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Applying Mechanistic Models
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Abstract The available knowledge on the mechanisms of a bioprocess system is
central to process analytical technology. In this respect, mechanistic modeling has
gained renewed attention, since a mechanistic model can provide an excellent
summary of available process knowledge. Such a model therefore incorporates
process-relevant input (critical process variables)—output (product concentration
and product quality attributes) relations. The model therefore has great value in
planning experiments, or in determining which critical process variables need to be
monitored and controlled tightly. Mechanistic models should be combined with
proper model analysis tools, such as uncertainty and sensitivity analysis. When
assuming distributed inputs, the resulting uncertainty in the model outputs can be
decomposed using sensitivity analysis to determine which input parameters are
responsible for the major part of the output uncertainty. Such information can be
used as guidance for experimental work; i.e., only parameters with a significant
influence on model outputs need to be determined experimentally. The use of
mechanistic models and model analysis tools is demonstrated in this chapter. As a
practical case study, experimental data from Saccharomyces cerevisiae fermen-
tations are used. The data are described with the well-known model of Sonnleitner
and Kippeli (Biotechnol Bioeng 28:927-937, 1986) and the model is analyzed
further. The methods used are generic, and can be transferred easily to other, more
complex case studies as well.
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Abbreviations

API Active pharmaceutical ingredient
EMEA European Medicines Agency
FDA Food and Drug Administration
MW Molecular weight

NBE New biological entity

NCE New chemical entity

PAT Process analytical technology
PSE Process systems engineering
QbD Quality by design

RTR Real-time release

OD Optical density

DW (Biomass) Dry weight
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1 Introduction

The pharmaceutical industry is changing rapidly nowadays. One important change,
compared with the situation 10 or 20 years ago, is undoubtedly the increased focus
on development of more efficient production processes. The introduction of pro-
cess analytical technology (PAT) by the Food and Drug Administration [2] forms
an important milestone here, since its publication ended a long period of regulatory
uncertainty. The PAT guidance indeed makes it clear that regulatory bodies are in
favor of more efficient production methods, as long as a safe product can be
guaranteed. This opens up new and exciting possibilities for innovation in phar-
maceutical production processes.

One of the central concepts in PAT is the design space, which is defined as “the
multi-dimensional combination of critical input variables and critical process



Applying Mechanistic Models 139

parameters that lead to the right critical quality attributes” [2]. The term “critical”
should be interpreted as “having a significant influence on final product quality.”
Changing the process within the design space is therefore not considered as a
change. As a consequence, no regulatory postapproval of the process is required
for a change within the design space. Almost naturally, this opens up the possi-
bility of increased use of optimization methods for pharmaceutical processes in the
future, methods that have been used for a long time in, for example, the chemical
industry [3].

Small-molecule (MW < 1,000) drug substances (APIs, NCEs) are typically
produced via organic synthesis. In such a production system, the available process
knowledge is often relatively large. Process systems engineering (PSE) methods
and tools—especially those relying on mechanistic models to represent available
process knowledge—are therefore increasingly applied in the frame of pharma-
ceutical process development and innovation of small-molecule drugs [4], with the
aim of shortening time to market while yielding an efficient production process. In
essence, mechanistic models rely on deterministic principles to represent available
process knowledge on the basis of mass, energy, and momentum balances; given
initial conditions, future system behavior can be predicted.

It is, however, not the intention here to provide a detailed review on mecha-
nistic models for biobased production processes of pharmaceuticals. There are
excellent textbooks and review articles on the general principles of mechanistic
modeling of fermentation processes [5—8], biocatalysis [9, 10], and mammalian
cell culture [11].

Biotechnology research has resulted in a new class of biomolecular drugs—
typically larger molecules, also called biologics or NBEs—which includes
monoclonal antibodies, cytokines, tissue growth factors, and therapeutic proteins.
The production of biomolecular drugs is usually complicated and extremely
expensive. The level of process understanding is therefore in many cases lower,
compared with small-molecule drug substances, and as a consequence, PSE
methods and tools relying on mechanistic models are usually not applied to the
same extent in production of biomolecular drugs, despite the fact that quite a
number of articles have been published throughout the years on the development
of mechanistic models for such processes.

This chapter focuses on the potential use of mechanistic models within bio-
based production of drug products, as well as the use of good modeling practice
(GMoP) when using such mechanistic models [12]. A case study with the yeast
model by Sonnleitner and Képpeli [1] is used to illustrate how a mechanistic
model can be formulated in a well-organized and easy-to-interpret matrix notation.
This model is then analyzed using uncertainty and sensitivity analysis, an analysis
that serves as a starting point for a discussion on the potential application of such
methods. Strategies for mechanistic model-building are highlighted in the final
discussion.
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2 Case Study: Aerobic Cultivation of Budding Yeast

Saccharomyces cerevisiae is one of the most relevant and intensively studied
microorganisms in biotechnology and bioprocess engineering; For example, out of
151 recombinant biopharmaceuticals that had been approved by the FDA and
EMEA in January 2009, 28 (or 18.5 %) were produced in S. cerevisiae [13].
Sonnleitner and Kippeli [1] proposed a widely accepted mechanistic model
describing the aerobic growth of budding yeast, and this model is used here to
exemplify how a mechanistic model of a bioprocess can be applied to create more
in-depth process knowledge. Optimally, the process knowledge should be trans-
lated into a mechanistic model, and the model should be updated whenever
additional details of the process are unraveled. This model should capture the key
phenomena taking place in the process, and be further employed in the develop-
ment of process control strategies.

However, when developing and using mechanistic models, reliability of the
model (hence the credibility of model-based applications) is an important issue,
which needs to be assessed using appropriate methods and tools including iden-
tifiability, sensitivity, and uncertainty analysis techniques. Unfortunately, literature
reporting on mechanistic model developments often lacks the results of such
analysis—confidence intervals on estimated parameters, for example, are only
sporadically reported—and as a consequence it is not possible to conclude about
the quality of the model and its predictions. Seen from a PAT perspective, it is of
utmost importance to document that one has constructed a reliable mechanistic
model; For example, in case this model would be used later for simulations to help
in determining where to put the borders of the design space, it would be difficult to
defend the resulting design space—for example, towards the FDA—in case the
reliability of the model cannot be documented sufficiently.

