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Abstract Aphids are economically significant agricultural pests that are respon-
sible for large yield losses in many different crops. Because the use of insecticides
is restricted in the context of integrated pest management and aphids develop
resistance against them rapidly, new biotechnology-based approaches are required
for aphid control. These approaches focus on the development of genetically
modified aphid-resistant plants that express protease inhibitors, dsRNA, antimi-
crobial peptides, or repellents, thus addressing different levels of aphid-plant
interactions. However, a common goal is to disturb host plant acceptance by
aphids and to disrupt their ability to take nutrition from plants. The defense agents
negatively affect different fitness-associated parameters such as growth, repro-
duction, and survival, which therefore reduce the impact of infestations. The
results from several different studies suggest that biotechnology-based approaches
offer a promising strategy for aphid control.
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1 Interactions Between Aphids and Plants

In angiosperms, sieve tubes within the vascular bundles are conduits for nutrition
(e.g. photoassimilates) and long-distance signaling. Sieve tubes are composed of
longitudinally arranged modules of sieve elements (SEs) and companion cells
(CCs). The SEs are connected to one another by sieve pores, which are modified
plasmodesmata located in sieve plates at each end of the cell, embedded in the cell
wall. Mass flow in the sieve tubes is created by a turgor difference between the
source and sink ends [1, 2]. The phloem is subdivided into three functional zones
[3]. In the collection phloem, photoassimilates accumulate in the SE/CC com-
plexes within the minor veins of source leaves and are transported to the sieve tube
ends in the release phloem of sink tissues such as fruits. The collection phloem and
release phloem are connected by the transport phloem, which has a dual function.
In the sieve tubes of the transport phloem, photoassimilates are transported from
source to terminal sink, but some photoassimilates are released to support growth
and maintenance of axial sinks along the pathway [4, 5].

The high nutritional content of sieve tubes makes them an attractive target for
bacterial and fungal pathogens as well as insect pests. Therefore, SEs are equipped
with defense mechanisms, including chemical components such as protease inhib-
itors [6] and physical components that lead to SE occlusion and thus the loss of mass
flow. These physical mechanisms represent a special challenge for phloem-feeding
insects, such as aphids. Ebbing mass flow in the sieve tubes prevents ingestion [7]
because this is driven by the high pressure inside the sieve tubes [8]. In this context,
there is increasing evidence that callose deposition onto sieve plates and sieve plate
occlusion by phloem proteins (P-proteins) are important defense mechanisms against
phloem-feeding pests such as aphids (e.g. [9–11].
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Aphids are among the most important insect pests in agriculture. There are
approximately 4400 aphid species, among which more than 250 are serious pests.
In addition to direct damage caused by aphid feeding and the toxic effects of saliva
components, the withdrawal of nutrients is detrimental to plant growth and
development. Furthermore, aphids can transmit many plant viruses [12], and their
excreted honeydew provides nutrition for sooty mold fungi, which can interfere
with photosynthesis and reduce the market value of crops.

Aphids as well as other phloem-feeding hemipterans (e.g. whiteflies) have
evolved specialized mouthparts (stylets) that penetrate through plant tissues to the
sieve tubes, allowing the direct ingestion of sap. The feeding process begins
directly after landing, when the aphid presents its labium (the mouthpart con-
taining the stylets) to the surface. The labium is equipped with mechanoreceptors
at its apex [13, 14] that can scan the leaf surface, presumably to detect the location
of vascular bundles that often have overlying epidermal cells differing in shape
from intervening epidermal cells.

The stylet pathway begins with the penetration of the epidermis and continues
with stylet movement through the apoplast of the parenchymal tissue [15]. Gel
saliva is secreted continuously during this process [16]. As the stylet advances
towards the sieve tubes, they briefly perpetrate cortex and mesophyll cells,
probably to orient the stylet inside the plant tissue [17]. Aphids take up a small
amount of sap from these punctured cells for analysis by the precibarial sensilla
located in the food canal between the base of the stylet and the sucking pump
[18–20]. After penetrating an SE and identifying it as a source of nutrition, the aphid
secretes watery saliva, which is followed by ingestion [21]. Although this feeding
behavior has been described in detail by [22], the roles of the two types of saliva are
not well understood but may play a key role in aphid–plant interactions [16].

