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Abstract Mesenchymal stem cells (MSCs), a distinct population of adult stem
cells, have amassed significant interest from both medical and scientific commu-
nities. An inherent multipotent differentiation potential offers a cell therapy option
for various diseases, including those of the musculoskeletal, neuronal, cardio-
vascular and pulmonary systems. MSCs also secrete an array of paracrine factors
implicated in the mitigation of pathological conditions through anti-inflammatory,
anti-apoptotic and immunomodulatory mechanisms. The safety and efficacy of
MSCs in human application have been confirmed through small- and large-scale
clinical trials. However, achieving the optimal clinical benefit from MSC-mediated
regenerative therapy approaches is entirely dependent upon adequate under-
standing of their healing/regeneration mechanisms and selection of appropriate
clinical conditions.
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COPD Chronic obstructive pulmonary disease
CF Cystic fibrosis
CFTR Cystic fibrosis transmembrane conductance regulator
IPF Idiopathic pulmonary fibrosis
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1 Introduction

Mesenchymal stem cells (MSCs) are a population of adult stem cells that have
amassed significant interest from the medical and scientific community since their
initial discovery [44]. The interest in MSCs arises from their potential applications in
regenerative medicine, consequent to their proposed ability to aid in the regeneration
and repair of otherwise incurable diseases and physiological damage, including
articular cartilage damage, neurological disorders, immunological diseases, and the
development of irreversible lung fibrosis (a hallmark of idiopathic pulmonary
fibrosis). Through continuing research, many new insights have been gained in our
understanding of MSCs; however, there are still many unanswered questions
regarding the functionality of MSCs and how best to use their clinical potential. Due
to the scope of this chapter, we limit our discussion to the general properties of MSCs
and their potential applications in the treatment of selected pulmonary diseases.
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2 History, Definition and Properties of MSC

The first descriptions of MSCs took shape with the work of Friedenstein and
colleagues with the discovery of multi-potential precursor cells that were spindle-
shaped in nature within bone marrow samples. Further in vitro experiments dem-
onstrated a colony-forming capacity associated with these cells, defined as colony-
forming unit fibroblast (CFU-F) [44]. The cells within the CFU-F had the potential
to differentiate into chondrocytes, adipocytes, osteoblasts (Fig. 1) and were also
postulated to form a stromal layer that is essential in maintaining haematopoiesis.
However, it was the capacity for differentiation that accrued most interest [95].

Fig. 1 Morphology of human MSCs and their classical tri-lineage differentiation. Phase images
show the typical spindle-shaped morphology of adherent human MSCs. Osteogenesis: deposited
calcium by differentiated osteoblasts was stained with Alizarin Red and osteocalcin was labelled
by anti-osteocalcin antibody. Adipogenesis: differentiated adipocytes produce triglyceride which
was stained with Oil Red O and adipocytes were stained with anti-FABP4 antibody.
Chondrogenesis: chondrogenic nodules were stained with Alcian Blue and anti-aggrecan
antibody. N.B. Histological images and immunofluorescence images are taken from represen-
tative and not identical fields of view
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Since their initial discovery, extensive research has attempted to understand and
harness the enormous medicinal potential of MSCs. Although well studied and
documented, no agreement on the true definition of the MSC has yet been reached.

To define the MSC, the individual components of the mesenchyme and the stem
cell should first be considered. Mesenchyme or stroma describes the tissue that
provides structural and functional support for the growth and development of
numerous organ systems. The bone marrow mesenchyme is a layer of cells that
delivers the essential support that haematopoietic stem cells require for self-
renewal and differentiation [115].

The definition of a stem cell has evolved largely through increased under-
standing of haematopoietic stem cell biology. The cell line must demonstrate self-
renewal with the production of a clone daughter cell, the ability to differentiate
into multi-lineage cell lines, and also in vivo reconstruction of a functional tissue
[129]. Functional classification focuses on the capabilities of the stem cell and
begins with a description of their nature as pluripotent or multipotent. Pluripotent
describes a group of stem cells that are capable of self-renewal and differentiation
into all three germ layers; a classical example is the embryonic stem cell [16].
Multipotent stem cells describe a group with the capability for self-renewal but
their ability to differentiate is limited to lineages contained within a specific germ
layer; an example is, the haematopoietic stem cell, which can differentiate into
cells of the immune and haematological cell lines [66].