One of the challenges in modeling is the identifiability problem, defined as
“given a set of data, how well can the unknown model parameters be estimated,
hence identified.” Typically, the number of parameters in a mechanistic model is
relatively high, and therefore it is often not possible to uniquely estimate all the
parameters by fitting the model predictions to experimental measurements. An
indication of the parameters that can be estimated based on available data can be
obtained by performing an identifiability analysis prior to the parameter
estimation.

Furthermore, the model predictions will depend on the values of all parameters.
Some of the parameters will, however, have a stronger influence than others. An
uncertainty and sensitivity analysis can be performed to determine which are the
parameters whose variability contributes most to the variance of the different
model outputs.

In this case study, a systematic model analysis is performed following the
workflow presented in Fig. 1. This workflow is rather generic, and could easily be
transferred to another case study with a similar model.
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Identifiable Monte Carlo simulation results

parameter subset for a parameter sample space

Model Identifiability Parameter Uncertainty Global

formulation Analysis Estimation Analysis Sensitivity Analysis
Model parameters Estimated parameter Qutput variance
subset and respective apportioned to the different
confidence intervals inputs / parameters of the
model

Fig. 1 Schematic workflow for the model analysis
2.1 Model Formulation

Under aerobic conditions, budding yeast may exclusively oxidize glucose (respi-
ratory metabolism), or simultaneously oxidize and reduce glucose (fermentative
metabolism) if the respiratory capacity of the cells is exceeded. The described
overflow metabolism is commonly referred to as the Crabtree effect. Cells pref-
erably oxidize glucose, as the energetic yield is more favorable for respiration than
fermentation. In case the respiratory capacity is reached, the excess of glucose
(i.e., overflow of glucose) is reduced using fermentative pathways that result in the
production of ethanol. Moreover, in a second growth phase, yeast will then con-
sume the produced ethanol, but only after depletion of glucose, as the latter
inhibits the consumption of any other carbon source. Also acetate and glycerol are
formed and consumed, although the corresponding concentrations are typically
much lower than for ethanol.

The Sonnleitner and Képpeli [1] model describes the glucose-limited growth of
Saccharomyces cerevisiae. This model is able to account for the overflow
metabolism, and to predict the concentrations of biomass, glucose, ethanol, and
oxygen throughout an aerobic cultivation in a stirred tank reactor. Acetate and
glycerol are not included for simplification purposes. The model relies on three
stoichiometric reactions describing the growth of biomass on glucose by respira-
tion (Eq. 1) and by fermentation (Eq. 2), as well as the growth of biomass on
ethanol by respiration (Eq. 3). The stoichiometry of the three different pathways
can be summarized in a matrix form (Table 1) describing how the consumption of
glucose, ethanol, and oxygen are correlated with the production of biomass and
ethanol, i.e., the yields of the reactions. The mol-based stoichiometric coefficients
can be converted into the corresponding mass-based yields, e.g., Yrad = b x
MW (biomass)/MW (glucose).

CeH206 + aO, + b 0.15 [NH3} — bC1H| 790057No.15 + cCO, + dH,0 (1)

CsH 1206 + g 0.15 [NH3] — gC1H, 790057Ng.1s + hCO, + iH,0 + jC,HcO
(2)
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Table 1 Stoichiometric matrix describing aerobic growth of budding yeast

Component i — C, C, Cs Cy
Glucose Ethanol Oxygen Biomass
Symbols G E O X
Units molI™" g1™" moll™ g1™" moll™ gl™" Cmoll™" gl
Process j |
Biomass growth by glucose —1 -1 0 0 a Yog b xéid
oxidation (Eq. 1)
Biomass growth by glucose —1 -1 Yec O 0 g Red
reduction (Eq. 2)
Biomass growth by ethanol 0 0 —1 -1 % Yor [ YxE

oxidation (Eq. 3)

C6H6O + k02 +1 015[NH3] — lC1H1_7900‘57N0_15 + mCOz + I’leO (3)

For each pathway, a mass balance can be established for each atomic element
(e.g. C or N). To solve such elemental balances for carbon, hydrogen, and oxygen,
one stoichiometric coefficient for each pathway has to be assumed. Since the
biomass yield coefficients are often easily estimated from experimental data, they
are typically the ones that are assumed. Therefore, only the coefficients b, g and /,
or the corresponding mass yields Yiud yRed and Yyg will be considered as model
parameters; i.e., the other stoichiometric coefficients are fixed based on Eqgs. 1-3.

Furthermore, a process matrix can be used to describe the rates of consumption
and production of each of the model variables (glucose, ethanol, oxygen, and
biomass), as well as the fluxes in each pathway. Details on the use of this matrix
notation are provided by Sin and colleagues [14]. The interested reader can find
additional details on elemental mass and energy balances applied to fermentation
processes elsewhere [15, 16].

In the case of the model used as an example here, the total glucose consumption
and ethanol consumption rates (when considered individually) are mathematically
described using Monod-type kinetics (Egs. 4-6). The maximum uptake rates for
glucose, ethanol, and oxygen (7; max) are model parameters, and they are character-
istic of the S. cerevisiae strain being used. The same goes for the substrate saturation
constants: Kg, Kg, and K. The maximum oxygen uptake rate (1o max) corresponds to
the respiratory capacity, as it reflects the maximum rate for oxidation of glucose or
ethanol when any of these carbon sources is in excess. The ethanol uptake rate
includes a term accounting for glucose repression; i.e., ethanol consumption is only
observed for low concentrations of glucose. The strength of inhibition (i.e., how low
the glucose concentration should be before ethanol consumption is allowed) is
defined by the inhibition constant K;. The specific growth rate of biomass is defined as
the sum of the growth resulting from each pathway, and is estimated based on the
yield of biomass on the substrate and the corresponding uptake rate (Eq. 7).

