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Mesenchymal Stem Cells as Cellular
Immunotherapeutics in Allogeneic
Hematopoietic Stem Cell Transplantation
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Abstract Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a
curative treatment option in hematopoietic disorders, immunodeficiencies and
leukemia. To date graft-versus-host disease (GvHD) represents a life-threatening
complication even if associated with beneficial antileukemic reactivity. GVvHD is
the clinical manifestation of donor cells reacting against host tissue. Because of
their ability to facilitate endogenous repair and to attenuate inflammation, MSC
have evolved as a highly attractive cellular therapeutic in allo-HSCT. Here we
report on the clinical experience in the use of MSC to enhance engraftment and
prevent and treat acute and chronic GvHD. In early clinical trials, MSC have
shown considerable benefit in the setting of manifest GvHD. These encouraging
results warrant further exploration.
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ISCT International Society for Cellular Therapy

IFN Interferon

IL Interleukin

MSC Mesenchymal stem cell

OR Overall response

PR Partial response

PBSC Peripheral blood stem cell

PD-L Ligand of the programmed death receptor

PGE, Prostaglandin E,

PL Platelet lysate

TGF Transforming growth factor

Th T helper cells

TNF Tumor necrosis factor

UCB Umbilical cord blood
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1 Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has evolved as a
potentially curative treatment option for patients with malignant and nonmalignant
hematological and immunological disorders. In bone marrow failure syndromes
and immunodeficiencies, hematopoietic stem cells (HSC) from a healthy donor are
transplanted with the intent to reconstitute the patient with a functional hemato-
poietic and immunological system. In leukemia and other hematological malig-
nancies, the aim is to eliminate residual neoplastic disease in a twofold manner.
Thus, treatment with cytotoxic radio-/chemotherapy pre-transplant is consolidated
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by antineoplastic immunological attack mediated by donor-derived immune sys-
tem cells and myeloablative conditioning regimens. The allogeneic HSC-graft also
serves to compensate for treatment-related lethal hematopoietic failure. Although
the graft-versus-leukemia (GvL) reaction is a critical therapeutic component of
allo-HSCT, it is associated with the potentially detrimental effects of graft-
versus-host disease (GvHD) [65, 132]. GvHD results from cytotoxic allo-reactivity
of grafted immune cells against normal host tissue. Severe donor versus host
reactions lead to massive tissue injury and ultimately to impaired immunological
recovery. As greater HLA disparity between recipient and donor is associated with
an enhanced risk for GvHD, related and unrelated donors are generally chosen by a
close degree of human-leukocyte-antigen (HLA) match [95].

Currently diverse sources of allogeneic stem cells, namely bone marrow (BM),
cytokine-mobilized peripheral blood stem cells (PBSC) [113, 137], as well as
umbilical cord blood (UCB) [9, 115, 127] are in use. In UCB-transplantation, the
potential to cross significant HLA-barriers safely due to the relative immaturity of
donor T cells in the graft has extended the access to suitable HSC products even in
populations with rare tissue phenotypes. Also the possibility of mobilizing HSC to
the periphery by growth factor stimulation has opened the avenue to harvest large
quantities of HSC that lend themselves to further selection with the aim of
enriching the stem cell population and/or depleting potentially allo-reactive T
lymphocytes [21, 64, 92]. This has cleared the way for transplantation of HSC
from donors with a full HLA-haplo-type mismatch such as patients’ parents
[27, 105] and has further expanded the use of allogeneic HSCT over the last
several years. To date already more than 25,000 patients per year worldwide have
been transplanted with allogeneic HSC [39, 108]. Given current trends, the number
of transplants from unrelated donors is expected to double within the next five
years which will also significantly increase the population of patients at risk for
GvHD [28].

With continuous improvement in anti-infectious, particularly antiviral and
antimycotic therapy [108, 114, 123] and concepts of reduced intensity condi-
tioning [41, 131, 136], the treatment-related mortality (TRM) of allo-HSCT has
decreased considerably compared to its early beginnings [13, 106]. Yet, even with
enhanced accuracy in HLA-typing and improved donor selection [96], the various
possibilities of graft manipulations, and optimized immunosuppressive prophy-
laxis and therapy, GvHD remains a therapeutic challenge.

In addition to HSC, bone marrow and umbilical cord blood also harbor a
mesenchymal stem cell (MSC) population with self-renewal and multilineage-
differentiation ability [16, 109]. MSC further possess immunomodulatory potential
that is not constitutive but specifically triggered in an inflammatory milieu. As
MSC are able to migrate to sites of cellular injury and inflammation [135] and to
exert their immunosuppressive activity in an environment of tissue damage
[59, 90], MSC have gained considerable interest as cellular immunotherapeutics in
allo-HSCT, particularly in the setting of GvHD.
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2 Clinical GvHD

Graft-versus-host disease describes the clinical manifestations of recipient cells
under attack by grafted donor immune cells. To date, it is still a life-threatening
complication.

Acute GvHD (aGvHD) is defined to occur within the first 100 days after HSCT,
and chronic GVHD (cGvHD) thereafter. In principle, the acute and chronic forms
of GvHD may have overlapping symptoms and merge into each other. Acute
GVHD can also resolve completely and still be followed later by cGvHD [28, 47].
In aGvHD, skin is most commonly affected and is usually the first organ involved.
Acute GVHD of the skin often coincides with engraftment of donor cells. The
characteristic of skin disease is a pruritic rash that can spread all over the body. In
severe cases, the skin may blister and ulcerate. Gastrointestinal tract involvement
usually presents as diarrhea combined with vomiting, anorexia, and abdominal
pain. Depending on the severity, bloody diarrhea as a result of mucosal ulceration
carries a particularly poor prognosis [37]. Liver disease caused by aGvHD may be
difficult to distinguish from other causes of liver dysfunction following allo-HSCT
such as veno-occlusive disease (VOD), drug toxicity, viral infection, or sepsis
[34].

