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Abstract Insect models, such as Galleria mellonella and Drosophila melanogaster
have significant ethical, logistical, and economic advantages over mammalian
models for the studies of infectious diseases. Using these models, various pathogenic
microbes have been studied and many novel virulence genes have been identified.
Notably, because insects are susceptible to a wide variety of human pathogens and
have immune responses similar to those of mammals, they offer the opportunity to
understand innate immune responses against human pathogens better. It is important
to note that insect pathosystems have also offered a simple strategy to evaluate the
efficacy and toxicity of many antimicrobial agents. Overall, insect models provide a
rapid, inexpensive, and reliable way as complementary hosts to conventional ver-
tebrate animal models to study pathogenesis and antimicrobial agents.
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1 Introduction

Pathogenic microbes cause a variety of infectious diseases in human hosts, and the
threat from these pathogens has never faded in human history [1–6]. For example,
methicillin-resistant Staphylococcus aureus (MRSA) alone infects more than
94,000 people and kills nearly 19,000 in the United States every year, more deaths
than those caused by HIV/AIDS, Parkinson’s disease, emphysema, and homicide
combined [7, 8]. Also, in addition to bacterial infections, the frequency, spectrum,
and associated cost of opportunistic invasive fungal infections have significantly
increased over the past two decades and accounted for the rapidly growing pop-
ulations of immunosuppressed and debilitated patients [9–11]. The substantial
disease burden of infectious diseases in humans underscores the need for better
understanding of the pathogenicity and virulence of human pathogens.

Pathogenesis, immunology, and pharmacology research have traditionally
relied on mammalian models such as mice, rats, rabbits, and guinea pigs, but such
experiments are costly, time consuming, and require full ethical consideration.
Hence, cheaper and ethically more acceptable insect models of infection have been
introduced, including the larvae of the greater wax moth Galleria mellonella,
Drosophila melanogaster, and other insects. Accumulating data indicate that the
virulence of many human pathogens is comparable in insects and mammals, and
often identical virulence factors are used by human pathogenic microbes to infect
insects and mammals. Moreover, insects have an immune system that is func-
tionally similar to the innate immune system of mammals, which offers a simple
model to understand innate immunity better. Furthermore, the insect infection
models provide a rapid, inexpensive, and reliable evaluation of the efficacy and
toxicity of new antimicrobial agents in vivo. In this chapter, we discuss how the
insects G. mellonella, D. melanogaster, and other insects can be employed to study
various human pathogens and to evaluate new antimicrobial agents.
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2 Use of Insects for Studying Human Pathogens

Galleria mellonella and Drosophila melanogaster have emerged at the forefront of
host–pathogen interaction research and show promise for identification of novel
virulence genes and deciphering conserved innate immunity mechanisms. Insects
have both cellular and humoral immune response to infection [12–14], making
them attractive models to study pathogen–host interactions. Although adaptive
immunity is unique to vertebrates, the innate immune response seems to be well
conserved between vertebrates and invertebrates [15–18]. Moreover, insects have
immune responses mediated by antimicrobial peptides [14], which also play a
crucial role in human immunity. Assays using insects as the infection host are
usually inexpensive, simple to perform, and yield results within a short timeframe
[19, 20]. These advantages make insects attractive hosts for studying human
pathogens.

2.1 Galleria mellonella Infection Model

The greater wax moth G. mellonella (Lepidoptera: Pyralidae) is found in most of the
world [19] and has many advantages over other invertebrate hosts [18, 19, 21].
Firstly, G. mellonella is easy to work with and the larvae are inexpensive [19]. The
larvae do not require any specialized equipment; they are housed in petri dishes and
can be kept in an incubator or at room temperature [22, 23]. Also, G. mellonella
larvae are a convenient size (2–3 cm in length) to work with and a large number of
larvae may be inoculated in a short period of time [20]. Second, the G. mellonella
larvae can be maintained at temperatures between 15 and 37 �C [22, 24]. This makes
the larvae well suited to study pathogens at human body temperature. Other
invertebrate hosts, such as D. melanogaster, cannot be maintained at temperatures
over 30 �C [18, 19, 25]. This is significant because it affects the pathogenicity of
organisms inasmuch as virulence factors are known to be regulated by temperature
[19, 22, 25–27]. Third, quantifying the infecting inoculum is accurate in G. mello-
nella. Precise infection inoculum can be delivered to G. mellonella by injection into
the larva’s hemocoel [22]. This is notable because an accurate dose of inoculated
pathogen partly contributes to the reproducible disease progression and survival
outcomes [19].