Total G Oxid Red ( 4)

T, =rIg — =1, +r
G ,maxG+KG G G
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E K; (5)
Ig =T _—
E E,maxE+I{E G+Ki
0]
o =TI —_— 6
6] O.maxo +KO ( )
b = YR 1954 Ve r 4 g x 12 )

The rate of oxidation and the rate of reduction of glucose are defined based on
the maximum oxygen uptake rate: if the oxygen demand that is stoichiometrically
required for oxidation of the total glucose flux (Yog x rg ™) exceeds the max-
imum oxygen uptake rate (romax), the difference between the two fluxes corre-
sponds to the overflow reductive flux. With regard to the oxidation of ethanol, the
observed rate of ethanol oxidation depends on the ethanol availability (Eq. 5) and
it is further limited by the respiratory capacity: not only the maximum capacity of
the cell, but also the capacity remaining after considering metabolism of glucose
(Table 2).

In addition to the reactions taking place in the cells, oxygen is continuously
supplied to the bioreactor. This supply is described based on the mass transfer
coefficient (kpa) and the difference between the dissolved oxygen concentration
(O) and the saturation concentration of oxygen in water (O*) as a driving force.
kra is dependent on the aeration intensity and the mixing conditions in a given
fermentor. It is also dependent on the biomass concentration, although this
dependence is often disregarded. The rates for each component can be obtained
from the process model matrix (Table 2) by multiplying the transpose of the
stoichiometric matrix (Z’) by the process rate vector (p): ru1 = Zlpun X Pyt
where m corresponds to the number of components (or model variables) and n is
the number of processes. In Table 3, a nomenclature list of vectors and matrices is
presented.

The model matrix in Table 2 provides a compact overview of the model
equations. In the example here, it contains information about the biological
reactions and the transfer of oxygen from the gas to the liquid phase. Of course,
depending on the purpose of the model, the model matrix could be extended with
additional equations, for instance, aiming at a more detailed description of the
biological reactions, e.g., by including additional state variables, or aiming at the
description of the mass transfer of additional components, e.g., CO, stripping from
the fermentation broth. Sin and colleagues [14] provided an example of the
extension of the model matrix with chemical processes for the kinetic description
of mixed weak acid—base systems. The latter is important in case pH prediction is
part of the purpose of the model. In the work of Sin and colleagues [14], the yield
coefficients are all part of the stoichiometric matrix. In our case here, an alternative
rate vector is presented, where all rates are normalized with regard to glucose.
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Table 3 Nomenclature list

of matrices and vectors used Unit Description
in the model formulation and Z Stoichiometric matrix
model analysis p Process rate vector
0 Vector of model parameters
g Scaled sensitivity matrix

Sj Column vector of the sensitivity matrix:
corresponding to sensitivity

of the various model outputs to the parameter j

S Scaled sensitivity of the output i to the parameter j
0; Importance index of parameter j
sc Scaling factors

2.2 Parameter ldentifiability Analysis

The model described in the previous sections has four variables—glucose (G),
ethanol (E), oxygen (O), and biomass (X)—and 11 parameters. In addition, the
oxygen saturation concentration in water (at growth temperature) is necessary for
solving the model. A list of the parameters and their descriptions is provided in
Table 4.

The maximum specific growth rate on ethanol (i ., ) is defined as the product
of the yield of biomass on ethanol (Yxg) and the maximum specific ethanol uptake
rate (rg%u) For consistency between parameters, the ethanol specific uptake rate
is used as a parameter in this example.

The number of parameters is considerably larger than the number of model
variables (or outputs), which is typical for this type of model. It is therefore
questionable whether all parameters can be estimated based on experimental data,
even if the four model variables were to be measured simultaneously. This is the
subject of identifiability analysis, which seeks to identify which of the parameters

Table 4 Model parameters, corresponding units, and numerical values [12]

Parameter Value Units
romax Maximal specific glucose uptake rate 35 gGg ' Xh!
romax Maximal specific oxygen uptake rate 8 x 107> mol O g7 ! X h™!
YR&d  Yield of biomass on glucose (oxidation) 0.49 gXg'G
yid  Yield of biomass on glucose (reduction) 0.05 gXg'G
Yxg  Yield of biomass on ethanol 0.72 gXg'E
KEmax Maximal specific growth rate on ethanol 0.17 h!
K Saturation parameter for glucose uptake 0.5 gl™!
Ko Saturation parameter for oxygen uptake 1 x107* g17!
Kg Saturation parameter for ethanol uptake 0.1 gl™!
K; Inhibition parameter: free glucose inhibits ethanol uptake 0.1 g 1!

kra Mass transfer coefficient 1,000 h!
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can be estimated with high degree of confidence based on the available experi-
mental measurements.

The main purpose of such an identifiability analysis is in fact to increase the
reliability of parameter estimation efforts from a given set of data [17]. One
method available to perform such an analysis is the two-step procedure based on
sensitivity and collinearity index analysis proposed by Brun and colleagues [18].
Accordingly, the method calculates two identifiability measures: (1) the parameter
importance index (J) that reflects the sensitivity of the model outputs to single
parameters, and (2) the collinearity index (y) which reflects the degree of near-
linear dependence of the sensitivity functions of parameter subsets. A parameter
subset (a combination of model parameters) is said to be identifiable if (1) the data
are sufficiently sensitive to the parameter subset (above a cutoff value), and (2) the
collinearity index is sufficiently low (below a cutoff value).