Gel saliva is secreted onto the leaf surface at the penetration point and continues
to be secreted as the stylet advances. It is secreted as a liquid but rapidly forms a
solid salivary sheath that envelops the stylet. The most prominent saliva protein,
the sheath protein (SHP), may be responsible for sheath hardening due to its high
cysteine content. It is assumed that SHPs are solidified (gelled) by oxidation,
through the formation of disulfide bonds among cysteine residues [16, 23–25].
Several functions have been proposed for the gel saliva: mechanical support of the
stylet, protection of the stylet against molecular plant defenses (e.g. chitinases),
lubrication to facilitate stylet movement, and the sealing of stylet penetration sites
in the plasma membrane of plant cells [11, 26]. Watery saliva is also secreted
during intercellular penetration [27], but in contrast to gel saliva it is secreted when
the aphid stylet briefly punctures parenchymal cells and immediately before and
during sap ingestion from SEs [28]. Recent proteome studies have identified
several proteins (effectors) in watery saliva that potentially interfere with plant cell
signaling cascades. Proteases and proteins of unknown function were also detected
in the watery saliva, and their roles are the subject of intense research [23, 29].

Several authors have suggested that aphid saliva mediates insect-plant inter-
action by overcoming plant defenses before and after SE penetration, e.g. [26, 16,
25, 30]. In contrast to the large number of studies involving leaf-chewing insects
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[31], direct evidence of the role of individual salivary proteins during aphid-plant
interaction are rare [23, 29, 32, 33].

2 Control of Aphids

Chemical insecticides such as imidacloprid and dimethoate are used in conven-
tional agriculture to control aphids, whereas azadirachtin from the Neem tree can
be used for organic plant production [34]. An alternative approach is the use of
beneficial insects (e.g. hoverfly, ladybeetle and brown lacewing) or entomopath-
ogenic fungi [35]. Insecticides remain the most widely used control mechanism for
aphids, even though the number of accredited insecticides has declined due to their
negative impact on the environment. An additional problem with insecticides is the
emergence of resistant aphid populations (http://www.pesticideresistance.com/). In
the context of integrated pest management, biotechnology-based approaches offer
an appealing alternative.

2.1 Biotechnology-Based Approaches

The use of genetically modified (GM) plants to fight insect pests [36–38] as well as
fungal plant pathogens [39] has been established for more than 20 years, with most
commercial insect-resistant GM crops expressing Bacillus thuringiensis (B.t.)
toxins. Although these toxins are powerful and specific agents against Coleoptera
and Lepidoptera [38], they do not affect phloem-feeding insects such aphids [40].
Therefore, alternative strategies are required for phloem-feeders, including the
expression of protease inhibitors, RNA interference (RNAi), antimicrobial pep-
tides, and repellents (Fig. 1). This requires a broad understanding of aphid biology
as well as aphid-plant interactions to adapt such approaches to the specific prop-
erties of this pest.

2.1.1 Controlling the Expression of Defensive Agents in GM Plants

Effective pest control strategies using molecules expressed in plants must take
account of the insect feeding strategy. Insects with chewing mouthparts, such as
beetles, take up unspecific plant tissues material, whereas aphids have piercing-
sucking mouthparts that are adapted for the withdrawal of sap from the xylem and
phloem.

The Cauliflower mosaic virus (CaMV) 35S promoter is used to control transgene
expression in many transgenic plants because it is regarded as a constitutive pro-
moter, but the expression of a b-glucuronidase (GUS) reporter gene using this pro-
moter indicates different levels of activity in different cell types [41]. High levels of
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GUS activity were observed in the root pericycle cells and in the parenchymal cells of
the xylem and phloem tissues in the stem and leaf. However, there was little or no
GUS activity in the procambium, phloem, and cortex cells of the root; in the vascular
cambium cells of stems; and in the majority of the cortex cells in the leaf midrib.
Intermediate levels of GUS activity were observed in leaf mesophyll cells, certain
ground tissue cells in the stem and leaf midrib, and in trichome and epidermal guard
cells [41]. The activity of the CaMV 35S promoter is downregulated in older root
areas and in syncytial feeding cells of nematodes [42]. Despite this inconsistent
activity, the CaMV 35S promoter appears to be suitable for the expression of dsRNA
to protect plants against coleopteran [43] and aphid pests [44].

The specific feeding strategy of aphids suggests that phloem-specific promoters
would be more useful because they achieve targeted and potentially high-level
expression in the phloem. This could increase the level of resistance towards
phloem-feeding insects in GM plants by increasing the content of defense com-
pounds in phloem sap while reducing the exposure of nontarget insects to the same
compounds. Furthermore, this approach would also reduce the GM-associated
resource investment by the plant by avoiding the expression of defense compounds
in cells/tissues where they would never encounter the pest. The SUC2 promoter
that regulates the CC-specific AtSUC2 sucrose-H+ symporter gene is a good
candidate because its activity is restricted to the phloem, with no differences
between the source and sink tissues [45]. Imlau et al. [46] showed that green
fluorescent protein expressed under the control of the SUC2 promoter is trans-
ferred from the CCs via plasmodesmata to the SEs and is then transported along
the sieve tubes. This provides proof of concept for the control of agents targeting
phloem-feeding insect pests in GM plants. In contrast, the SUT1 promoter, which
regulates StSUT1 (a sucrose H+-cotransporter located in the phloem of potato
plants), is active solely in the unloading phloem in sink tissues [47]. Therefore, it is
unsuitable for the control of defense compounds because pests also infest source
tissues such as mature leaves, and the transport of GM-based defense compounds
from sink to source has yet to be demonstrated.