The G. mellonella pathosystem has been widely used in the virulence study of
pathogenic microbes, especially in the identification of novel virulence genes
through comparing the virulence of the mutant and the wildtype strains. Interest-
ingly, this model was previously mainly used to characterize virulence factors in
Bacillus cereus and Bacillus thuringiensis [28–30]. More recently, G. mellonella has
been employed to investigate a variety of pathogens (Table 1), including Gram-
negative bacteria such as Acinetobacter baumannii [24, 31–38], Burkholderia spp.
[39–56], Listeria monocytogenes [57–61], Pseudomonas aeruginosa [58, 62–67],
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Yersinia spp. [68–71], Campylobacter jejuni [49, 72, 73], Proteus mirabilis [74–77],
Escherichia coli [78], and Legionella pneumophila [79], Gram-positive bacteria
such as Enterococcus faecalis [58, 80–86] and Staphylococcus aureus [13, 87–89],
and fungi such as Candida albicans [22, 90–95], Cryptococcus neoformans [22, 96–
100], and Aspergillus spp. [97, 101–111]. Infections caused by A. baumannii [24,
31–38], Burkholderia spp. [39–56], L. monocytogenes [57–61], C. albicans [22, 90–
95], and C. neoformans [22, 96–100] have been particularly well characterized in the
G. mellonella infection model; the G. mellonella pathosystem was efficient espe-
cially in Gram-negative bacteria and in fungi. It is important to note that the viru-
lence determinants of most pathogens are similar in the G. mellonella larvae and
mammals [20, 39, 42, 50, 65, 68, 98, 107, 112–114]. Nevertheless, the G. mellonella
model is not appropriate for studying infections caused by Pneumocystis murina
[115] or Dermatophytes [116], as the G. mellonella larva is resistant to these fungi.

Many studies have characterized the immune defense responses of the G. mello-
nella larvae [59, 68, 72, 90, 96, 98, 114, 115, 117–119]. There are considerable
similarities between the systemic cellular and humoral immune responses of the
G. mellonella larvae and the innate immune responses of mammals [12, 120–122].
Both the G. mellonella and mammals have many immune recognition proteins
[12, 121, 122]. After pathogen recognition, both the insect and mammalian immune
defenses rely on phagocytosis, the production of reactive oxygen species, the
expression of antimicrobial peptides, and clotting cascades to combat invasive
pathogens [12, 25, 123]. However, the G. mellonella larvae also form melanin during
infection, but this process does not occur in mammals. In addition, the G. mellonella
larvae form pathogen microaggregates that ultimately lead to hemocyte nodule or
capsule formation [12], which is also different from mammalian immune responses.
Compared with D. melanogaster, a notable disadvantage of the G. mellonella model is
that the Galleria genome sequence has not been completed yet, although a huge array
of genetic tools has been used in the D. melanogaster model. The recent character-
ization of the Galleria immune gene repertoire and transcriptome by next generation
sequencing and traditional Sanger sequencing has led to the design of gene micro-
arrays and paves the way for further use of Galleria for elucidation of innate anti-
microbial immune mechanisms [124].

2.2 Drosophila melanogaster Infection Model

Drosophila melanogaster is a species of Diptera in the Drosophilidae family. The
species is known generally as the common fruit fly. Beginning with Charles
W. Woodworth, this species has been a widely used model organism for biological
research in studies of genetics, physiology, and microbial pathogenesis. It is
typically used because it is an animal species that is easy to handle and breed. The
most important advantage of D. melanogaster as a mini-host is that the fruit fly is
amenable to forward and reverse genetics and large collections of Drosophila
mutants and transgenic cell lines are commercially available (http://flybase.org).

Utility of Insects for Studying Human Pathogens 5
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The Drosophila genome sequence has been completed and is among the most fully
annotated eukaryotic genomes. Thus, gene microarrays have been generated,
double-stranded RNA has been synthesized for all genes (www.flyrnai.org), and
RNA interference technology is commercially available for conditional inactiva-
tion of any gene at the whole-animal or tissue levels (http://stockcenter.vdrc.
at/control/main) [124].

Drosophila melanogaster requires a more significant commitment than the
G. mellonella model. Working with D. melanogaster as a host to study human
pathogens requires considerable experience and specialized equipment such as
microinjectors [125–131] to infect it with a certain infecting inoculum. In addition,
because wildtype D. melanogaster are resistant to infection with some pathogens,
Imd or Toll pathway-deficient flies need to be used, which in some cases requires a
fly genetic cross [125, 126, 128–130]. Nevertheless, the D. melanogaster patho-
system is still among the simplest infection models.

