the DNAzymes on AuNPs to generate color [254], electrochemilumines-
cence (Fig. 8c) [262], and chemiluminescence [264] signals for the detection of a-
fetoprotein and carcinoembryonic antigen. Pb2+ detection using Pb2+-specific
DNAzymes [275] or Pb2+-binding G-quarduplex [270] and AuNPs as carriers for
peroxidase-mimicking DNAzymes were also achieved by electrochemistry [275]
and fluorescence [270] measurements. Another study used AuNPs as carriers of
two halves of a peroxidase-mimicking DNAzyme. The two halves were released
when target nucleic acids or small molecules interacted with the DNA or aptamers
on the surface of the AuNPs, respectively. Then the released halves formed active
DNAzymes in solution and generated chemiluminescence for sensitive detection
[276].

2.2.3 DNAzyme-Functionalized AuNPs for Intracellular Biosensing

AuNPs were first found by Mirkin and coworkers as an efficient material for the
delivery of DNA into cells for intracellular gene regulation and the detection of
mRNA and ATP [230, 279, 280]. By functionalizing AuNPs with DNAzymes,
delivery of DNAzymes into cells to sequence-specifically cleave mRNA [281] and
perform RNAi-independent gene regulation [282] were achieved. Despite these
achievements, there are still very few studies using DNAzyme-functionalized
AuNPs for intracellular biosensing.

Recently, our group has developed a new method to attach fluorophore-labeled
UO2

2+-specific DNAzymes and substrates onto AuNPs for intracellular UO2
2+

detection (Fig. 9). The UO2
2+-specific 39E DNAzyme was conjugated to the

AuNP through a thiol tag, and the substrate strand was modified with a Cy3
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fluorophore and a molecular quencher to reduce background. In the absence of
UO2

2+, the fluorescence of the Cy3 was quenched by both the AuNP and the
molecular quencher. In the presence of UO2

2+, the DNAzyme cleaved the fluo-
rophore-labeled substrate strand, resulting in the release of the shorter ssDNA
containing the Cy3, and accompanied by fluorescence enhancement. We demon-
strated that this DNAzyme–AuNP biosensor could readily enter cells and serve as
a UO2

2+ sensor within a cellular environment, making it the first demonstration of
DNAzymes as intracellular metal ion sensors [283].

Fig. 8 Detection of (a) telomerase activity, (b) nucleic acid, and (c) protein biomarker using
AuNPs as support for peroxidase-mimicking DNAzymes (Adapted from Ref. [211, 253, 262])
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3 Summary and Outlook

Since the discovery of the first DNAzyme that catalyzed the cleavage of RNA in
1994, more and more DNAzymes with diverse functions have been obtained by the
in vitro selection technique and are being actively pursued for many applications
including biosensing, especially for metal ion detection in both the environment
and biology. AuNPs, on the other hand, are ideal materials for biosensing due to
their prominent properties as efficient signal reporters, DNA carriers, and cellular
delivery materials. Therefore, intensive research has been carried out in recent
years to utilize DNAzyme-functionalized AuNPs for biosensing and other appli-
cations, and there is no doubt that the future work and impact of this field will
continue to grow.

One challenge in this field is the discovery of new DNAzymes to cover more
metal ions and other target molecules. DNAzymes specific for Mg2+, Zn2+, Pb2+,
Cu2+, Co2+, Hg2+, and UO2

2+ have been selected from random DNA libraries and
biochemically characterized [3, 4, 10–20]. However, many other important mol-
ecules and especially metal ions, such as iron (Fe2+ and Fe3+), Cr3+, Ni2+, and
Mn2+ in biology, still do not have a DNAzyme to selectively recognize each of
them. Introducing modified DNA bases or backbone into random DNA libraries is
one promising method to extend the possibility of obtaining these candidates.
However, the available techniques for amplifying DNA with artificial modifica-
tions for in vitro selection are still limited and require active collaboration from
many disciplines such as chemistry, chemical biology, and biochemistry.

Fig. 9 Fluorescent UO2
2+-specific DNAzyme immobilized onto AuNP as selective turn-on

UO2
2+ sensors inside live cells. The scale bar is 20 lm (Adapted from Ref. [283])

DNAzyme-Functionalized Gold Nanoparticles for Biosensing 107



On the other hand, although AuNPs provide many unique properties for signal
amplification, one hurdle for wide adoption in commercial products is batch-to-
batch variations and quality controls. Overcoming this hurdle is critical to translate
the technology from bench to the field, clinics, and home.

Another challenge is the application of DNAzyme-functionalized AuNPs in
intracellular biosensing. Although AuNPs can efficiently deliver DNAzymes and
substrates into cells and serve as part of the sensor systems, such as signal
reporters for light scattering and SERS or quenchers for fluorescence, the intra-
cellular localization and activation of such sensors are still difficult and demand
more general methods to be developed because many intracellular targets are not
evenly distributed in cells. In addition, most DNAzymes currently available are not
selected under cellular conditions, so they may need optimization and reselection
to ensure their activities are still viable inside cells and on the surface of AuNPs to
recognize specific targets. Stability of DNAzymes in a cellular environment has
not been well understood and DNA modifications are required to make DNA-
zymes more resistant to enzymatic degradation while still retaining their activities.

Finally, the cytotoxicity and biological effects of nanomaterials such as AuNPs
on different cells are not well understood currently, and how DNAzyme func-
tionalization will affect these properties of AuNPs is still an open question to be
answered. These are critical for the future applications of DNAzyme-functional-
ized AuNPs in cellular and in vivo biosensing. Given the progress made in this
area in the past 10 years, more efficient DNAzyme–AuNP-based sensors will be
developed in the near future.
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