A grading system for aGvHD was introduced in the 1970s by Glucksberg et al.
[36]. Today, most institutions use sets of criteria previously established at the
Keystone Consensus Conference of 1994 [103] or the consensus criteria issued by
the Center for International Blood and Marrow Transplant Research [76]. Scoring
aGVvHD severity is carried out by first staging the affection of skin, liver, and
gastrointestinal tract as a basis of an overall grade that acknowledges both the
stage of organ pathology as well as the number of organs involved. These overall
grades are classified as I (mild), II (moderate), III (severe), and IV (very severe), or
A-D, respectively. Severe aGvHD carries a poor prognosis, with 25 % long-term
survival for grade III and 5 % for grade IV [18]. The incidence of aGvHD is
related to the degree of mismatch between HLA-proteins and the degree of ex and
in vivo graft manipulation [18]. Acute GvHD ranges from 35 to 45 % in BM or
PBSC recipients of fully matched siblings to 60-80 % in T-replete >1 HLA-
mismatched unrelated transplant recipients [31, 47, 70, 113, 137]. The same
degree of mismatch causes less GVHD using UCB grafts. Thus, the incidence of
aGVvHD is lower following the transplant of partially matched UCB units and
ranges from 25 to 65 % depending on the overall transplant setting such as
intensity of conditioning, and in haploidentical PBSC-transplantation also on the
extent of graft manipulation [9, 10, 27, 105].

Treatment of primary aGvHD largely comprises the same agents used for
prophylaxis such as calcineurin-inhibitors and mycophenolate mofetil [130] with
glucocorticoids representing the backbone of aGvHD treatment [76, 110]. Overall
less than 50 % of patients respond to glucocorticoids with slightly higher response
rates in children [47].
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Chronic GvHD remains the major cause of late nonrelapse death following
HSCT [63]. The syndrome has features resembling autoimmune and other
immunological disorders such as scleroderma, Sjogren syndrome, primary biliary
cirrhosis, wasting syndrome, bronchiolitis obliterans, immune cytopenias, and
chronic immunodeficiency. Manifestations of cGVHD may be restricted to a single
organ which is classified as limited or mild cGvHD. Chronic GvHD can also be
widespread affecting many organ sites and is then termed extended or severe. It
can lead to debilitating consequences, for example joint contractures, loss of sight,
end-stage lung disease, or mortality due to profound chronic immune suppression
with recurrent and ultimately life-threatening infections [29]. aGvHD consensus
criteria for grading the severity of cGvHD have been published but are as yet not
employed consistently [5].

Treatment of cGvHD follows along the same lines as in aGvHD. Yet the
response rate is even lower, with a third of patients [4] not responding to first-line
therapy often consisting of corticosteroid and calcineurin inhibitor therapy either
alone or in combination [57]. Although for refractory cGvHD a variety of thera-
pies have been evaluated [20, 46, 50, 71], efficacy has been limited. Long-term
survival is poor due to toxicity related to profound and prolonged immunosup-
pression. Thus, treatment of GVHD remains a therapeutic challenge warranting the
evaluation of novel treatment options [82, 134]. To date, glucocorticoid-resistant
GvHD is among the most challenging complications in allo-HSCT.

3 Pathophysiology of GVHD

The paradigm of GvHD development has been conceptualized as a three-step
process [28]. The initiation phase is characterized by tissue damage caused by
intensive conditioning therapy pre-transplant. As a result, host antigen-presenting
cells (APC) such as dendritic cells (DC) and monocytes become activated: HLA-
antigens as well as co-stimulatory and adhesion molecules are up-regulated on
their cell surface. In addition pro-inflammatory cytokines such as interleukin (IL)-
18, and tumor necrosis factor (TNF)-o. and chemokines are released. Treatment-
related mucositis with destruction of the gastrointestinal mucosal barrier results in
systemic translocation of inflammatory stimuli derived from microbial products.
These pathogen-associated molecular patterns serve as “danger-signals” and
further enhance the activation and maturation of host APC [25, 43]. Recipient APC
seem to be sufficient to induce GvHD, however, murine models suggest that donor
APC may also contribute by indirect antigen presentation [3].

The second phase of GvHD-development is characterized by activation of
mature donor T cells recognizing cognate antigens presented by host APC. In
response, T cells proliferate and differentiate into activated effector cells within a
danger-signal-rich milieu. They contribute to this by release of additional cyto-
kines. Indeed, polymorphisms for critical cytokines such as TNF-o and interferon
(IFN)-y have been implicated as risk factors for GVHD [67]. Most of this process
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takes place within secondary lymphoid organs as early as three days after transplant,
long before de novo regeneration of donor T cells has ensued [117].

The third phase is the effector phase of GvHD which leads to target organ
destruction. Chemokines over-expressed by macrophages direct the migration of
donor cells from lymphoid organs to the target tissues. Here cytotoxic cellular
mediators, namely donor T and NK cells, and soluble inflammatory factors such as
TNF-a, IFN-y, IL-1p, and nitric oxide synergize and amplify local tissue damage
and promote inflammation. In intestinal GvHD, integrins further facilitate homing
of donor T cells to Peyer’s patches [128]. Ultimately, end organ damage is pre-
dominately due to T cell-mediated tissue toxicity, which involves soluble medi-
ators, including TNF-a, perforin, granzymes, Fas, and Fas ligand [7, 17, 40, 49, 77].
As hepatocytes express large amounts of Fas, in liver GVHD cytotoxic T cells
preferentially use the Fas/FasL. pathway for target cell lysis. In contrast, the
perforin/granzyme pathway plays a dominant role in GVHD affecting skin and the
gastrointestinal tract [125].