The D. melanogaster pathosystem has also been widely used to identify virulence
determinants of pathogenic microbes, including P. aeruginosa [15, 63, 132–137],
Streptococcus pneumoniae [138, 139], Serratia marcescens [140–154], L. mono-
cytogenes [138, 139, 155], C. albicans [92, 125, 128, 131, 156–158], C. neoformans
[99, 159, 160], and Aspergillus fumigatus [126, 129, 161] (Table 1), and this
pathosystem is promising for large-scale studies. Note that there is also a significant
concordance for virulence of most pathogens in D. melanogaster and mammals.
Three infection assays have been used for assessment of fungal virulence in insects:
injection, rolling, and ingestion assays. Although quantification of the infecting
inoculum is feasible only in the injection assay, the availability of different routes of
infection permits comparative analyses of virulence and host–pathogen interactions
between an acute infection introduced directly into the hemolymph (injection assay)
versus more protracted infections originating from epithelial surfaces [i.e., skin
(rolling assay) or gastrointestinal mucosa (ingestion assay)]. Interestingly, the alb1-
deficient A. fumigatus mutant was found to be hypovirulent in D. melanogaster when
introduced via epithelial surfaces but not by injection [130].

Drosophila melanogaster has been a major tool for studying innate immunity
[124] inasmuch as they mount a highly efficient innate immune defense, the first line
of which consists of epithelial responses that prevent infections. When physical
barriers are breached and pathogenic microbes invade within the insect body, insects
induce a highly coordinated immune response that has both cellular and humoral
constituents. In the case of fungal infection, the immune responses at the epithelial
level are Toll-independent, which is opposed to the requirement of intact Toll sig-
naling for defense against systemic fungal infection. Consistently, the epithelial
antifungal immune responses in the fruit fly are mediated by the dual oxidase
(DUOX), JAK-STAT, and immune deficiency (imd) pathways [147, 162, 163]
instead of Toll. Notably, the epithelial immune responses are conserved in the fruit
fly and mammals, and the similarity in the intestinal epithelium anatomy and
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regeneration time between flies and mammals [164] supports the utility of
Drosophila for examining immunological mechanisms of mucosal infection.

Some Drosophila strains have been employed to study cellular and humoral
immunity. With regard to cellular immunity, a phagocytosis-defective eater-null
Drosophila strain was used to reveal that phagocytosis is indispensable for fly
survival against zygomycosis [165]. A Drosophila S2 phagocytic cell line was used
to describe a macroglobulin complement-related protein; the protein bound spe-
cifically on the surface of C. albicans and enhanced phagocytosis. Also by using the
S2 phagocytic cell line, some autophagy host factors (e.g., Atg2, Atg5, Atg9,
Pi3K59F) were identified; the autophagy molecules were induced after exposure to
C. neoformans in the fly and were also required for cryptococcal intracellular traf-
ficking and replication within murine phagocytes [166]. With regard to humoral
immunity, the Toll signaling cascade in D. melanogaster is crucial for host defense
against systemic infection via induction of antifungal peptide [167, 168], the role of
which is similar to the Toll/IL-1b receptor signaling in mammals.

Of note, comparative analyses of immune responses using more than one insect
host and more than one inoculation assay could be enlightening for dissecting
pathogen- and tissue-specific innate immune mechanisms [169], because insects
have differential susceptibility to some infections (e.g., wildtype Galleria is sus-
ceptible to Candida or Cryptococcus injection whereas wildtype Drosophila is
not) [20, 98, 125, 159], and because an insect may exhibit differential suscepti-
bility to a specific pathogen depending on the route of inoculation (e.g., Crypto-
coccus ingestion but not injection kills wildtype Drosophila [98], and Candida
injection but not ingestion kills adult Toll-deficient flies [125]).

2.3 Other Insect Infection Models

In addition to D. melanogaster and G. mellonella, the red flour beetle Tribolium
castaneum (Coleoptera, Tenebrionidae) has previously been used to investigate
host–pathogen interactions with a wide array of pathogenic bacteria, sporozoa,
cestoda, nematoda, mites, and hymenopterous parasites [170]. The Tribolium gen-
ome has been sequenced by the Human Genome Sequencing Center, Baylor College
of Medicine, USA (Tribolium Genome Sequencing Consortium 2008). Similar to
D. melanogaster, Tribolium is also amenable to systemic RNAi-mediated gene
silencing and other genetic tools for functional gene analyses [171–177]. Moreover,
the soil-living amoebas Acanthamoeba castellanii and Dictyostelium discoideum,
the lepidopteran insect silkworm Bombyx mori, the mosquito Culex quinquefasci-
atus, and the German cockroach Blattella germanica have attracted interest due to
their potential as good model systems for the screening of virulence factors of
pathogenic microbes (Table 1).
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3 Use of Insects for Evaluating New Antimicrobial Agents