2.2.1 Local Sensitivity Analysis: Parameter Importance Indices ¢

The local importance of an individual parameter to a model output for small
changes (A@) in the parameter values () at a specific location (6y) can be mea-
sured by the estimation of a dimension-free scaled sensitivity matrix S* = {s;},
where the index i refers to a specific model variable (output) and j denotes the
model parameter. For further details, the reader is referred to the original paper of
Brun and colleagues [18]. The mean squared norm of column s;, denoted by J;, is a
measure of the importance of parameter 0; (see Eqs 8-10). A large norm indicates
that the parameter is identifiable with the available data if all other parameters are
fixed. A parameter importance ranking can be obtained by ranking the parameters
according to their ¢ indices. The lower the value of J, the lower the importance of
that parameter.

For this first analysis, the parameter values (Table 4) provided in the original
paper [1] are used as nominal values at which sensitivity functions are calculated.
The scaled sensitivity matrix S and the resulting rank of ¢ importance indices were
calculated using Eqs. 8-10, and are graphically compared in Fig. 2. It is note-
worthy that the J indices are very sensitive to: (1) the choice of variation range
defined for each parameter (A@), (2) scaling factors (sc) used to calculate the
sensitivity matrix, and (3) the original set of parameters (), naturally as this is a
local analysis. In this example the sc were defined as the mean of the experimental
observations for each variable.

o= onil0)
P00 |y,

(8)

A0,
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Fig. 2 Parameter importance indices (0) for the four model variables: glucose, ethanol, dissolved
oxygen and biomass

The results of the parameter significance ranking indicate that the yield coef-
ficient YR is the parameter that most affects all four model outputs. Variations in
the maximum uptake rates will also have a significant effect on the model outputs.
As may be expected, the glucose maximum uptake rate is most significant with
regard to the model prediction for glucose, whereas the maximum uptake rate of
ethanol is most important for the prediction of ethanol and dissolved oxygen.
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The prediction of biomass is also greatly affected by the yield of biomass on
ethanol, in addition to the yield on glucose (oxidative metabolism). The impact of
the saturation constants is rather limited for any of the model variables.

2.2.2 Identifiability of Parameter Subsets: Collinearity Index yx

In addition to understanding the importance of individual parameters to the model
output, it is necessary to take the joint influence of all parameters into account as
well ([0, ..., 0,-,]). If columns s; are nearly linearly dependent, the change of a
parameter ¢; can be compensated by a change in the other parameter values. This
means that the parameters [0, ..., 0;] are not uniquely identifiable.

The collinearity index 7yx assesses the degree of near-linear dependence
between a subset of K (2 < K < J) parameters, i.e., columns of the scaled sen-
sitivity matrix.’

A high value of a collinearity index indicates that the parameter set is poorly
identifiable. In practice, Yk is calculated for all subsets of K parameters out of the
11 parameters and is plotted in Fig. 3. Also the subset size for each case is shown.
In this case, a subset was considered identifiable if the corresponding collinearity
index was smaller than 5. This threshold has to be defined a priori. Brun and
colleagues [18] suggested as a rule of thumb that this threshold should lie in the
range 5-20, where the lowest collinearity index corresponds to the strictest cri-
terion. In practice, this decision on the threshold value is dependent on prior
experience of the model user, and thus an iterative process.

All the model variables were considered in this analysis, implying as well that
all could be measured experimentally. As illustrated in Fig. 3, a maximum of eight
parameters can be identified, and the collinearity index increases with the number
of parameters. The maximum collinearity index observed for combinations of
eight parameters was 22.34, while the best identifiable sets of eight parameters
correspond to a yg value of approximately 2.65. These parameter subsets are listed
in Table 5.

It is indeed known that a change in the maximum uptake rate of glucose can be
compensated with a change of biomass yield coefficients. Also, based on the model
structure, it is clear that changes in yields for the oxidative and reductive con-
sumptions of glucose can compensate each other. It is therefore not surprising that
the parameter subsets that have higher collinearity index include these parameters.
When comparing the subset of six parameters with the lowest collinearity index
(last row in Table 5) with the “best” subset of eight parameters (shaded row in
Table 5), the two parameters that have been removed in the subset of six
parameters are the maximum uptake rates of ethanol and oxygen.

' Further discussion and equations are provided in the paper by Brun et al. (2002).
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Fig. 3 Collinearity index and size corresponding to parameter subsets of increasing size. The top
plot refers to all the parameter subsets evaluated in the analysis, whereas the bottom figure refers
exclusively to the subsets that complied with the a priori defined collinearity threshold

The collinearity between the uptake rates and the yield coefficients explains
why, even though they are the parameters with greatest importance for the model
outputs (Fig. 2), they are not all included in the identifiable parameter subsets.

2.3 Parameter Estimation

Two datasets corresponding to two replicate batch fermentations of S. cerevisiae
were available. For further details on the experimental data collection methods the
reader is referred to the work of Carlquist et al. [19]. The dynamic profiles of
glucose, ethanol, and biomass (as optical density, OD) were available for the two
datasets, while oxygen data were only available for one of them. The OD mea-
surements were converted into biomass dry weight (DW) values using a previously
determined linear correlation (DW = 0.1815 x OD).

The parameters in the “best” identifiable subset were estimated by minimization
of the weighted least-square errors. The weights for each variable i were defined by

wi =1 / (sc,-)z, and the scaled factors (also used in Eq. 9) were defined as the mean of

the experimental observations for each given variable. The estimation was done
simultaneously for the two datasets. The new estimates of the identifiable parameters
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Table 5 Identifiable parameter subsets with maximum number of parameters and corresponding
collinearity index

Parameter subset Collinearity  Identifiable
index parameter

Set

Tema  TEmax  Youd YRS Yxg K  Kg  ka 2234 No

¥'G,max Y0, max VE,max Y)?éid y)lzéd Yxe Kg kra 22.10 No

¥'G,max VE,max Y)(()éid Y}%&d Yxe Kg K; kra 22.10 No

¥'G,max Y0, max TE, max Yxg Kg Kk K; kra 2.65 Yes

TGmax  TEmax Yo Yxg Ko K K kra 2.75 Yes

TGmax  TEmax  YXE Kg Ko Ke K kra 2.75 Yes

FGmax  TEmax  YREd  Yxg Ko Ke Ki  ka 285 Yes

rGmax  YXE Kg Kg K; kra - - 1.75 Yes

Table 6 Estimated values for the identifiable subset of parameters

Parameter Initial guess Estimated value Units

G.max 3.5 2.9 gGg 'Xh!
FO.max 8 x 1072 55 x 1073 mol O g~' X h™!
T'E,max 0.24 0.32 gE g7| X h™!
Yxe 0.72 0.47 gXg'E

Kg 0.5 0.17 gG17!