Thus in allo-HSCT, severe donor-versus-host immune reactions can result in
massive end-organ injury. Based on the multitude of immunomodulatory activities
and their capacity to support the healing process at sites of tissue injury, MSC are
deemed highly attractive candidates for mitigation of both acute and chronic
GvHD following allo-HSCT.

4 Immunomodulation in GvHD Mediated by MSC

MSC are pluripotent cells characterized by self-renewal and the multilineage
differentiation capacity for a variety of cell types such as chondrocytes, adipocytes,
and osteoblasts. MSC were originally isolated and characterized as nonhemato-
poietic multipotent progenitors of adult bone marrow [15, 16] and termed
“multipotent stromal cells” [44]. They have been implicated in hematopoietic
support [23].

Meanwhile, it is known that MSC can be effectively detected in almost every
tissue such as umbilical cord blood, Wharton’s jelly, amniotic fluid, adipose tissue,
skeletal muscle, liver, brain, hair follicle, and dental pulp [42, 45, 104, 139]. Based
on their ability to home to sites of organ injury, to facilitate tissue repair, and to
critically modulate immune responses, MSC have generated considerable interest
as cellular therapeutics. In an effort to harmonize MSC characterization, the
International Society for Cellular Therapy (ISCT) has issued a consensus set of
three minimal criteria to define MSC regardless of their tissue of origin: (I) plastic
adherence, (II) maintenance of tri-lineage osteogenic, adipocytic, and chondrob-
lastic differentiation potential after in vitro propagation, and (III) lack of the
hematopoietic markers CD45, CD34, CD14, CD11b, CD79-a, CD19, and HLA-
DR, and simultaneous expression of the surface molecules CD73, CD90, and
CD105 on >95 % of the population [24]. The surface molecule CD73, an ecto-
5'-nucleotidase, is involved in cellular crosstalk, migration, and modulation of
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adoptive immunity. The interaction between CD73 and adenosine A2A receptor
results in the blockade of the adenosine pathway in activated T cells with a
subsequent proliferation stop [16, 112]. CD90 (Thy-1) is viewed as a marker of
“stemness”. Its function on MSC is not entirely resolved but as a GPI-anchor it is
known to mediate cell-to-cell interactions as well as monocyte and lymphocyte
adhesion. CD105 (endogline) belongs to the TGF receptor family [16].

Of note, homing and immunosuppressive activity of MSC is not a constitutive
phenomenon but requires a pro-inflammatory milieu. Expression and release of
critical immunosuppressive factors such as prostaglandin E, (PGE,), hepatocyte
growth factor (HGF), IL-10, transforming growth factor-f§ (TGF-f}), and leukemia
inhibitory factor (LIF), human leukocyte antigen-G (HLA-G), and galectin-1 are
dependent on MSC priming by cytokines such as by IFN-y, TNF-o, and IL-1f
[35, 118]. Also the enzyme Indoleamine 2,3-dioxygenase (IDO) is regulated by
IFN-y, IDO catabolizes tryptophan to kynurenine resulting in depletion of the
cellular milieu from tryptophan and accumulation of cell-toxic kynurenine
metabolites. We and others have previously shown that tryptophan starvation of
the microenvironment down-tunes effector cell function such as proliferation,
cytotoxicity, and cytokine production in activated T and NK cells [68, 84, 119, 120].
In addition, IFN-y-dependent up-regulation of STRO-1 and ligand of the pro-
grammed death receptor-1 (PD-L1) are among the surface molecules involved
in MSC-mediated T cell inhibition in a cell-contact-dependent manner [88, 111].
MSC further modulate the complement activation pathways by constitutive
expression of factor H which again may be up-regulated by TNF-o and IFN-7, key
mediators of aGvHD [124].

Thanks to the plethora of immunosuppressive effects exerted on APC as well as
effector cells, MSC are potentially capable of intercepting each of the individual
stages in GVHD development (Fig. 1). In the first phase of GvHD, damage of the
host leads to the accumulation of an array of chemokines such as CCL2, CCLS5,
CCL22, and CXCLI12. The respective chemokine and growth factor receptors are
expressed on MSC. They become up-regulated on TNF-o primed cells, thereby
further enhancing their homing efficiency. All together, the migratory capacity of
MSC is under the control of a large range of receptor tyrosine kinases, growth
factors, and CC and CXC chemokines [100].