Host-based antimicrobial drug discovery is important because efficacy of potential
antimicrobial agents might be altered by in vivo factors such as pH, enzymatic
degradation, or binding to molecular components within the host [19, 212].
Moreover, some compounds without in vitro activity may be antimicrobially
effective because of their immune regulating role or the production of effective
metabolites in vivo. With regard to the in vivo studies, animal infection models not
only provide data on effectiveness of antimicrobial agents in vivo and their tox-
icity, but also enable dose and medication schedule recommendations for use in
the first human dose. Using insect models for initial toxicity and efficacy screening
is financially and ethically more acceptable in the early stages of antimicrobial
discovery and development [19]. As a consequence, interest in using insect models
to evaluate compounds before testing in mammalian species has increased [213].

3.1 Galleria mellonella Infection Model for Evaluating New
Antimicrobial Agents

Infection of G. mellonella is amenable to antimicrobial treatment [19, 98, 117].
This makes the G. mellonella model highly suitable for evaluating the efficacy and
toxicity of potential antimicrobial agents in vivo prior to testing in mammalian
species.

A key benefit of using G. mellonella larvae to assess antimicrobial efficacy is
that, as with administration of the infectious inoculum, an accurate dose of anti-
microbial can be delivered directly into the hemocoel by injection [19, 22]. This is
not always possible in other invertebrate models [23]. Moreover, this model
simulates the intravenous systemic administration of antimicrobial agents in a
relative dose and schedule that would be used in patients. The G. mellonella model
is useful for testing different treatment regimens. Furthermore, the experimental
course of therapy can be varied according to the dose of antimicrobial agent
administered, the number of doses, and the timing of the first and successive
administrations [19].

The G. mellonella model has been used to study the efficacy of many antimi-
crobial agents against a multitude of bacterial and fungal pathogens (Table 2). For
example, streptomycin, ciprofloxacin, and levofloxacin were evaluated for treating
Francisella tularensis live vaccine strain (LVS) [117]; gentamicin, meropenem,
tetracycline, and cefotaxime were evaluated for treating A. baumannii infection
[24]; amphotericin B and other antifungal agents were evaluated for treating
C. neoformans infection in this G. mellonella model [98].

Note that the antimicrobial drug susceptibility profiles of pathogens in
G. mellonella larvae are largely the same as those in vitro studies [5, 15, 41–44].
Peleg et al. infected G. mellonella larvae with a lethal dose of a reference strain of
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A. baumannii, which was susceptible to gentamicin and meropenem but resistant
to tetracycline and cefotaxime in vitro [24]. Survival was significantly higher in
the groups receiving gentamicin and meropenem (p \ 0.001) compared to the
infected untreated control group. Treatment with tetracycline and cefotaxime had
no effect on survival. Also, Hornsey et al. demonstrated the same phenomenon
using a strain of A. baumannii susceptible to gentamicin and colistin but resistant
to teicoplanin [35]. Another notable example is focused on the treatment of
S. aureus infection using this G. mellonella model. When the larvae were infected
with a penicillin-susceptible strain, larvae could be protected significantly by
penicillin; when the larvae were infected with a penicillin-resistant strain, larvae
could not be protected by penicillin. Of note, many studies have showed that
effective weight-based doses of antibiotics used in G. mellonella larvae are similar
to recommended doses used in human subjects [24, 35, 98, 117, 214]. Dose data
from this model are likely to provide a more precise estimate of doses in sub-
sequent mammalian studies than in vitro data based on minimum inhibitory
concentration values [19].

Nowadays combination antibiotic therapy is widely used to prevent the emer-
gence of resistant strains of pathogens [215]. The G. mellonella model is well placed
to test the efficacy of combination antimicrobial therapy and drug interactions
in vitro (Table 3). Mylonakis et al. demonstrated the benefits of combination anti-
fungal therapy in larvae infected with C. neoformans [98]. Larvae treated with
combination amphotericin B (1.5 mg/kg) and flucytosine (20 mg/kg) had signifi-
cantly higher survival rates than those treated with amphotericin B alone. Vu and
Gelli showed significantly higher survival in C. neoformans-infected larvae treated
with combination flucytosine (53 mg/kg) and astemizole (53 mg/kg), an antihista-
mine, or an astemizole homologue compared to monotherapy with these agents
alone [166, 216]. Similarly, Cowen et al. demonstrated higher survival in treating
C. albicans and A. fumigatus infections in this model using a combination of Hsp90
inhibitors with fluconazole or caspofungin, respectively, than with monotherapy
with these agents [217]. These data imply that insects are promising hosts for
assessing the efficacy of innovative therapeutic strategies such as a combination of
antifungal agents with immune- or virulence-modulating drugs.