A difficulty in defining the MSC is the variation in nomenclature that is used
within scientific literature. Terminology used to refer to MSCs includes multipotent
stromal cells, multipotent progenitor cells, non-haematopoietic stem cells, and
stromal progenitor cells [19]. All of these terms are essentially synonymous with the
term MSC. This variation within the literature may stem from the lack of evidence
for in vivo self-renewal and reconstruction of functional tissue [28]. The Interna-
tional Society for Cellular Therapy has categorized MSCs with a broad definition:
‘‘firstly MSCs must be adherent to plastic when maintained in culture, secondly they
must express surface antigens CD105, CD73 and CD90 and lack the surface markers
for monocytes, macrophages, and B cells in addition to lacking markers of the
haematopoietic antigens CD45 and CD34. Finally the MSC must have the potential
to differentiate into osteoblast, chondrocytes and adipocytes’’ [56].

By definition, MSCs under the influence of appropriate growth factors can
differentiate into multiple cell lines, in particular to osteoblasts, chondrocytes and
adipocytes. Therefore, through demonstration of the presence of these three cell
lineages after directed differentiation of a colony of cells in vitro, one can retro-
spectively deduce that the original cells are MSCs [103]. However, this technique
in itself contains numerous pitfalls as it is often very difficult to isolate and culture
MSCs without altering and manipulating their original phenotype. A further dif-
ficulty in the definition of the MSC is that no single marker has been described that
is specific to the MSC, thus making them extremely difficult to identify in vitro and
in vivo [136]. Current practice is to define MSCs based on a combination of their
differentiation potential, phenotype features, and morphological features—often in
a retrospective manner (Figs. 1, 2).
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A number of recent reports suggest an additional differentiation capacity of
MSCs into a wide range of mesodermal and non-mesodermal adult phenotypes,
including cardiomyocytes [34, 121], neurons [37, 135], hepatocytes [105] and lung
epithelial cells [65, 72]. The benchmark definitions of MSCs may evolve over the
coming years to reflect these descriptions.

3 Sources of MSCs

Friedenstein and others used cells that were isolated from collected bone marrow.
Further locations and sites for MSC isolation have emerged, but bone marrow-
derived MSCs are still the most frequently used MSCs in experimental research
and are considered to be the criterion standard against which the newer sources of
MSCs are compared [96].

There are numerous drawbacks and disadvantages associated with MSC isolation
from bone marrow. Firstly, the procedure required for collecting bone marrow is
through needle aspiration; this is accompanied by a mild discomfort that can be
painful and can cause patient distress. Furthermore, there is a risk of infection as a

Fig. 2 Phenotypic antigenic markers of MSCs. Human MSCs demonstrate positive expression of
CD44, STRO-1, CD90, CD146 and negative expression to haematopoietic markers CD14 and
CD19. Nuclei are stained with DAPI. Phase images show typical morphology of MSC. Scale
bar = 100 lm
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result of the procedure, with osteomyelitis posing a particular threat [24]. Because of
the risk of the aforementioned difficulties and other potential complications, there
has been extensive research into searching for other potential sources of MSCs.

Adipose tissue, peripheral blood, the lung, deciduous teeth, and the myocardium
are all documented as potential sources of adult MSCs, while the placenta, amnion,
umbilical cord and cord blood have been studied as potential birth-associated sources
of MSCs. However, there does appear to be differences within the phenotypes,
quality, and quantity of the MSCs collected at the various sites [15].