Fig. 1 Overview of target localization for different defense-related agents—protease inhibitors
(PIs), double-stranded RNA (dsRNA), antimicrobial peptides (AMPs), and repellents—used for
aphid control in GM plants. Aphids penetrate plant tissue with their stylet (epidermis and cortex)
and, after reaching the sieve elements, begin to ingest sieve tube sap. Aphids secrete pulses of
saliva, produced in salivary glands and released from the salivary channel into the food channel,
where it mixes with ingested sap. (E)-b-farnesene functions as an alarm pheromone and is
released by specific glandular trichomes on the plant epidermis. It is perceived by chemoreceptors
in the aphid antennae and acts as repellent. Repellents are already released prior to feeding
following contact between the aphid and the trichomes. PIs, dsRNA, and AMPs are ingested as
components of phloem sap. In the gut, PIs target proteases from the saliva and gut, thus
interrupting digestion. Additional PI targets are located in the body cavity. Targets for siRNA, a
product of dsRNA cleavage, were identified in the gut and salivary glands. There, siRNA induces
the silencing of selected proteins required for aphid–plant interactions. Like PIs and dsRNA,
AMPs can cross the gut epithelium and target bacterial endosymbionts that are located in the
hemolymph or within bacteriocytes (e.g. Buchnera aphidicola), thus reducing aphid fitness

b
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Promoters that are used for expression control of defense compounds and that
are continuously active throughout the plant lifecycle can be regarded as inefficient
because they produce these in the absence of infestation, and they can encourage
the emergence of resistant populations. Therefore, promoters should ideally be
inactive prior to infestation and/or wounding. Several promoters are inactive when
tissues are intact but are activated by wounding, including the mannopine synthase
(mas) promoter [48], the potato proteinase inhibitor II (pinII) promoter [49], and
the PR1-a promoter [50]. The inducible PR1-a promoter is activated by salicylic
acid, a chemical involved in wound-induced signaling in plants [50], and its
production is triggered by aphid feeding [51]. The ideal promoter for the control of
aphid resistance genes would therefore be chimeric, combining the functional
elements of wound-inducible promoters (e.g. PR1-a) and phloem-specific pro-
moters (e.g. SUC2). This would allow the development of GM plants with defense
mechanisms triggered only by phloem-feeding insects such as aphids.

2.1.2 Protease Inhibitors

Protease inhibitors (PIs) are small molecules, peptides, or proteins that reduce or
inhibit the activity of proteases by directly or indirectly blocking their active site or
an adjacent exocite. PIs regulate the activity of endogenous proteases but can also
act defensively against proteases secreted by pests and pathogens. They have been
grouped into 48 families based on the sequence of the inhibitory domain [52]. As
defense molecules, PIs ingested with phloem sap disrupt the digestion of proteins
by insect proteases inside the gut, thus attenuating amino acid assimilation,
slowing the growth of insects and reducing damage to the plant. Other targets in
insects affected by PIs include water balance, molting, and enzyme regulation [53].
In non-GM plants, PIs are detected in storage organs and can be induced by insect
feeding and pathogen infection [54]. The expression of trypsin inhibitors and other
PI-like chymotrypsin inhibitors has already been achieved in the phloem of
transgenic plants [55, 56].

Rhabé and Febvay [57] tested the toxicity of different proteins against the aphid
species Acyrthosiphon pisum by artificial feeding in vitro. They found that the
plant lectin concanavalin A was toxic and inhibited growth, whereas PIs were only
effective at relatively high concentrations. A broader study of lectin and PI toxicity
against five aphid species (Aphis gossypii, Aulacortum solani, Macrosiphum eu-
phorbiae, Macrosiphum albifrons and Myzus persicae) revealed a dependence on
the lectin/PI combination and aphid species [58]. Corcuera [59] suggested that
naturally occurring PIs may defend barley against aphids, indicated by infestation
induced accumulation of PIs against chymotrypsin and trypsin [60]. The authors
used two aphid species (Schizaphis graminum and Rhopalosiphum padi) and
observed that the amount of PI produced depended on the species and the number
of aphids. PI activity was significantly greater in barley infested with S. graminum,
probably reflecting the impact of each species; for example, S. graminum causes
chlorosis around the feeding site, whereas R. padi does not [61]. Furthermore, PIs
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significantly affected the survival of R. padi but had only a minor impact on S.
graminum. PIs may also defend white cabbage cultivars and Arabidopsis thaliana
against the aphid Brevicoryne brassicae [62].