LPS, TNF-«, IL-1, and IL-6 are released at sites of injury. These cytokines
stimulate maturation of host antigen presenting cells (APC) such as dendritic cells
(DC) critical for subsequent activation of allo-reactive T lymphocytes. Here, MSC
provide counter-regulatory signals, namely PGE,, IL-6, and M-CSF that depress
DC surface expression of HLA-DR and CDla as well as of the co-stimulatory
molecules CD80 and CD86 [90]. Also DC-expression of TNF-o, IL-12 is
decreased whereas IL-10 release is up-regulated shifting the dendritic surface
marker and cytokine profile towards a tolerogenic state. Here, the soluble factors
IL-6 and M-CSF have been implicated not only in induction but also maintenance
of the immature DC phenotype [89, 135]. In addition, MSC intervene with the
effector phase of GvHD by inhibiting expansion of the effector cell pool and down-
modulating cytokine production in T and NK cells. Suppression of NK cell
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Fig. 1 Scheme of MSC attenuating all three phases of GVHD development. The tri-phasic model
of acute GvHD evolution and maintenance is depicted as a self-perpetuating cycle of
inflammation resulting in target organ damage mediated by allo-reactive effector cell responses
(adapted from [43]). MSC are attracted by the pro-inflammatory milieu to sites of tissue damage.
Once licensed by inflammatory cytokines such as IFN-y and TNF-«, MSC actively modulate each
phase of the immune response. Black arrows indicate the mode of interaction between different
cellular players of the “GvHD-cycle.” Red lines refer to MSC-mediated attenuating effects and
the green line implies a supporting role of MSC. The resulting changes in effector functions are
printed in red or green, respectively (Color figure online)

cytotoxicity is also due to MSC-mediated down-regulation of the activating NK
receptors NKp 30, NKp 44, and NKD2D [90].

It is important to note that MSC dampen the self-perpetuating inflammatory
mechanisms in GvHD by blocking the release of the critical cytokines TNF-a and
IFN-y. Thus, secretion of TNF-« by monocytes is suppressed by MSC-secretion of
the IL-1a receptor antagonist (IL-1RA) [90]. Also, the T cell-dependent feedback
loop of TNF-ua production is intercepted by MSC. Here, TNF-o-induced PGE,
expression in MSC not only down-modulates T cell proliferation but also T cell
cytokine release including TNF-o [135]. Similarly, MSC deflect the IFN-
dependent feedback mechanism, as IFN-y-induced expression of IDO and PD-L1
in MSC [135] in turn reduces IFN production in Thl cells and up-regulates IL-4
production in Th2 lymphocytes. This creates a tolerogenic milieu not only locally
but also systemically tipping the balance towards an anti-inflammatory Th2
response [2]. Regulatory T (Treg) cells also contribute to this MSC-induced local
and systemic network. MSC facilitate Treg-induction and expansion by release of
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HLA-G, LIF, and CCL1 [90]. In addition, interaction between the surface
molecules CD58 and CD52 expressed on MSC with CD2 and CD11a on T cells
generates a FOXp3-negative CD4/CD8 double positive Treg population that has
been found to be one hundredfold more T cell suppressive than FOXp3-positive
CD4/CD25 double positive Treg [102].

Thus, MSC potentially interact with almost every immune cell population
involved in GvHD initiation and perpetuation in an attenuating manner. At the
same time, the need for so-called “licensing” by pro-inflammatory signals to
trigger immunosuppressive activity renders MSC particularly attractive for cell
therapy. In the absence of inflammation, MSC stay immunologically inert and thus
do not contribute to generalized immune suppression as many pharmacological
agents such as steroids do [82]. Moreover the MSC-mediated T cell inhibitory
function is differentially directed against allo-specific T cell activity and does not
attenuate antiviral recall responses [52]. MSC themselves exhibit profound anti-
viral and antimicrobial activity. Indeed IDO, one of the key IFN-y dependent
T cell inhibitory mechanisms formerly identified by us, also dampens the ampli-
fication of cytomegalovirus and toxoplasmosis, two highly critical infectious
agents in allo-HSCT [22, 73, 86]. One of the major issues when introducing novel
immunomodulatory cell therapeutics in clinical allo-HSCT is the increased risk of
infection. The above-described pre-clinical insights partially address these
concerns.

5 MSC for Clinical Application in Allo-HSCT

To date, GVHD remains a significant cause of nonrelapse morbidity and mortality
following allo-HSCT. During the last decade, BM-derived MSC have been
employed in a series of studies for prevention and treatment of GvHD in the allo-
HSCT setting.

Initially, MSC were predominantly isolated from siblings or related haplo-
identical donors. Separation of MSC from the bone marrow was performed by
density gradient centrifugation of the mononuclear cell fraction and subsequent
in vitro propagation of the plastic adherent cell fraction over 4-6 passages. Later,
particularly in those studies employing MSC products provided by Osiris Thera-
peutics, Inc. (Prochymal®), MSC were obtained from unrelated healthy third-party
volunteer donors with variable degrees of HLA-matching depending on the reci-
pient’s phenotype. With a frequency of 0.01-0.001 % mesenchymal progenitors in
the BM, a 10-ml aspirate is generally sufficient to yield 50-300 x 10° MSC
without loss of multidifferentiation potential [97]. In the earlier investigator-
initiated trials (IIT), MSC were often used directly from the culture. Industrially
prepared MSC are generally cryopreserved, off-the-shelf products that need to be
defrosted prior to use. Also in some preliminary studies, other sources of MSC
have been explored such as adipose tissue [26] and cord blood [62, 129].
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Overall, there are 27 reports describing MSC application in allo-HSCT. In
addition to a few case reports or case series [60, 87, 107, 129], the studies pub-
lished are predominately pilot/phase I trial. There are few prospective phase II
studies [53, 61, 69]; two of these are randomized open label studies [53, 69] and
only one randomized phase III trial [81] which unfortunately has thus far only been
published in an abstract format. About a third of the studies evaluate safety and
feasibility of MSC transfusion in conjunction with transplantation of allogeneic
HSC with the secondary aim to enhance engraftment and potentially prevent
GvHD (Table 1). Another third of the studies assess MSC treatment for steroid-
resistant aGvHD (Table 2) and only two studies focus entirely on MSC application
for treatment of refractory and severe cGvHD [133, 140] (Table 3). Of note, there
is one prospective phase II study employing MSC for first-line treatment of aG-
vHD [53] (Table 2b).