Adipose tissue is a potential source of adult MSCs. One of the main advantages
of using adipose tissue is the relative ease with which it can be collected and the
quantity of adipose tissue available [68]. Adipose tissue is collected through
liposuction, which is a commonly performed and safe procedure with minimal
patient distress or risk [106]. Furthermore, the frequency of MSCs in the adipose
tissue is 1–10 in 100 stromal vascular fractions [50, 86], whereas, in bone marrow
it is 1–10 in 1,00,000 mononuclear cells [13, 74]. In addition, adipose tissue-
derived MSCs have a greater proliferative potential than bone marrow-derived
MSCs, particularly in long-term cultures [62]. However, there are variations within
the markers of the bone marrow and adipose tissue MSCs [12, 74].

Peripheral blood is another potential site for MSC collection. Collection of
peripheral blood is performed through venipuncture and is thus a minimally
invasive procedure with a low risk of complications [107]. However, studies have
determined that although MSCs can be isolated from peripheral blood with sub-
sequent differentiation, the frequency of peripheral blood MSC is much lower than
that of adipose tissue and bone marrow, thus meaning a much larger sample of
peripheral blood is required to evaluate MSC quality [127].

To negate the requirement for bone marrow-derived MSCs, numerous studies
have investigated the effectiveness of using MSCs derived from birth-associated
tissue with some promising results. Much interest has developed in isolating MSCs
in this manner as it negates the use of invasive procedures such as bone marrow
aspiration and is also more readily available. Furthermore, the cells collected from
birth-associated tissues have been documented to demonstrate an improved capacity
for self-renewal, differentiation, and an increased rate of proliferation when com-
pared to their adult bone marrow-derived counterparts [15].

Human placental tissue is a potential source of birth-associated MSCs. Placental
tissue has been characterised from four different locations: amniotic epithelial,
amniotic mesenchymal stromal cells, chorionic mesenchymal stromal cells, and
chorionic trophoblastic tissue [94]. There are four potential sources of placental
tissue MSCs, but only the chorionic and amniotic mesenchymal stromal cells have
been shown to demonstrate MSC properties [119]. Placental MSCs are reported as
having a limited proliferative lifespan and as lacking adipogenic differentiation
potential; further research is required to achieve a comprehensive conclusion [94].

Umbilical cord blood can be subdivided into whole umbilical cord, umbilical
cord blood, and Wharton’s jelly [40]. Umbilical cord MSCs demonstrate distinct
features in comparison to bone marrow-derived MSCs. Umbilical MSCs and cord
blood MSCs display an initially higher proliferative capacity when compared to
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bone marrow MSCs, but similar to placental MSCs they appear to lack an adi-
pogenic differentiation capacity [13, 29].

In conclusion, although bone marrow was the original site for isolation of
MSCs, recent advances in our understanding of MSC biology have determined that
there are other locations that may also yield MSCs. However, despite these recent
advances, bone marrow remains the standard location for MSC isolation; further
research will evaluate alternative locations and determine their value in practical
and functional applications.

4 Bio-markers of MSC

Although no specific marker for MSCs has yet been identified, there are an
abundance of non-specific surface antigens on MSCs. To provide clarification, the
International Society for Cellular Therapy has provided guidance on MSC
markers; MSCs must express CD73, CD90, CD105 and lack the expression of
CD34, CD45, CD14, CD11b, CD19 or MHC class II antigens [39]. However, there
are MSC marker variations readily located within the literature; STRO-1 provides
a good example [25, 56, 57, 112] (Fig. 2).

5 Reparative Mechanistic Properties of MSC

Preclinical studies and clinical trials demonstrate that the application of MSCs
stimulates wound repair and regeneration with efficient amelioration of a number
of clinical conditions [18, 65, 80, 100], (www.clinicaltrials.gov). However, the
precise mechanism of MSC-mediated wound repair and regeneration is not clear.
One of the unique properties of MSCs is their site-specific migration and
engraftment to injured tissues and differentiation into specific cell types. A variety
of experimental animal models suggest active participation in wound repair and
tissue regeneration [65, 80, 100]. On the other hand, some studies postulate that
MSC-secreted paracrine factors play a vital role for wound repair, most likely
through their anti-inflammatory, anti-apoptotic, angiogenic and immunomodula-
tory properties [9, 24, 83, 90, 137]. Additional reports suggest that MSC secretory
products are capable of stimulating tissue-specific regional progenitor cells
propagating tissue regeneration [47, 118].