The first GM plant expressing a PI for the control of plant-sucking insects was a
tobacco (Nicotiana tabacum) plant expressing snowdrop lectin from Galanthus
nivalis [63]. Tobacco plants are infested with the aphid M. persicae, but those feeding
on the transgenic plants and on artificial diets containing the lectin showed reduced
growth, survival, and reproduction. The insecticidal activity of snowdrop lectin was
previously demonstrated against chewing insects in GM plants [64] and for plant-
hoppers in vitro [65, 66]. Other PIs expressed in GM plants as defense compounds
against aphids include oryzacystatin I in rapeseed [67] and eggplants [68], and a
cysteine-PI from barley in A. thaliana [69]. These generally demonstrated similar
effects to those described previously (i.e. reduced survival, growth, and reproduc-
tion), as well as a developmental delay. The use of PIs for aphid control therefore
appears to be an effective strategy for pest management [63, 67–69].

Until recently, the target for PIs in aphids was uncertain because of conflicting
data concerning the protease activity in the aphid gut [70]. Initially, aphids were
considered to be unable to digest proteins in the sieve tube sap, thus relying on free
amino acids as a nitrogen source [56]. However, an aminopeptidase and a cathepsin-
L-like cysteine protease are thought to be immobilized in the gut of A. pisum [58, 71,
72]. Aminopeptidase, which represents 15.6 % of the total gut protein, may be a
binding site for lectins [72]. An additional study identified cathepsin-B-like prote-
ases in the A. pisum gut [70]. More recent findings indicate that several types of
proteases, including metalloproteases, are present in the watery saliva of A. pisum
[23, 29]. Because watery saliva is secreted into pierced SEs and mixes during
nutrition uptake with the phloem sap in the stylet [16], plant-derived PIs target aphid
proteases in two different environments, the sieve tubes and the alimentary tract.
Additional targets for PIs may be present elsewhere in the aphid body because some
PIs, such as oryzacystatin I, can cross the gut epithelium [67].

Despite the positive results achieved using different PIs against aphids, key
considerations include the potential for aphids to adapt to PIs and the potential
impact of ingested PIs on aphid predators and parasitoids. The overexpression of
endogenous proteases could outcompete PIs and the expression of insensitive
proteases could circumvent them, as previously seen in caterpillars and beetles
[53]. A comparable observation was recently described for M. persicae, which
upregulates expression of cathepsin B following PI ingestion [73]. Furthermore,
oryzacystatin I is not only toxic towards the aphid M. euphorbiae but also to its
parasitic wasp Aphidius ervi [74].

2.1.3 RNA Interference

RNA interference (RNAi) is a posttranslational RNA-mediated gene silencing
process controlled by the RNA-induced silencing complex (RISC). RNAi is the
major antiviral defense mechanism in both plants and insects [75, 76]. In insects,
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the short interfering RNA (siRNA) pathway is the principal antiviral pathway and
is considered to be part of the insect innate immune system [76].

Double-stranded RNA (dsRNA) derived from an exogenous source (e.g. a
virus) or an endogenous source (e.g. pre-miRNA) is cleaved inside the cell by a
ribonuclease III known as DICER to generate siRNAs or miRNAs 20–23 nucle-
otides in length with short tails [77, 78]. These are separated into single strands
and the guide strand is integrated into the RISC complex [79], whereas the pas-
senger strand is degraded. The siRNA or miRNA-RISC complex binds to its target
mRNA resulting in cleavage (siRNA) or translational repression (miRNA) [78].
This process, when mediated by siRNAs, specifically reduces the abundance of
target mRNAs [80].

Artificial exogenous sources of dsRNA can be provided by feeding or by the
expression of hairpin RNA constructs in transgenic plants. The latter mechanism is
termed host-induced gene silencing because the plant host delivers siRNA to the
pest or pathogen [81, 82]. It is still unclear how exogenously administered dsRNA
and siRNA enters insect cells [83].