Two landmark reports introduced the medical community to the potential of
MSC administration in allo-HSCT. A large multicenter feasibility study [56]
documented that MSC expansion from BM to clinically relevant quantities was
feasible within one month. A year before, Le Blanc’s group from the Karolinska
Institute, Stockholm, had reported on the first successful treatment of steroid-
refractory severe acute GvHD in a nine-year-old boy with BM-derived MSC from
his mother [60].

6 MSC for Enhanced Engraftment and Prevention of GvHD

Feasibility and safety of MSC/HSC co-transplantation was evaluated in two phase
I studies [56, 91, 138] and one randomized phase II study following myeloablative
conditioning in the context of HLA-matched sibling transplants. Secondary study
endpoints assessed the kinetics of HSC engraftment and GvHD incidence. In all
three studies, HSCT was performed for adult patients with high risk or relapsed
hematological malignancies. GvHD prophylaxis comprised cyclosporine and
MTX in all three studies. In the largest of these studies [56], patients were
recruited in a multicenter study effort across the United States. For these 56
patients, BM-derived MSC were sampled from the respective HSC donors and
prepared by Osiris Therapeutics Inc., Baltimore. Adequate expansion proved
feasible in 91 % of sibling donors (51/56 donors) up to a dose of 2.5 x 10%kg
within 30 days, even though only 46 patients were eventually transplanted with a
combination of HSC and MSC.

Likewise in one of the two Chinese feasibility studies [138], MSC preparation
up to a dose of 2 x 10%kg recipient body weight were obtained in 86 % of cases
(12/14 donors). Yet, in the only randomized study [91], this target dose was not
achieved, with only three patients transplanted with >1.0 x 10%kg. The MSC
doses infused in this randomized open-label trial were considerably lower than in
the other studies with 0.03-1.53 x 10%kg (median 0.34 x 10%kg). Moreover
5/15 patients of the “intend-to-treat” cohort had to be excluded from further
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comparison because MSC preparations failed. In all three studies, no immediate
side effects from MSC infusion and no ectopic tissue formation were observed.

Time to platelet and neutrophil engraftment was as expected for this type of
transplant and did not differ significantly from the control group in the study by
Ningh et al. Acute GvHD was low in all three studies with aGvHD II-1V in 24 %
(16/68) of patients to whom MSC were administered. Overall 40 % (27/68) of
patients were affected by cGvHD. Of these, about half suffered from the extensive
form of the disease. In the three studies, relapse occurred in 35 % (24/68) of MSC/
HSC co-transplanted patients. In the open-label randomized trial by Ning et al.,
however, there was a particularly high relapse rate with 60 % in the MSC group
which was significantly different from the controls with only 20 %. Consequently,
the three-year overall survival (OS) also differed significantly with 40 % in
patients co-transplanted with MSC and 67 % for controls.

The study was closed early based on a potentially increased relapse risk
associated with MSC. However, a generalized conclusion correlating relapse and
MSC co-transplantation cannot be drawn, due to small patient numbers, the
exclusion of five patients from the “intent-to-treat” population, and the use of
historic controls. Accordingly, this study has caused considerable controversy
[12]. It is valid to ask whether beyond the feasibility issue of timely large-scale
MSC-preparation in patients, post-sibling donor HSCT with a low risk of graft
failure and GvHD, MSC co-infusion as a prophylactic measure can be expected to
provide any clinical benefit.

Over the last decade, transplant procedures have evolved that predominately
rely on the GvL effect for elimination of malignant disease [131]. Intensity of pre-
transplant radio-/chemotherapy has been significantly reduced to minimize con-
ditioning-related toxicity. Following such nonmyeloablative conditioning, the risk
of graft rejection is overcome by transplantation of large numbers of donor HSC.
Still, in mismatched or haploidentical allo-HSCT the risk of graft failure has been
higher than in HLA-matched transplants following myeloablative conditioning.
Nonengraftment is also a concern in UCB transplantation, particularly in adults in
whom adequate cell doses are not always readily available.

The notion that MSC might be employed to support hematopoietic engraftment
in allo-HSCT is based on the longstanding concept that bone marrow stromal cells
represent the key structural and regulatory components of the hematopoietic niche
[16, 78]. This model has meanwhile been extended to include osteoblasts lining the
bone surface, marrow endothelial cells, and primitive mesenchymal cells including
CXCL12-abundant reticular and Nestin-expressing cells as HSC-niche forming
cell populations [59, 122]. Yet, transplantation efficiency of stromal bone marrow
cells has been a matter of longstanding debate [66, 93, 116]. The difficulty of
detecting donor stromal cells may well be a result of different transplanted cellular
doses and sensitivity of detection techniques. One recent study formally reported
on 36 % donor stromal cell chimerism following HSCT from sibling donors.
Donor stromal cell engraftment occurred in 3/8 BMT patients and in 5/18 patients
transplanted with growth factor-mobilized PBSC [99]. This is in line with previous
observations that MSC are also contained in peripheral blood [32]. Following
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MSC transplantation the group from the Karolinska University Hospital, Stock-
holm, describes the autopsy results obtained from 18 patients. This includes 108
tissue samples analyzed by PCR for detection of donor DNA. Donor MSC
engraftment was inversely correlated with the time from MSC infusion with
50 days seemingly a cut-off for donor MSC persistence. MSC distribution was
limited to lung, lymph nodes, and intestine. In the BM, donor MSC were detected
only in one patient in keeping with the results of Gonzalo-Daganzo et al. who after
HSC/MSC co-transplantation submitted patients to serial bone marrow biopsies for
chimerism analysis and found no MSC engraftment [38].