Kg 0.1 0.56 gE1™!

K; 0.1 0.31 gG1!

kea 1,000 930 h!

are presented in Table 6. In Fig. 4, the model predictions obtained with the estimated
set of parameters are compared with the experimental data.

Generally, the model predictions are in good agreement with the experimental
data. An overprediction of the biomass concentration and a slight underestimation
of the ethanol concentration are however observed. The oxygen profile describes
the drop of the dissolved oxygen concentration during the growth, and a steep
increase upon the depletion of ethanol and the resulting growth arrest. The
dynamics of oxygen described by the model assumes a constant mass transfer
coefficient (kpa) and equilibrium between the gas and liquid phases. It is worth
mentioning that the formation of other metabolites (i.e., glycerol and acetate) that
are not considered in the model may explain the discrepancies to some degree. In
fact, the overestimation of biomass which can be observed in Fig. 4 may be caused
by the fact that other carbon-containing metabolites have not been taken into
account.

When assessing the goodness of fit of the mechanistic model, it is important to
consider that the experimental measurements have an associated error as well.
Model predictions may not give a “perfect” fit at first sight, but they may well be
within the experimental error. While such error might be relatively low for the
measurement of glucose and ethanol by high-performance liquid chromatography
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Fig. 4 Comparison of model predictions versus experimental data collected for cultivation 1
(black line model prediction, black circles experimental data) and cultivation 2 (blue dashed line
model prediction, blue stars, experimental data)

(HPLC), it is significantly higher for dry weight measurements, which are less
reliable, especially for low biomass concentrations (too large sample volumes
would be required for increasing accuracy). Additionally, at the end of the fer-
mentation, the biomass dry weight may include a fraction of nonviable and/or
dormant cells.

2.3.1 Confidence Intervals for Estimated Parameters

The estimated parameter values as such only have limited value if they are not
presented in combination with a measure of the degree of confidence that one can
have in them. Therefore, the confidence intervals for each of the parameters are
defined based on the covariance matrix and Student #-probability distribution. The
covariance matrix is calculated using the residuals between model predictions and
the standard deviations of the experimental measurements (further details are
provided by Sin et al. [14]). An experimental error of 5 % was assumed for
glucose and ethanol measurement by high-performance liquid chromatography
(HPLC), as well as for the oxygen measurements using a gas analyzer for deter-
mining the composition of the exhaust gas, and a 20 % error for the determination
of the cell dry weight. The confidence intervals at (1 — «) confidence level were
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Table 7 Confidence intervals for the identifiable subset of parameters for 95 % confidence level

Parameter Estimated value Confidence interval Units

FG.max 29 +9.8 x 1072 (3.4 %) gGg 'Xh!
FOmax 55 % 1073 +6.3 x 1074 (11.6 %) mol O g~' X h™!
FE max 0.32 +0.24 (75.7 %) gEg' Xhn!
YxE 0.47 +3.1 x 1072 (6.6 %) gXg'E

Kg 0.17 +8.4 x 1072 (50.2 %) gG1!

Kg 0.56 +0.44 (78.9 %) gE1!

K; 0.31 +0.30 (97.5 %) gG1!

kra 930 +49 (5.2 %) h~!

calculated using Eq. 11, where COV is the covariance matrix of the parameter
estimators, #(N — M, o/2) is the t-distribution value corresponding to the o/2
percentile, N is the total number of experimental observations (45 samples for the
two cultivations), and M is the total number of parameters. The confidence
intervals for the estimated parameters are presented in Table 7.

01, =0+ \/diag(COV(H))-t(N—M,%). (11)

None of the confidence intervals include zero, giving a first indication that all
parameters are significant to a certain degree and the model does not seem to be
overparameterized. In the case of the inhibition constant Kj, the confidence interval
is rather large. This is most likely a consequence of the low sensitivity of model
outputs to this variable (Fig. 2). Furthermore, the confidence intervals of the
Monod half-saturation constants Kg and Kg, are quite large as well, which might be
related to the fact that their estimated values are rather low. The latter means that
the collected data do not contain that many data points which can be used during
the parameter estimation for extracting information on the exact values of Kg and
Kg Indeed, only the data corresponding to relatively low glucose and ethanol
concentrations can be used, since the specific rates will be relatively constant and
close to maximum for higher substrate concentrations.

It is furthermore also a good idea to analyze the values of the parameter
confidence intervals simultaneously with the correlation matrix (Table 8); For
example, the correlation matrix shows that rg .« is correlated with Kg and that
ro.max 18 correlated with Ko. Both correlations are inherent to the model structure;
i.e., correlation between the parameters related to the maximum specific growth
rate and the substrate affinity constant in Monod-like kinetics expressions are quite
common, and point towards a structural identifiability issue.