Two early studies demonstrated that plants can be engineered to produce
dsRNA, offering protection against specific insect pests. Baum et al. [43] trans-
formed corn to produce dsRNA targeting the V-type ATPase A subunit mRNA,
significantly reducing feeding damage by Western corn rootworm larvae (Diab-
rotica virgifera). Mao et al. [84] targeted the gut-specific cytochrome P450 gene of
the cotton bollworm (Helicoverpa zea), which confers resistance to gossypol, a
polyphenol defense compound produced by cotton plants. Bollworm larvae were
initially fed on transgenic tobacco and A. thaliana plants expressing target-specific
dsRNA, which made the insects sensitive towards gossypol present in artificial
diets. The target specificity of dsRNA coupled with its ability to suppress genes
that are critical for insect–host interaction or insect survival, for example, suggests
that dsRNAs can be developed as highly specific pesticides, allowing the control
of one or more specific insect pests without off-target effects [85].

In aphids, RNAi-mediated gene silencing has been achieved by injecting
dsRNA or siRNAs into the hemolymph [86, 87] or by artificial feeding with
dsRNA [85, 88]. In these studies, RNAi was used to investigate the function of
proteins, such as the uncharacterized salivary gland protein C002 [33, 87] and a
gut-specific aquaporin [88]. Jaubert-Possamai et al. [86] demonstrated that a single
dose of dsRNA induces temporal silencing in aphids, with peak inhibition of
30–40 % target mRNA levels 5 days after injection, returning to normal 7 days
after treatment. In this context, Mutti et al. [87] reported a 50 % reduction in the
expression of a salivary gland protein. In Tribolium castaneum, a parental effect
was observed in which the inhibition of target genes is transmitted to offspring
[89], but no comparable studies have yet been carried out in aphids.

The proof of concept for transgenic plants delivering dsRNA to aphids resulted
in the specific inhibition of Rack1 (located in the gut) and C002 (located in the
salivary gland) in the green peach aphid M. persicae [44]. Both tobacco and A.
thaliana were transformed with the silencing constructs, inducing up to 60 %
silencing in the feeding aphids and reducing their fecundity. Surprisingly, silencing
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C002 did not reduce survival, as previously observed with A. pisum after siRNA
injection [87]. This may reflect species-dependent differences or the impact of
different application methods.

Experiments on aphids as a model for piercing–sucking pests suggests that the
most promising RNAi targets are salivary proteins [33, 87] and gut proteins [88].
However, additional promising targets include transporters in the bacteriocyte
plasma membrane, which are required for the transport of nutrients between the
aphid and its obligate bacterial endosymbionts, such as Buchnera aphidicola. Most
RNAi studies in aphids have focused on A. pisum and M. persicae (Fig. 2a, b)
because the corresponding genome sequences are available, allowing the identi-
fication of RNAi target genes (IAGC [90]. The sequencing of additional species
such as A. gossypii, Diuraphis noxia, M. euphorbiae, M. persicae, and S. grami-
num is in progress (IAGC [91, 92]; http://arthropodgenomes.org/wiki/i5K) and
would broaden the scope of RNAi-based aphid control.

2.1.4 Antimicrobial Peptides

Peptide antibiotics are synthesized ribosomally in all organisms and in addition are
produced enzymatically in fungi and bacteria. In eukaryotes, peptide antibiotics
are termed antimicrobial peptides (AMPs) and generally comprise 12–50 amino
acids. AMPs are active against Gram-positive and Gram-negative bacteria in
different ways, according to their structure. Three main structural classes have
been described: (1) linear a-helical peptides lacking cysteine residues; (2) peptides
adopting a b-sheet globular structure stabilized by intramolecular disulfide
bridges; and (3) peptides with an unusual bias for certain amino acids, such as
histidine, glycine, proline, or tryptophan [93]. The production of peptides with

Fig. 2 a Acyrthosiphon pisum and b Myzus persicae are model aphids that have been used in
most published studies, reflecting the availability of genomic resources for both species.
Buchnera aphidicola, the primary bacterial endosymbiont of aphids, is located within
bacteriocytes and is transmitted vertically to embryos. c Aphis fabae embryo bacteriocytes and
surrounding tissues. Note the close packing of symbionts. B Buchnera aphidicola cell; CM cell
membrane; M mitochondrion; N lobed nucleus; OV part of ovariole; SC sheath cell. (Buchnera
aphidicola image kindly provided by Tom L. Wilkinson, University College Dublin, Ireland)
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direct microbicidal activity is considered to be the most ancient mechanism of
immunity. The formation of peptide-induced transmembrane pores in bacteria or
other peptide-mediated mechanisms of membrane disruption abolishes the main-
tenance of membrane potential and causes bacterial cell death. Other AMPs have
intracellular modes of action, such as the inactivation of bacterial DnaK [94].