Although larval survival is the most common used measurable endpoint to
assess antimicrobial efficacy, the microbial burden in larvae can also be used to
quantify antimicrobial efficacy [39, 50, 65, 68, 96, 98, 117]. The microbial burden
may be a better indicator of the more subtle effects of antimicrobial agents where
larval survival is less indicative of antimicrobial efficacy [19]. It can also be used
to confirm the complete treatment of infection after eradication of pathogens or to
study the dynamics of infection during treatment [19, 39, 65]. There is generally an
inverse relationship between the microbial burden and larval survival, although
this is not always the case. The treatment of infection and efficacy of antimicrobial
agents can also be assessed using hemocyte counts in hemolymph or changes in
larval gene expression [93, 118, 119, 218]. Hemocyte counts should be interpreted
with caution because counts may be lower in more virulent infections or remain
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unchanged if the interaction is nonpathogenic [118]. This depends upon the
pathogen under investigation.

Also, the G. mellonella model provides a unique opportunity to identify toxic
effects of antimicrobial agents during an infection, which is not possible with
in vitro testing [19]. In standard in vivo testing, the median lethal dose (LD50) is
established by administering various doses to otherwise healthy animals. It is
possible, however, that toxicity of some antimicrobial agents may only become
apparent once administered to sick animals. As reviewed by Desalermos et al.,
certain doses of antimicrobial agents that were nontoxic in standard in vivo testing
in healthy animals can cause greater or faster mortality in infected animals
compared to a control group of infected animals administered carrier solvent only
[219]. The G. mellonella model is ideal for this type of study, which can only be
achieved using an in vivo infection model. Prescreening the promising antimi-
crobial agents using the G. mellonella model before progressing to the mammals
will save time, money, and needless experimentation in mammals [19].

3.2 Drosophila melanogaster Infection Model for Evaluating
New Antimicrobial Agents

The D. melanogaster infection model is not often used to evaluate antimicrobial
agents (Table 2). Some studies have used the D. melanogaster infection model to
study the efficacy of some licensed antifungal agents and shown remarkable
correlation between in vitro susceptibility testing results and in vivo drug efficacy
in both insects and mammals [125, 130]. Notably, the synergy between vorico-
nazole and terbinafine against A. fumigatus was demonstrated in this model [130],
which is consistent with the synergistic effect in vitro and in mammals, thus further
providing evidence that the D. melanogaster model may be used as a comple-
mentary assay to evaluate antimicrobial agents.

Of note, pharmacology studies in insects also have limitations despite their
potential. Although both Drosophila and Galleria can be used for testing orally
absorbable compounds, the exact ingested drug dose per insect is difficult to
quantify precisely. Testing of parenteral antimicrobial compounds also has con-
straints as repeated drug injections lead to injury, especially in Drosophila.

3.3 Other Insect Infection Models for Evaluating New
Antimicrobial Agents

The silkworm B. mori infection model is useful for evaluating the efficacy,
pharmacokinetics, and toxicity of antifungal drugs, similar to the G. mellonella
model [210]. Antifungal drugs, amphotericin B, flucytosine, fluconazole, and

12 Y. Wang et al.



ketoconazole showed therapeutic effects in silkworms infected with C. neoformans
[210]. However, amphotericin B was not therapeutically effective when injected
into the B. mori intestine, comparable to the fact that amphotericin B is not
absorbed by the intestine in mammals [210].

Despite the potential of insect models, pharmacokinetic analyses are prob-
lematic in insects and it is technically challenging to measure drug levels inside the
insects. It is important to note that it is difficult to rely on insect models for critical
pharmacological parameters such as drug absorption, distribution, metabolism,
excretion, and drug–drug interactions, and therefore testing is necessary in
mammalian hosts that are phylogenetically closer to humans.

4 Conclusion

Drosophila melanogaster and G. mellonella have emerged at the forefront of host–
fungal interaction research and show promise for evaluating antimicrobial agents.
Because no single nonvertebrate organism fully reproduces all aspects of mam-
malian infection, comparative research in these hosts is required and should be
complemented by studies in mammalian models of infection.
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