Note also that the significant correlations found between some of the model
parameters (Table 8) seem to conflict with the results of the collinearity index
analysis which was reported earlier (Fig. 3; Table 5). That is one of the reasons
also for the identifiability analysis to be an iterative process.
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Sampling with Correlation Control
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Fig. 5 Latin hypercube sampling for the model parameters, taking into account the correlation
between them

2.4 Uncertainty Analysis

Uncertainty analysis allows for understanding the variance of the model outputs as
a consequence of the variability in the input parameters. Such an analysis can be
performed using the Monte Carlo procedure, which consists of three steps:
(1) definition of the parameter space, (2) generation of samples of the parameter
space, i.e., combinations of parameters, and (3) simulation of the model using the
set of samples generated in the previous step. In this case study, a sample set of
1,000 combinations of parameter values was generated using the Latin hypercube
sampling procedure [20]. This sampling technique can be set up such that it takes
the correlations between parameters, i.e., information resulting from the parameter
estimation, into account (as explained by Sin et al. [12]). The correlation matrix for
all the parameters was estimated and is presented in Table 8. For each parameter,
minimum and maximum values have to be defined: for the estimated parameters
the limits of the 95 % confidence intervals were used, while a variability of 30 %
around the default values was assumed for the remaining parameters.

The correlation between two parameters can take values between —1 and 1.
A positive correlation indicates that an increase in the parameter value will result
in an increase in the value of the other parameter as well. On the contrary, a
negative value indicates an inverse proportionality. In Fig. 5, the sampling space is
illustrated by scatter plots of combinations of two parameters. A high correlation
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Fig. 6 Representation of uncertainty in the model predictions for glucose, ethanol, dissolved
oxygen, and biomass: Monte Carlo simulations (blue), mean, and the 10th and 90th percentile of
the predictions (black)

(in absolute value) will lead to an elliptical or linear cloud of sampling points, as,
for example, for Quid and YRE [corr(YR3, YRS = —0.98 in Table 8], as well as
TEmax and Kg, and ro max and Ko.

The number of samples and the assumed range of variability of each parameter
(i.e., the parameter space) is defined by the expert performing the analysis. The
higher the number of samples, the more effectively the parameter space will be
covered, at the expense of increased computational time. The range of the
parameter space should rely on previous knowledge of the process: (1) the initial
guess of the parameter numerical values can be obtained from the literature or
estimated in a first rough estimation where all parameters are included; (2) the
variability (range) for each parameter can be determined by the confidence
intervals, in case a parameter estimation has been done, or be defined based on
expert knowledge as discussed by Sin et al. [12].

The estimations for the four model variables (outputs) and the corresponding
mean and a prediction band defined by 10 and 90 % percentiles are presented in
Fig. 6. The narrow prediction bands (including 80 % of the model predictions) for
glucose reflect the robustness of the predictions for this model variable, while the
wide bands observed, for example, for oxygen show the need for a more accurate
estimate of the parameters in order to obtain a good model prediction.
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2.5 Sensitivity Analysis: Linear Regression
of Monte Carlo Simulations

Based on the Monte Carlo simulations, a global sensitivity analysis can be con-
ducted. The aim of the sensitivity analysis is to break down the output uncertainty
with respect to input (parameter) uncertainty. The linear regression method is a
rather simple yet powerful analysis that assumes a linear relation between the
parameter values and the model outputs. The sensitivity of the model outputs to the
individual parameters, for a given time point, is summarized by a ranking of
parameters according to the absolute value for the standardized regression coef-
ficient (SRC). In a dimensionless form, the linear regression is described by
Eq. 12, where syj is the scalar value for the kth output, 8 is the SRC of the jth
input parameter, 0;, for the kth model output, y,, and its magnitude relates to how
strongly the input parameter contributes to the output.

SYik — Iy O — ny;
AZZﬁ/kX#Jﬂik (12)

j=1 i

In the case of nonlinear dependence of the model variable on a parameter, this
method can still be used, although with caution. As a rule of thumb, if the model
coefficient of determination (RZ) is lower than 0.7, this analysis is not conclusive.
The SRC for each parameter has, by definition, a value between —1 and 1, where a
negative sign indicates that the output value will decrease when there is an
increase in the value of the parameter. Oppositely, a positive SRC indicates direct
proportionality between the parameter value and the model output. Sin et al. [12]
describe further details on how to perform the analysis.

In the model example, different growth phases are described, and therefore the
importance of the parameters is expected to change with time. Therefore, the
analysis was performed for a selection of time points up to 62 h.

The suitability of applying the linear regression method was in this case also
assessed for each time point and each output. The R? values are presented in Fig. 7
as a function of time.

While the regression method seems to be suitable for all time points in the case
of biomass, the same is not observed for glucose, ethanol, and oxygen.. With
regard to glucose, the model uncertainty is very small (narrow spread of the model
predictions plotted in Fig. 6). The depletion of glucose is estimated to occur at
time of approximately 22 h for all cases. The sensitivity analysis when the glucose
concentrations are virtually zero is not expected to be significant, and it is thus not
surprising that the R* value decreases abruptly at approximately the same time
point that glucose is depleted. Simultaneously, the uncertainty in ethanol con-
centration predictions increases substantially. This may explain the temporary
drop in the R? value for ethanol at this time point. A similar drop in R? is observed
for oxygen around the time that ethanol is depleted, and a sudden rise in the
dissolved oxygen concentration is observed. Upon ethanol depletion, the R* value
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Fig. 7 Regression correlation coefficient (R?) for each model output, indicating the goodness of
the linear regression used for estimating the sensitivity of each model output to various
parameters. For R? values lower than 0.7, the corresponding standardized regression coefficient
(SRC) may yield erroneous information

for ethanol falls under the threshold, similarly to what was observed for glucose at
its depletion.

In Fig. 8, an overview of the SRCs for each parameter and model output is
presented. Interpretation of parameter ranking and SRC should be made cau-
tiously. All model outputs seem to be sensitive to the yield coefficient of biomass
on oxidized glucose, even during the growth phase on ethanol (after glucose
depletion).

The ranking of each parameter according to the SRC for each model output is
illustrated in Fig. 9. When analyzing this ranking, it is possible to see the decrease
in sensitivity of the glucose prediction towards the maximum glucose uptake rate,
as well as the simultaneous increase in sensitivity towards the maximum oxygen
uptake rate, during the growth phase on glucose. This is in agreement with the fact
that the consumption of glucose is initially only limited by the maximum uptake
rate (excess of glucose in the media), and afterwards as the biomass concentration
increases and glucose concentration decreases, the observed uptake rate is no
longer maximal. Similar figures for the parameter ranking regarding ethanol,
oxygen and biomass can be drawn.