AMPs represent the innate immune system, which is the only form of immunity
in arthropods [95, 96]. Many insect species produce diverse AMPs [97, 98], but
these are not present in aphids, nor do aphids produce components enabling the
recognition and signaling of bacterial infection [99, 100]. The lack of an anti-
bacterial defense response may reflect the close relationship between aphids and
their endosymbiotic bacteria; for example, B. aphidicola is localized in specialized
aphid cells known as bacteriocytes [101]; Fig. 2c). Additional facultative bacterial
endosymbionts include different strains of Hamiltonella, Serratia, Rickettsia, and
Regiella spp. [102]. Facultative endosymbionts may be intracellular and/or free
within the hemolymph [103–105]. Aphids benefit from symbiotic bacteria because
they convert nonessential amino acids in the phloem sap into essential amino acids
[90], which are normally present at minimal levels [106]. Facultative symbiotic
bacteria also confer resistance to parasitoid wasps [107], pathogenic fungi [108,
109], and heat [110, 111], as well as better performance on different host plants
[112, 113]. The reliance of aphids on bacterial endosymbionts makes the latter a
useful target for AMPs expressed in plants [114] based on the observation that
eliminating different aphid bacterial endosymbionts using antibiotics reduces
fecundity and delays aphid development, e.g. [115].

There has been one report thus far describing the influence of AMPs on aphids,
using indolicidin as a model [116]. Indolicidin is a cationic AMP present in bovine
neutrophils [117]; it shows activity against fungi [118] and bacteria such as
Escherichia coli [117], which is closely related to B. aphidicola. Le-Feuvre et al.
[116] demonstrated that the ingestion of indolicidin reduces the number of bac-
teriocytes in M. persicae, disrupts their structure, and reduces the number of
bacteria, ultimately reducing the performance, survival, and reproduction of the
aphids. Although antibiotic and AMP feeding generate distinct results, perhaps
reflecting the secondary effects on gut cells or other internal tissues [116], these
findings nevertheless indicate that AMPs produced by GM plants offer a promising
experimental approach for pest control. Beyond that, proof of concept has been
demonstrated for the control of fungal infections by AMPs expressed in plants,
offering a new dimension to the defense system of plants that remain infested with
unchallenged pests, e.g. [39, 119].

2.1.5 Repellents

Aphids detect odors via receptors in the primary and secondary rhinaria, which are
antennal segments present in the Sternorrhyncha [120–124]. It has been suggested
that the detection of plant volatiles is restricted to the primary rhinaria [120,
124, 125]. The overall response of these receptors to odors can be studied by
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electroantennography, which measures the average output of antennal nerves to
the brain for a tested odor [126]. Plant volatiles are used by aphids for long-range
orientation [127] and responses have been recorded in species such as S. avenae,
Metopolophium dirhodum [124, 128], Aphis fabae [122], Megoura viciae [129,
130], A. pisum [125], B. brassicae, and M. persicae [131]. Like other animals,
aphids use pheromones for intraspecific communication, and these are also per-
ceived by the antenna.

Pheromones are chemicals secreted into the environment to induce a social
reaction from conspecifics. As well as aggregation and mating pheromones,
chemicals such as (E)-7,11-dimethyl-3-methylene-1,6,10-dodecatriene (also
known as E-b-farnesene or Ebf) function as alarm pheromones in aphids such as
R. padi, M. dirhodum, S. avenae and M. persicae [132] and also in some beetles
and wasps. Receptors for alarm pheromones are located in the two primary rhi-
naria in aphids [133]. The alarm pheromone is secreted by endangered aphids (e.g.
in the presence of a predator) and induces others to stop feeding and escape, thus
interrupting the feeding cycle and increasing alertness and the time spent walking
or dropping off the plant at the expense of resource accumulation [134, 135].

Several plants, including wild potato species, have been shown to synthesize
Ebf as a natural aphid repellent [136, 137]. In this context, the volatile is termed an
allomone—that is, a substance that induces a reaction in a different species without
any benefit to that species. Gibson and Pickett [137] suggested that the allomone is
secreted by specific glandular hairs on the leaf surface and demonstrated that
aphids remain a distance of 1–3 mm from the leaf surface during choice experi-
ments. Nevertheless, the authors observed that not all aphids treated with air from
Ebf-emitting potato species were disturbed during feeding on susceptible plants.
As well as showing alarm responses, groups of aphids react to Ebf by producing a
higher ratio of winged offspring (migratory morphs) after application [138], which
has also been demonstrated in the field [139]. These observations suggest that
plants producing aphid alarm pheromones benefit from a reduced number of
feeding aphids and a higher ratio of winged offspring tending to leave the host
plant [138]. The aphid resistance of a recently described melon line may reflect the
same phenomenon [140], and it has been suggested as a strategy to produce aphid-
resistant versions of economically-relevant cultivars [137].