In spite of these incongruent results, MSC are deemed useful in the setting of
UCB transplantation (UCBT) based on their graft-promoting effects. This
hypothesis has also found support in a murine study [54]. Three small trials with
7-9 patients each were conducted to evaluate efficacy of MSC administration for
improved engraftment and GvHD prophylaxis in UCBT (Table 1) [38, 62, 74]. In
one study, patients received a transplant consisting of three cellular components,
namely UCB, PBSC, and MSC [38]. In all studies, transplants were performed for
high risk or relapsed hematological malignancies. Matched historic controls were
provided for comparison of the outcome parameters in all three studies. Yet, no
statistically significant difference in engraftment and acute and chronic GvHD was
observed between UCB/MSC co-transplanted patients (pts.) and controls. Still it is
noteworthy that in these three studies, only a single patient (1/24 pts.; 4 %)
developed severe aGvHD III-IV in the MSC co-transplanted groups compared to
the controls (9/91 pts.; 9 %). Likewise, only one patient suffered from limited and
one from extensive cGVHD (2/24 pts.; 8 %) in the MSC cohorts. In the controls,
the incidence of cGvHD was slightly higher (17/91 pts.; 18 %). In view of the
favorable results in both the MSC and control groups, Gonzales-Daganzo et al.
closed their study early based on the lack of evidence that MSC transplants are of
benefit in UCBT in which hematopoietic engraftment is already bridged by co-
transplantation of PBSC.

The MSC co-transplantation approach was further evaluated in mismatched/
haploidentical HSCT [8, 11, 69, 129] with enhanced engraftment and GvHD
prophylaxis as primary endpoints. In the three studies assessing this approach in
the haploidentical setting, patients received myeloablative therapy prior to trans-
plant. In the fourth study patients were transplanted with nonselected PBSC from
>1 antigen-mismatched donor following reduced intensity conditioning. In none
of these studies accelerated formal neutrophil or platelet engraftment was noted.
Liu et al. observed, however, that in the MSC group platelets reached the
50 x 10%/1 threshold faster (22 days; range 12-58 days) than in the controls
(28 days; range 10-99 days). In one trial, due to the typical NK cell surge, leu-
kocyte counts rose to 10 x 10%1 three days faster in the MSC co-transplantation
group [8]. Acute GVHD in the two haploidentical transplant trials [8, 69] was
generally low grade, both in the MSC co-transplant cohorts with no aGvHD III-IV
and 43 % of aGvHD I-II (20/47 pts.) compared to the controls with only three
patients with aGvHD IIT and aGvHD I-II in 36 % (27/75 pts.). Also in the study by
Baron et al., severe aGvHD was comparable following mismatched unrelated
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HSCT with aGvHD II-III in 35 % (7/20 pts.) and aGvHD IV in 10 % (2/20 pts.)
following MSC co-transplantation versus aGvHD II-III in 32 % (6/16 pts.) and
aGvHD IV in 19 % (3/16 pts.) of the controls. Yet, with 31 % the one-year
probability of “dying from GvHD or infection while on GvHD therapy” was
significantly higher in the controls compared to 10 % of patients co-transplanted
with MSC. This translates into 37 % nonrelapse mortality in the controls compared
to only 10 % in the MSC-transplanted patients at one-year post HSCT.

In summary, generation of clinical-scale quantities of MSC was feasible even
when the HSC and MSC were harvested from the same donors. There were also no
immediate side effects from MSC infusion and no evidence of ectopic bone for-
mation over time. Yet, the other endpoints were not successfully met. Thus, HSC/
MSC co-transplantation was not associated with accelerated engraftment. So far
only in the setting of poor hematopoietic recovery, has salvage from graft failure
been reported in individual patients [61, 85, 87].

Likewise, no significant difference in the incidence of acute or chronic GvHD
was observed following HSC/MSC co-infusion which may well be explained by
lack of appropriate inflammatory signals in the immediate post-transplant period.
Indeed, in the absence of inflammation MSC are not capable of preventing or
ameliorating GVvHD as shown in a murine IFN-y knockout model. Also immedi-
ately after HSCT levels of IFN-y and TNF-a, both critical triggers of MSC activity,
are low [98]. Pre-incubation of MSC with IFN-y can compensate for this defi-
ciency in the early transplant period. Thus, timing of MSC administration seems to
be the key. Indeed, in several murine studies [98, 121], HSC/MSC co-transplan-
tation failed to prevent GVHD whereas delayed MSC infusion seemed to effec-
tively elicit the immunosuppressive properties of MSC [98]. Also manifest GVHD
was mitigated by MSC application in a dose-dependent manner [51]. Although one
needs to keep in mind the distinct immunoinhibitory mechanisms of MSC in
mouse and man [83], these models do suggest that MSC might prove more useful
for treatment of overt GVHD than for prevention.