5.1 Functional Contribution of MSCs in Tissue Repair

In 2002, Toma and colleagues injected human bone marrow MSCs isolated from
healthy donors into the myocardium of healthy mice. They observed that MSC had
differentiated into cardiomyocyte-like cells after a week [121]. Berry and
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colleagues injected MSCs into the infarct region of the cardiac wall of myocardial
infarction rat models and demonstrated that MSC treatment improved cardiac
function; it reduced cardiomyocyte apoptosis and fibrosis scars in comparison to
non-MSC treated control groups [18]. They also showed that transplanted MSCs
expressed the cardiomyocyte-specific protein ‘troponin T’ while lacking a car-
diomyocyte morphology, suggestive of a putative paracrine role that underpinned
the reparative process.

MSC differentiation into type I and type II alveolar epithelial cells (AECI and
AECII respectively) in vivo has been reported [65, 100]. Studies on bleomycin-
induced animal lung fibrosis models demonstrated that following intratracheal and
intravenous administration of MSCs, a small proportion of transplanted cells were
engrafted to the affected lung and differentiated into AECI and AECII cells with an
accompanying amelioration of pulmonary fibrosis [65, 100]. Human MSCs are
capable of in vitro differentiation into Surfactant Protein-C (SP-C; a bio-marker of
AECII)—expressing AECII-like cells when co-cultured with fetal lung mesen-
chymal cells [72]. In addition, the systemic application of murine MSCs in a
cisplatin-induced acute renal failure mouse model resulted in migration and
engraftment to the affected kidneys. This migration and engraftment was associ-
ated with differentiation into renal tubular epithelial cells and amelioration of renal
dysfunction with augmentation of renal tubular regeneration. This is suggestive of
the MSC as a potential candidate cell for a regenerative medicine-based therapy
for the treatment of acute renal failure [80].

The differentiation of MSCs into hepatocytes was demonstrated when Sato and
colleagues injected human MSCs directly into an alcohol-induced injury in the rat
liver and assessed for expression of hepatocyte-specific bio-markers over an
ensuing time-course [105]. From 7 days post-transplant, MSCs displayed
expression of hepatocyte-specific and linked proteins including human-specific
alpha-fetoprotein (AFP), albumin (Alb), cytokeratin-19 (CK-19), cytokeratin-18
(CK-18), and asialoglycoprotein receptor (AGPR) [105]. In addition, MSCs have
been shown to differentiate into functional neuronal phenotypes [37, 135], retinal
pigment epithelial cells [7] and skin epithelial cells [81].

Increased reports describe differentiation of MSCs into a variety of adult cell
phenotypes. In many of these instances, differentiation into the desired cell-type
was confirmed based on their cell-type specific biomarkers. Although some
markers are specific for certain cells, this is not the case in every instance.
Empirical analysis on both human and rodent MSCs demonstrated that the MSC is,
by nature, primed for osteogenic, chondrogenic, adipogenic, and vascular smooth
muscle differentiation and can undergo active differentiation under appropriate
culture condition via activation of either transforming growth factor-beta,
hedgehog, peroxisome proliferation-activated receptor-mediated interaction, and
mitogen-activated protein kinase pathways, respectively [36]. Thereby, precaution
must be taken in the application of MSCs in vivo to avoid any unwanted ectopic
differentiation as a consequence of their relatively non-specific responsiveness to
external cues.
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5.2 Tissue Repair by MSC-Mediated Paracrine Mechanism