Ebf also shows kairomonal effects by attracting Adalia bipunctata [141],
Coccinella septempuctata [142], Coleomegilla maculate, Hippodamia convergens,
Harmonia axyridis [143], the primary aphid parasitoid wasps Aphidius uzbeki-
stanicus [144] and A. ervi [145], and the hoverfly Episyrphus balteatus [146]. This
dual effect as a pest repellent and an attractant for beneficial insects increases the
benefits of Ebf production by GM plants for aphid control. A recent study indi-
cated that the dispersal of herbivore-induced plant volatiles affects insects to a
range of 8 m from the release site [147], corroborating the idea that plant emitted
volatiles affect a wide range around the release site.

Only one study has thus far shown the direct benefits of Ebf produced by GM
plants [148]. A. thaliana producing Ebf were created by introducing the Mentha x
piperita (peppermint) encoding Ebf synthase under the control of the CaMV 35S
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promoter. Aphids showed more frequent alarm responses when exposed to a
droplet of hexane containing entrained volatiles from a transgenic plant or to air
from the headspace above Ebf-producing A. thaliana plants. Furthermore, the
authors showed that the released Ebf attracted the parasitoid wasp Diaeretiella
rapae, which spent more time on the transgenic plants than on comparable plants
lacking the pheromone. There appeared to be no metabolic costs of Ebf synthesis
because the transgenic plants showed no differences in growth or seed production
compared to wild-type controls. Current work at Rothamsted Research (UK)
focuses on the production of aphid-resistant wheat based upon the results of Beale
et al. [148].

In contrast to Beale et al. [148], Kunert et al. [149] found that transgenic A.
thaliana plants producing Ebf were not resistant to infestation by M. persicae, and
did not affect reproduction or the ratio of winged and wingless offspring. The
amount of Ebf produced by the plants was not influenced by aphid infestation
[149]. The absence of a repellent effect may have reflected an adaptation to Ebf
due to the continuous release by the transgenic plants. In contrast to the GM plants,
wild-type plants release Ebf via glandular hairs in pulses, mimicking the Ebf
emission of aphids when they are attacked by predators.

3 Testing Aphid Resistance in Plants

Developed GM plants are initially tested using molecular biology tools (e.g.
quantitative PCR) to confirm transgene integration and the expression of the
corresponding products and to compare plant lines produced by independent
transformation experiments. GM pest/pathogen-resistant plants must then be tested
for their efficiency against targeted pests/pathogens.

3.1 Aphid Fitness Parameters for Pest Control

Aphid fitness parameters such as development, body size, reproduction, and survival
are relevant for plant infestation and thus are used to determine the efficiency of pest
resistance. These parameters depend upon access to nutrition and its quality. The key
parameter relevant to plant infestation by aphids is the remarkable rate of repro-
duction. Most aphid species show cyclical parthenogenesis under natural conditions
with a switch from asexual to sexual reproduction. Reproduction begins approxi-
mately 1 week after birth; thus the development of aphids is rapid compared to
similar-sized insects whose development lasts approximately 3 weeks. This reflects
the so—called telescoping of generations in which aphid embryos begin to develop in
their grandmothers. All these factors lead to a high rate of reproduction and make
aphids ideal r-strategists with a total reproduction potential of several millions of
progeny per season distributed over several generations.
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As discussed above, biotechnology-based approaches have a negative impact
on parameters such as development and body size (Box 1) by reducing the intake
of nutrition and thus the fitness of adults and offspring (Fig. 3). Nymphs with a low
birth weight grow slowly and produce smaller nymphs in the next generation.
Furthermore, slower growth increases the time to maturity and reproduction starts
later in contrast to larger nymphs, reducing the total reproduction time over the
lifespan of each aphid [150]. The final body size is also positively correlated with
the reproductive weight [151, 152]. Larger and faster-developing nymphs also
show higher survival rates and less parasitization by wasps than smaller nymphs
[153]. The negative impact of reduced nutrition on reproduction implies that aphid
control strategies do not necessarily have to focus on killing. Approaches that
reduce infestation below an economically relevant level are also of interest
because they follow the concept of integrated pest management.

Box 1: Measuring the body size and development of aphids
Two technical approaches are used to measure the size of adult aphids.

Groups of up to 10 aphids can weighed and the mass of a single individual
deduced. This is necessary because the small size of aphids of 1–10 mm
(species dependent) means individuals weigh less than 1 mg, which makes
accurate determination challenging. Alternatively or in addition, it is pos-
sible to measure the so-called body plan area (BPA) by taking images of
single aphids using a microscope and a connected digital camera. Image
analysis software can be used for size determination, which is calculated on
the basis of a scale bar [154]. It is also possible to correlate the BPA with the
developmental stage (larval stage 1–4 and adult).