7 MSC for Treatment of Steroid-Refractory Acute GvHD

For evaluation of response to MSC administration in steroid-resistant GvHD, four
studies (Table 2) with a total of 289 patients and severe aGvHD III/IV in 84 %
(242/289) of cases can be submitted to aggregated analyses based on the focus on
aGvHD and standardized regimens for MSC-preparation from bone marrow and
expansion [55, 58, 81, 101]. Although a multicenter phase II study, the European
Group of Blood and Marrow Transplantation employed a consensus protocol for
FCS-supported MSC-generation [58]. The three other studies employed industri-
ally manufactured MSC. The general challenge in comparing efficacy of GvHD
therapies between studies resided in the variability of endpoint definitions with
regard to the scoring of clinical benefit as well as choice of timepoints for such an
assessment. Also durability of response is not uniformly addressed [75, 79, 80].
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In GvHD, a complete response (CR) is defined by disappearance of all symptoms.
Yet, partial response (PR) may simply indicate an improvement from baseline but
not necessarily a clinically meaningful benefit.

A consensus statement [80] demands that PR should signify a difference by two
grades, however, this recommendation is not consistently followed or even
specified. In the above studies, PR thus refers to improvement by at least one
GVHD grade, mixed response (MR) describes reduction in severity of symptoms at
a minimum of one affected site, and overall response (OR) summarizes the fre-
quency of complete and partial responses. Few studies provide prospective time-
frames for response evaluation and duration of follow-up, yet in most studies, best
responses are documented. Aggregated calculation of OR is 65.4 % (189/289 pts.)
of the above 289 high-risk patients with 47 % aGvHD grade III and 37 % grade IV
[55, 58, 81, 101]. Complete responses are presented for 230 patients in three of the
four studies with an aggregated CR of 44 % (101/230 pts.) [58, 81, 101]. This is a
noteworthy result that compares well with other forms of second-line immuno-
modulatory interventions for refractory aGvHD such as treatment with TNF-o and
IL-2 antibodies [4, 47, 48, 57].

One of the reasons for this favorable outcome might be the fact that in addition
to 193 adults, 96 children are included in these studies. The European Group of
Blood and Marrow Transplantation (EBMT) multicenter effort is the only pro-
spective trial that includes equal numbers of children (n = 25) and adults (n = 30)
clinically matched for aGvHD grade to allow for prospective comparison of age-
dependent benefit from MSC within one study. In the EBMT trial 84 % OR and
68 % CR in children versus 60 % OR and 43 % CR in adults and a superior two-
year overall survival in children with 45 % versus 26 % in adults (p = 0.06)
confirms a more favorable outcome in the younger patient cohort.

One of the unresolved issues to date is the question of how many applications of
MSC are required to maintain a durable response in aGvHD. Among the four
studies described above, three consistently administer a minimum of eight infu-
sions of 2 x 10® MSC/kg [55, 81, 101]. In these studies employing the com-
mercially prepared MSC product Prochymal® an OR of 64 % is achieved
compared to an OR of 71 % in the EBMT study limiting MSC application to
1-2 x 0.6-2.0 x 10° MSC/kg in 89 % (49/55 pts.) of patients. In children,
multiple infusions of Prochymal® resulted in 66 % OR compared to a considerably
higher OR of 84 % in children treated in the EBMT study.

Although on first sight this seems to suggest that the commercially prepared
third-party donor-derived MSC exhibit a trend towards lower efficacy, there is a
variety of confounding factors in study design and endpoint assessment that may
have considerable influence on such an interstudy comparison. Still, a closer look
at MSC preparations seems justified. In the Prochymal® studies as well as in the
EBMT multicenter trial, expansion of MSC did not exceed more than four to six
passages. Yet, seeding densities may also play a role. The end product in the
EBMT study is characterized according to the ISCT criteria. The Prochymal®
studies submit their MSC product to additional functional immunological testing.
Cryopreservation prior to infusion is one aspect in MSC preparation that is known
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to be critical for vitality but also with regard to the immunosuppressive MSC-
mediated activity. It is this distinct difference that could contribute to discrepancies
in clinical outcome, as immediately after thawing the immunosuppressive prop-
erties of MSC are severely impaired. Thus, defrosted MSC are refractory to IFN-y
which is the key signal for IDO-induction as well as for up-regulation of immu-
nosuppressive cell surface molecules such as PD-L1. The immunoinhibitory
activity of defrosted MSC is, however, fully restored if submitted to 24 h of cell
culture [33]. This insight might have significant impact on the future design of
MSC-facilitated studies.

8 MSC for the Treatment of De Novo Acute GVHD

Kebriaei et al. conducted the first large prospective, open-labeled multicentered
phase II study in the United States, Canada, and Australia (Table 2b). Thirty-one
adult patients in 16 centers with de novo grade II-IV aGvHD were enrolled, with
MSC manufactured by Osiris Therapeutics, Inc., Baltimore, from bone marrow
aspirates of six healthy donors. Sixteen patients received low-dose MSC (LD
2 x 10° cells/kg), and 15 received high dose (HD 8 x 10° cells/kg) infusions
within 48 h from diagnosis of aGvHD and a second infusion three days later. Of
note, only 32 % patients suffered from aGvHD III-1V, considerably fewer than in
the studies evaluating MSC efficacy in steroid-resistant aGvHD. MSC infusions
proved safe and initial response rate was high, with 24 patients in CR (14 LD-pts.,
10 HD-pts.) and 7 in PR (2 LD-pts., 5 HD-pts.). Time to response was also rapid
with 42 % patients achieving CR at day 7, 52 % by day 14, and 77 % at day 28.
CR was not correlated to donor source, grade, or location of GvHD.

A total of 71 % of patients survived to 90 days with a significantly improved
survival of responders (88 % CR vs. 14 % non-CR; p = 0.0008). Overall, nine
patients died within 13-63 days after MSC-infusion; three patients who had
achieved CR died from infections, three nonresponders died from progressive
GvHD, and one nonresponding patient from relapsed malignancy or brain bleed.
Three patients relapsed within a two-year follow-up period.