With regard to the model predictions for ethanol, this model output is most
sensitive to the maximum glucose uptake rate and biomass yield on glucose
(reduction pathway) during the first growth phase, and later on the maximum
ethanol uptake rate. This is in good agreement with the fact that the production of
ethanol is a result of the reduction of glucose, and its consumption only takes place



158

0.1

(=]

-0.1

-0.2

-0.3

SRC

-0.4

-0.5

-0.6

-0.7

-0.8

SRC

Time (h)

...‘..I...“..’“....‘l......j
19 20 21 2

R. Lencastre Fernandes et al.

25

30

Time (h)

4 i i i i i i i i i i i j
17 18 19 20 21 22 23 24 25 26 27 28
Time (h)
Biomass
1p A O
04 6 max
e
06
0.4
Q
[
@

25 30 35 40 45 50 55

Time (h)

Fig. 8 Standardized regression coefficients (SRC) for the four model outputs as a function of
time. Only the time points for which R* > 0.7 was observed are presented. Each color
corresponds to a model parameter



Applying Mechanistic Models 159

Glucose

. rG_max

. rO.rnax

2 'rE_max
Oxid
Yy
Red
= YxG
XE
-— Kg
—Ko
—Ke
Ki
a-ka

Rank
[+7]

17 18 19 20 21
Time (h)
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of 11 indicates that the parameter contributes the least to the variance of the model output

during the second growth phase following the depletion of glucose. A similar
pattern was observed with regard to the model predictions for oxygen.

To analyze the sensitivity of the outputs to the parameters in more detail, two
time points during the exponential growth phase on glucose (f = 17 h) and on
ethanol (¢t = 27 h) were selected. The SRC and corresponding rank position for
these time points are provided in Table 9a and b, respectively. As could be
expected, during the growth on glucose, the parameters that most influence the
prediction of glucose are the biomass yield parameters (for the two pathways) and
the maximum uptake rate. The two yield coefficients have, however, a different
effect on the glucose prediction: while an increase in the oxidative yield will lead
to a lower predicted concentration, an increase in the reductive yield seems to
imply an increase in the predicted concentration. This may reflect the fact that the
oxidative pathway is the most effective way of transforming glucose into biomass.

The maximum glucose uptake rate is also the most influential parameter for the
prediction of the ethanol concentration (produced by reduction of glucose), during
this first growth phase. The glucose saturation rate plays an important role,
however not as significant as the maximum uptake rate (rgmax: SRC = 0.74;
Kg: SRC = —0.48).

Obviously, the results of the global sensitivity analysis (SRC) should be
compared with the results of local sensitivity analysis (Fig. 2). It can be seen that
both methods rank the biomass yield on glucose (oxidation) as the most influential
parameter. For the ranking of the other parameters, there are quite some differ-
ences between the results obtained by the two methods.
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2.5.1 Morris Screening

As discussed by Sin et al. [11], an alternative to the linear regression method,
especially when low R* values are observed, is Morris screening. Similarly to the
linear regression method, a sampling-based approach is used. The method is based
on Morris sampling, which is an efficient sampling strategy for performing ran-
domized calculation of one-factor-at-a-time (OAT) sensitivity analysis. The
parameters are assigned uniform distributions with lower and upper bounds
defined by the confidence intervals for estimated parameters and by 30 % vari-
ability for the remaining ones (as done previously for the Latin hypercube sam-
pling). The number of repetitions (r) was set to 90, corresponding to a sampling
matrix with 1,080 [90 x (11 4+ 1)] different parameter combinations. The model
was simulated for all the parameter combinations, and the results are summarized
in Fig. 10.

The elementary effects (EE) were estimated as described by Sin et al. [12].
These EEs are described as random observations of a certain distribution function
F, and are defined by Eq. 13, where A is a predetermined perturbation factor of 0,
syu(01, 0z, 0;,..., 0p) is the scalar model output evaluated at input parameters
(01, 03, 0;,..., Op), whereas sy (01, 05, 0; + 4,..., 0y) is the scalar model output
corresponding to a A change in 0,.
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Fig. 10 Model simulation results using Morris sampling of parameter space: model simulations
for glucose, ethanol, dissolved oxygen, and biomass showing simulations (blue), mean, and the
10th and 90th percentile of the simulations (black) (not to be confused with uncertainty analysis)
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deviation of the distributions of elementary effects of the 11 parameters on the model outputs.
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EE) = —
* 00,
~syi(01,02,0;, + A, ..., 08r) — syi(01, 02,0, ..., Ox)
N A

The results obtained are compared with the mean and the standard deviation of
this distribution. Often, the EEs obtained for each parameter are plotted together
with two lines defined by Mean; &+ sem;, where Mean; is the mean effect for output
i and sem; is the standard error of the mean (sem; = std deviation;/+/r). The EEs
are scaled, and thus a comparison across parameters is possible.

Also this analysis has to be performed for a selected time point, or using a time-
series average. As the cultivation has distinct phases, several time points were
selected. The results for the growth phase on glucose ( = 17.2 h) and the growth
phase on ethanol (r = 27.2 h) are presented in Figs. 11 and 12, respectively.

Parameters that lie in the area in between the two curves (inside the wedge) are
said to have an insignificant effect on the output, while parameters outside the
wedge have a significant effect. Moreover, nonzero standard deviations indicate
nonlinear effects, implying that parameters with zero standard deviation and
nonzero mean have a linear effect on the outputs.

(13)
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During growth on glucose (Fig. 11) only a few parameters show a significant
effect on the model outputs. While YRa" seems to have a nonlinear effect on the
glucose prediction, rgmax has a linear one. The effects of other parameters are
mostly nonlinear, as expected given the structure of the model used in the
example. The former parameter has also a significant effect on oxygen and bio-
mass, while the latter parameter has a significant effect on ethanol.