A growing body of evidence supports the hypothesis that paracrine mechanisms
may underpin the role that the MSCs play in tissue repair and the regenerative
process. MSCs possess an immunomodulatory function that has been demonstrated
through their therapeutic efficacy in alleviation of graft-versus-host disease and
animal models of bronchial asthma through putative roles in modulating Type-1
(Th1) and Type-2 (Th2) immune responses [84]. MSC-secreted factors are cyto-
protective as demonstrated in the cardiac injury animal model driven by anti-
apoptotic and inotropic effects [47]. The MSC-mediated anti-apoptotic effect can be
driven by up-regulation of the anti-apoptotic gene Bcl-2, which was demonstrated
in an animal model of emphysema [137]. Animal models of myocardial infarction
and pulmonary hypertension have demonstrated that transplanted MSCs improve
cardiac function and pulmonary vasculature by stimulating neovascularisation
possibly via their secretory VEGF (vascular endothelial growth factor) and eNOS
(endothelial nitric oxide synthase) [9, 24, 61]. The anti-inflammatory function of
MSCs has been documented in many animal model studies, in which the mecha-
nism is paracrine in nature and occurs via blocking of anti-inflammatory cytokines
such as TNF-a and IL-1 [52, 90].

6 MSC Therapy in Pulmonary Disease

6.1 Acute Lung Injury

Acute lung injury (ALI) represents a continuum of clinical and radiological
changes that affect the lungs. ALI can occur at any age and is characterised by a
rapid onset of severe hypoxemia that is not secondary to left atrial hypertension
[17]. Acute respiratory distress syndrome represents the most severe form of ALI.
The definition of ALI has evolved through time as our understanding of the
condition has improved. ALI was first described by Ashbaugh in 1967 with the
description of a group of 12 patients who had refractory hypoxemia with abnormal
changes on radiographic and pulmonary function tests [8].

6.1.1 Acute Respiratory Distress Syndrome

Acute respiratory distress syndrome (ARDS) is a common and devastating clinical
syndrome of ALI caused by various direct and indirect insults including infection,
trauma, and major surgery. It can result in respiratory failure and ultimately death
[128]. The pathological hallmarks of ARDS include diffuse alveolar damage with
presence of neutrophils, macrophages, erythrocytes, formation of hyaline mem-
branes, accumulation of protein rich oedema fluid in the alveolar spaces, capillary
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injury and disruption of the alveolar epithelium [4, 10, 11]. ARDS is a leading
cause of death and disability in critically ill adults and children [101]. In the
United States, there are 2,00,000 new cases of ARDS diagnosed each year, with a
high mortality rate of 40 % (comparable to that seen in breast cancer; [102]). To
date, there is no curative treatment for this devastating disease and the manage-
ment is widely supportive [55].

A growing number of animal model studies demonstrate compelling data on the
beneficial effects of MSCs in resolving acute lung injuries induced by endotoxin
[32, 52, 70, 78], hyperoxia [26], pneumonia [67] and systemic sepsis [83]. In a
recent description, endotoxin-induced lung injury in explanted human lungs was
ameliorated with the infusion of MSCs [70]. The accumulation of this pre-clinical
data offers considerable hope that MSCs could be a potential candidate for the
effective therapy of ARDS. However, MSCs have not yet been evaluated for the
therapeutic efficacy for ARDS in clinical trials.

In the ALI model, injury is induced by administration of bacterial endotoxin
lipopolysaccharide (LPS) either via the intraperitoneal or intratracheal route,
which drives the development of acute pulmonary inflammation within 24–48 h of
LPS challenge in mice [100]. Evaluation of the LPS-induced mouse ALI model
demonstrated that intravenous or intratracheal administration of MSCs within
1–4 h of LPS challenge significantly attenuated pulmonary inflammation, alveolar
injuries, improved alveolar fluid clearance, and reduced mortality [52]. This
improvement of the pulmonary condition was observed in the absence of signif-
icant engraftment of MSCs in the lung, suggesting a paracrine role of MSCs in the
alleviation of ALI. This alleviation could be through down-regulation of pro-
inflammatory responses via repression of TNF-a and increased anti-inflammatory
cytokine IL-10 [52]. In support of MSC-paracrine mediated anti-inflammatory
effects, Ortiz and colleagues demonstrated that MSCs and/or acellular conditioned
media collected from cultured MSCs attenuated acute pulmonary inflammation.
This attenuation was via suppression of both IL-1a-dependent T-lymphocyte
proliferation and inhibition of TNF-a secretion by activated macrophages via
MSC-secreted IL-1 receptor antagonist in vitro and in the bleomycin-induced
murine lung injury model [90].