9 Alternative Cell Culture Supplements for Clinical-Grade
MSC Products

In cell therapy, transmission of prion, viral, and other zoonotic diseases in addition
to xenogenic immunization is a concern when preparing clinical-grade products
supplemented with FCS. Therefore, alternative sources for expansion and main-
tenance of MSC have been explored. In vitro platelet lysate (PL) and to a lesser
degree autologous serum (AS) proved efficacious, yielding MSC preparations with
comparable surface marker profile and tri-lineage differentiation capacity to
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FCS-risen MSC. With regard to their influence on T cell effector functions such as
cytokine production, cytotoxicity, or proliferation, some variability in the
spectrum of immunomodulatory properties and secreted mediators was observed
[6, 14, 30]. There is only one study that suggests that overall PL-MSC might be
less immunosuppressive than FCS-MSC. In this report PL-MSC had a weaker
inhibitory influence on T and NK cell proliferation and NK cell cytotoxicity [1]
which was associated with lower constitutive PGE,-production compared to
FCS-MSC.

Yet, clinical experience is sparse with few patients, 8 children and 13 adults,
treated in two studies with PL-MSC for GvHD treatment thus far (Table 2b) [72,
126]. Patients enrolled in these pilot/phase I studies suffered from different degrees
of steroid-refractory severe aGvHD III-IV ranging from 36 % in children [72] to
100 % in adults [126]. Accordingly in the latter study, OR was only 16 % (2/13) in
the adults with steroid-refractory GvHD IV. In contrast, in the trial assessing
efficacy in children [72] with slightly less severe GVHD, OR was 63 % (5/8 pts)
which is more in line with the FCS-MSC studies described earlier.

In another small study with 10 aGvHD patients human autologous serum was
used for MSC culture resulting in a very low CR 10 % and OR 60 % and high
early toxicity and mortality (33 %) within the first 100 days post transplant [94].
Thus, these approaches to expand and activate MSC warrant further clinical
evaluation. One study has already been in progress in the Netherlands since 2009
employing human plasma compared to platelet lysate for MSC expansion. In this
phase I/II study patients with de novo grade II-IV aGvHD and cGvHD are
included (http://www.clinicaltrials.gov; identifier: NCT00827398).

10 MSC for Treatment of Refractory Chronic GvHD

Only few studies have been conducted for treatment of cGvHD. In some of the
MSC-trials for treatment of steroid-resistant aGvHD, single patients with cGvHD
were enrolled (overall 17 pts.) with an aggregated OR of 47 % (8/17) [72, 87, 94,
107] (Table 2). In one small trial, MSC-mediated tissue repair after direct intra-
BM injection was assessed in four sclero-dermatuos cGvHD patients. Reversal of
the Thl cells to Th2 cell ratio was observed with reported gradual improvement of
symptoms in all four patients [140].

There is, however, one trial with a total of 19 patients focusing entirely on MSC
application for refractory cGvHD in patients who failed six months of prior
intensive immunosuppressive therapy [133]. This study is noteworthy as it pro-
vides clear definitions with regard to indication of MSC infusion, severity of
GvHD, and response. Thus, the NIH consensus criteria for organ scoring and
global assessment of cGVHD were used. MSC were transfused directly after
preparation without intermittent cryopreservation.

As discussed above, this may be one of the reasons why in spite of relatively
low MSC doses (median 0.6 x 10° range 0.2-1.4 x 10°kg) patients still
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experienced a considerable clinical benefit. Two of the severely ill patients had
organ and four multiorgan disease. Still 14/19 patients (74 %) responded to 1-2
MSC infusions with CR in 4 patients (21 %) and PR in 10 patients (53 %). The
highest clinical benefit was observed for cGVHD of the oral mucosa, GI tract, liver,
and skin. Concomitantly applied immunosuppressive agent could be tapered in 5
patients and in another 5 patients immunosuppressive therapy could be stopped
altogether. These encouraging results commend further evaluation of MSC for the
treatment of extended cGvHD. The response profile in this study would also
suggest that MSC need to be administered at a timepoint when attenuation of
inflammation and tissue repair still hold a chance for facilitating clinical
improvement. In contrast end-stage fibrotic disease will no longer benefit from
MSC infusion.

Additional prospective studies are under way. Thus a randomized phase I/I
study started in Korea in early 2012. Here, umbilical cord blood-derived MSC
grown in the presence of FCS (PROMOCHEM™) are employed for the treatment
of steroid-refractory aGvHD and cGvHD (http://www.clinicaltrials.gov; Indent:
NCTO01549665). Another study is a phase I/Il randomized multicenter study in
Spain which started recruitment of patients with extensive cGvHD in 2010 for
treatment with MSC derived from adipose tissue (http://www.clinicaltrials.gov;
Indent: NCT01222039).

Adipose tissue in future might prove to be a highly attractive source for MSC
preparation due to its abundant availability and the encouraging results from the
one study by Fang et al. in acute GvHD patients grade III-IV disease and a
complete response in 83 % of patients (Table 2a).

11 Summary

Overall MSC hold promise in the treatment of acute and chronic GvHD. The
application seems to be safe thus far with no evidence of malignant transformation.
The influence of different MSC sources and various cell culture supplements in
MSC generation on the regenerative and immunomodulatory properties as well as
efficacy in the different clinical settings will have to be carefully explored in the
future. Also, it would be desirable to accompany the clinical studies with immune-
monitoring analyses to better understand the underlying mechanisms in responding
and nonresponding patients. This will then provide a basis for further improving
MSC therapy.
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