With regard to results for a time point during growth on ethanol, it is important
to note that Y4 appears to have a significant effect on the ethanol, oxygen, and
biomass predictions, although the glucose has been depleted. This may reflect the
impact of the biomass concentration (originated during the prior growth on glu-
cose) on the total amount of ethanol produced, as well as its consumption and the
consumption of oxygen for the observed time point.

There is good agreement of the results of the Morris analysis with the previ-
ously presented SRC ranking obtained for the linear regression method. In Figs. 11
and 12, the parameters most distant from the wedge are the parameters ranked as
the most influential on the model outputs (Table 9a, b).
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Table 9a Ranking and SRC value of the model parameters for each model output, for a time
point during the exponential growth phase on glucose

t=172h  Glucose Ethanol Oxygen Biomass
SRC Rank  SRC Rank  SRC Rank  SRC Rank

7'G.max —0.0089 2 0.7423 1 —0.0858 6 0.1111 4
7'0.max 0.0006 8 —0.1591 3 —0.5768 2 —-0.0129 10
TE,max 0.0002 11 —0.0837 5 0.0210 10 —0.0400 7
Yfg)‘id —0.0107 1 —-0.0777 6 —0.7884 1 0.9746 1
YE?" 0.0060 3 0.0467 8 —0.1599 4 0.1697 2
Yx. 0.0008 7 0.0070 10 0.0452 7 —0.0643 5
Kg 0.0058 4 —0.4819 2 —0.0301 8 0.0328 8
Ko 0.0042 5 0.0279 9 0.1142 5 —0.1664 3
Kg —0.0005 9 0.0756 7 0.0027 11 —-0.0103 11
K; 0.0013 6 —0.1324 4 0.0273 9 —0.0420 6
kra —0.0005 10 —0.0070 11 0.2380 3 0.0170 9

Table 9b Ranking and SRC value of the model parameters for each model output, for a time
point during the exponential growth phase on ethanol

t=272h  Glucose Ethanol Oxygen Biomass
SRC  Rank SRC Rank  SRC Rank  SRC Rank

TG, max —-0.0253 11 —0.0003 11 0.0356 8
70, max —0.1310 3 —0.2484 3 0.0409 5
T'E,max —0.1700 2 —0.2534 2 —0.0208 9
Yg"fd —0.9504 1 —0.6101 1 0.9812 1
Yfged —0.0653 7 0.0936 4 0.1157 3
Yee 0.0281 10 0.0105 9 —0.0357 6
K¢ —0.1195 4 —0.0710 6 0.0997 4
Ko 0.1150 5 0.0748 5 —0.1279 2
Kg 0.0394 8 —0.0010 10 —-0.0120 11
K; —0.1110 6 0.0596 7 —0.0356 7
kpan —0.0284 9 0.0560 8 0.0202 10

Values corresponding to the prediction of glucose are not shown, as the linear regression was
found not to be suitable for this time point and model output (R*> < 0.7)

3 Discussion

A mechanistic model of glucose oxidation by Saccharomyces cerevisiae has been
taken as an example and has been analyzed rigorously with a number of methods.
The chosen case study is purposely kept relatively simple in order to better illu-
minate how the different methods work and what kind of information is gained in
each step. In practice, the presented analysis methods are generic and can be
applied to a wide range of process models to assess their reliability. Each step of
the analysis has been commented in detail already. However, one thing that cannot
be emphasized enough is the importance of collecting proper datasets: biological
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replicates (duplicate/triplicate fermentations) but also sample replicates are needed
to know the error of the measurements. If the quality of the collected data is not
sufficiently high, this might later raise severe questions about the reliability of the
resulting model.

Assuming that a decision has been taken to develop a mechanistic model of a
pharmaceutical production process, or one of its unit operations, one could, of
course, wonder how such a model can be established, and how it can support PAT
objectives. In general, construction of a mechanistic model is considered time-
consuming, which may explain why data-driven models and chemometrics have
been more popular than mechanistic approaches, despite the PAT guidance. How-
ever, during the past 5 years, this situation has already changed considerably for
small-molecule drug substances [4]. According to us, the tools presented here can be
helpful in setting up and structuring the model equations in an efficient way, for
example, by making use of matrix notation, which can facilitate transfer of the model
equations between different users. Such sharing of modeling knowledge is essential
in multidisciplinary process development. As discussed by Sin et al [14], a signif-
icant part of such a model matrix can be transferred from one system to a second or a
third, which undoubtedly makes the whole model-building exercise more efficient.

Finally, we would also like to emphasize that one should move ahead in small
steps when constructing a mechanistic model of a process or unit operation. One
should rather start with a smaller model with limited scope, for example, an
unstructured model [21]. Such a model could then be gradually extended with more
detail, while the development of the production process at laboratory and pilot scale
is ongoing. The model analysis tools presented here can then be used in the different
stages of the model-building as continuous quality checks of the model.

Once a model is considered ready for use, a first application that is relevant for
such a model is to use simulations to propose more informative experiments
leading to more accurate estimation of the model parameters, for example, by
applying optimal experimental design (OED) [22]. Furthermore, the mechanistic
model can be helpful in process design, optimization, and in development of
suitable control strategies [23]. The latter applications of the model are essential
for implementing PAT principles, and can potentially contribute to more efficient
process development, replacing data collection and experiments by simulations
whenever possible.

4 Conclusions

Mechanistic models form an attractive alternative for structuring and representing
process knowledge, also for production processes in biotechnology. The reliability
of such models can be confirmed by performing identifiability, uncertainty, and
sensitivity analyses on the resulting model. Tools for performing such analyses can
be considered as standard engineering tools and are increasingly available on
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different software platforms. Once it can be documented that the model is reliable,
it can be used for design of experiments, for process optimization and design, and
for investigating the usefulness of novel control strategies.
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