3.2 Observation of Behavior Reveals the Mode of Plant Resistance

Aphid behavior provides additional insights into the interaction between host
plants and pests, allowing observers to distinguish between aphids that are repelled
by a plant, unable to access the plant, or have disrupted nutrition uptake. Three

Fig. 3 Influence of nutrition
uptake on different fitness-
associated parameters and
their interplay in aphid adults
and nymphs
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main phases of plant-associated aphid behavior involve plant chemicals. The first
phase is host plant identification by color and odor [155, 156]. This behavior can
be studied with choice experiments using dual-choice chambers by which intact
plants (resistant and susceptible) are offered to aphids [157]. Olfactometers, which
can be designed as Y-track or four-arm models, are used as an additional tool to
study the influence of plant repellents on aphids and the attraction of parasitoids
in vitro, e.g. [141, 158].

In the second phase, aphids briefly penetrate epidermal and mesophyll cells and
test the suitability of the plant as a potential host by taking a small sample of cell
sap [159, 160]. The third phase is comparable to the second, but the ingested
solution is sieve tube sap [16]. Varying artificial feeding setups, such as choice
chambers [17, 161] or flow-through chambers [7], can be used to study aphid stylet
orientation inside the plant as well as the influence of intracellular chemical and
physical variations on feeding behavior. The electrical penetration graph (EPG)
technique (Fig. 4) integrates the aphid and plant into an AC and/or DC electrical
circuit [162, 163, 13, 14, 164], allowing feeding behavior inside the plant to be
observed. The aphid and plant represent variable resistance in the electrical circuit
that, in accordance with Ohm’s law, influences the continuously recorded voltage
[165]. Changes in resistance induced by the secretion of saliva or the uptake of

Fig. 4 Aphid behavior observed using the electrical penetration graph (EPG) technique. By
attaching a thin gold wire with conductive silver glue to the dorsal abdomen (a), the aphid can be
integrated in a direct current electrical circuit (b). The plant is integrated by inserting an electrode
into the soil. The applied voltage is adjustable (V). The aphid and plant together represent a
variable resistor. The input resistor (Ri) of the EPG amplifier has a value of 1 GX, about the mean
value of the aphid. The measured signal is amplified 50-fold (Amp) and is recorded with a
computer. (c) A 1-hour overview of an EPG recording. Specific waveforms in the EPG reveal
information about stylet movement, salivary secretion, and ingestion, for example
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nutrients result in complex wave patterns that have been correlated with different
patterns of behavior [21]. The EPG technique is a powerful tool to test the
resistance of plants against piercing–sucking insects [166, 167] and to determine
the site of resistance in the plant, such as in the epidermis, cortex, or phloem [168].

4 Future Perspectives for GM Plants

The first GM plants produced in 1983 by Fraley et al. [169]. It contained antibiotic
resistance genes without any specific use in agriculture, but subsequent develop-
ment focused on herbicide resistance [170] and pest resistance [171]. Although
such first-generation GM crops with altered input traits remain the most widely
grown, more recent developments include GM plants modified for output traits,
such as b-carotene production in Golden Rice [172], and GM plants producing
added-value compounds such as vaccines and antibodies [173]. New approaches in
agro-biotechnology include RNAi, the expression of antimicrobial peptides, and
the production of repellents for the control of aphids. The basis of this new
generation of GM crops is the availability of more biological information and
genome sequences from a higher number of pest organisms to facilitate target
selection. Because these new approaches address physiological processes and
basic modes of intraspecific and interspecific interactions among pests, their
symbionts and their hosts, the development of resistant or tolerant pest populations
appears unlikely. This is the basis of a new trend towards the development of
tailor-made GM crops that can withstand one or several selected prominent pests
in a respective habitat.

GM crops are currently grown on 160 million hectares [174], which represents
11.6 % of the total arable land area [175]. The five most important countries for
production of GM crops are the USA, Brazil, Argentina, India, and Canada, and
the four most prominent crops are soybean, corn, cotton, and rapeseed. The uptake
of GM agriculture in developed and developing countries is expected to increase
further, following a trend observed since the first GM crops were commercialized
[174]. The consumer attitude towards GM agriculture differs between countries,
with high acceptance in USA and Asia and a more cautious view in Europe [176].
It can be assumed that next-generation GM crops, developed according to
knowledge-based principles, will increase overall acceptance and the economic
potential of such crops. However, this will require better communication with the
general public [177].
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