Nemeth and colleagues demonstrated that MSCs were stimulated by pro-
inflammatory cytokines and endotoxins such as TNF-a and LPS. MSC endotoxin-
based activation occurred via toll-like receptor-4, resulting in increased production
of cyclooxygenase-2 and increased prostaglandin-E2 release. MSC-secreted
prostaglandin-E2 drove increased macrophage IL-10 secretion and attenuated
sepsis and sepsis-associated lung injury [83]. The explanted human lung model
provided the demonstration that MSC enhanced LPS-induced ALI repair had
likely occurred in a keratinocyte growth factor (KGF)-dependent manner [70].
Preclinical data are promising; however, clinical trials will decide the ultimate fate
of MSCs as a therapeutic modality for ARDS in the near future.
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6.2 Chronic Lung Disease

Chronic lung disease refers to any condition resulting in the long-term impairment
of the lung that affects an individual’s daily functioning [134]. The conditions that
result in chronic lung disease are varied in their etiology, progression, clinical
features and management [117]. For example, cystic fibrosis occurs due to a
genetic defect, chronic obstructive pulmonary disease may occur as a result of an
environmental irritant such as cigarette smoke [92], and finally some chronic
diseases, such as idiopathic pulmonary fibrosis, may occur due an unknown cause.
Although some chronic lung diseases such as asthma can be controlled and treated,
many eventually result in respiratory failure.

6.2.1 Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of
death worldwide and has been projected to be the third leading cause in 2020 [27].
No curative therapy is available for COPD at this time. COPD is characterised by
an ongoing cycle of repeated destruction and repair of bronchilo-alveolar regions
with subsequent tissue remodelling and sustained irreversible airway obstruction
[2]. Approximately 20 % of patients with COPD present with emphysema, which
is characterised by destruction of terminal bronchioles and alveolar walls resulting
in an irreversible enlargement of alveolar spaces. The pathogenesis of COPD is not
well understood. However, a significant reduction of circulating CD34+ progenitor
cells has been observed in patients with end-stage COPD [92] and an elastase-
induced experimental lung emphysema model [1]. Circulating bone marrow-
derived CD34+ cells are haemopoietic progenitors thought to play a role in tissue
repair [92]. The causes of progenitor cell destruction in COPD are not clear;
however, it is assumed that the products of smoking create oxidative stress that
may cause or contribute to progenitor cell destruction and apoptosis [63].

Systemic administration of bone marrow-derived MSCs was reported to ame-
liorate the emphysematous changes in the irradiation and papain-induced experi-
mental mouse models [137]. Here Zhen and colleagues demonstrated that
transplanted MSCs were localised to the emphysematous lung parenchyma and
had differentiated into AECIIs. This was accompanied by reduced alveolar epi-
thelial cell apoptosis, via Bcl-2 expression, and reduced enlargement of alveolar
spaces [137]. Autologous intratracheal transplantation of bone marrow stem cells
significantly mitigated elastase-induced pulmonary emphysema in the rabbit
model [133]. The transplantation of bone marrow stem cells was associated with
improved lung function, an attenuation of inflammation, an inhibition of epithelial
apoptosis, a decrease in matrix metalloproteinase-2 expression, and the stimulation
of alveolar and bronchiolar cell proliferation where engraftment and differentiation
of the transplanted stem was negligible [133].
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A Phase II, multicenter, randomized, double-blind, placebo-controlled clinical
trial for the evaluation of safety and efficacy of MSCs for the treatment of moderate
to severe COPD has recently been completed (www.clinicaltrial.gov). The trial
enrolled 62 patients with COPD in six different centers in the United States. MSCs
were administrated through an intravenous route. The complete report has yet to
be published; however, preliminary reports are indicative of an improvement of
quality of life with reduction of serum C-reactive protein, suggestive of a mitigation
of inflammation (http://copsonlinenews.blogspot.com/2011/04/osiris-therapeutics-
reports-interim.html).

6.2.2 Cystic Fibrosis

Cystic fibrosis (CF) of the lung is an autosomal recessive disorder caused by a
mutation in the gene encoding the CF transmembrane conductance regulator
(CFTR). CFTR is expressed in airway epithelial cells and the protein located on
the luminal side of the plasma membrane, where it serves as a regulator of the Cl-

channel to maintain fluid and ions transport [75, 111, 116]. Activation of CFTR
negatively regulates the epithelial Na+ channel, which is why mutation of CFTR
causes dysfunction of both Na+ and Cl- channels [75, 116]. According to current
hypotheses on CF lung disease, the loss of Cl- ion secretion and increased Na+ ion
absorption by airway epithelia reduce the thickness of the airway surface liquid
layer overlying the epithelia, resulting in impaired mucociliary clearance [77].
Loss of CFTR function also suppresses mucous and antimicrobial factors secretion
by airway submucosal glands [130]. Therefore, dysfunction of CFTR causes
formation of thick and dehydrated mucous membranes that provides an ideal
environment for persistent bacterial infection, triggering chronic inflammation and
ultimately resulting in organ failure. At present, there is no curative treatment for
CF. Because a genetic mutation underpins the pathogenesis of this disease, gene
therapy is thought to be a valid option for the cure of CF [30]. Stem cell therapy
has also been proposed to restore CFTR defective airway epithelia and to alleviate
the concomitant inflammation [113, 117].

The main hurdle for stem cell therapy in the restoration of CFTR-defective
epithelial cells is their low engraftment efficiency in the lung. Animal models
demonstrate that transplantation of wild-type CFTR-expressing engineered bone
marrow-derived MSCs in the CFTR knock-out transgenic mice results in a lung
engraftment rate of about 0.025 % [71]. Moreover, the CFTR-expressing airway
epithelial cells represented less than 0.01 % of the total airway epithelial cells,
which was insufficient to replenish the lung with CFTR-expressing epithelial cells
[71]. A low engraftment efficacy of CFTR-expressing MSCs in the intestinal
epithelia of CFTR knock-out mice was reported by Bruscia and colleagues, where
the engraftment was less than 0.01 % [22, 23]. These two studies indicate that
complete restoration of CFTR-defective lung epithelial cells by transplanted
CFTR-expressing MSCs, at least in the current animal models of CF, is virtually
impossible.
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An in vitro study has suggested that to restore epithelial ion and fluid clearance,
it is not necessary to replace 100 % of CFTR-defective cells. The restoration of
6–20 % of CFTR-expressing epithelial cells was sufficient for effective Cl-

secretion by airway epithelial cells [42, 60]. Conversely, earlier reports suggested
that all cells must express CFTR to re-establish the negative regulatory effects on
airway Na+ channel for effective Na+ ion absorption homeostasis [48, 59].

Patients with CF frequently suffer from severe repeated pulmonary infections
and chronic inflammation. This is often the main cause of sickness, disability, and
mortality due to failure of lung function. It has been suggested that the anti-
inflammatory and immunomodulatory functions of MSCs (discussed above) could
serve a role in the ablation of the inflammatory conditions of CF lungs with
potential therapeutic benefits.

6.2.3 Idiopathic Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic, progressive
fibrosing interstitial pneumonia of unknown etiology, occurring primarily in older
adults, limited to the lungs, and associated with the histopathological and/or
radiological pattern of usual interstitial pneumonias [98]. This disease was also
referred as cryptogenic fibrosing alveolitis before being displaced by the term IPF
[110]. IPF is characterised by repeated microinjuries to the alveolar epithelium and
consequent abnormal wound repair. This is accompanied by the accumulation of
fibroblasts and myofibroblasts, with the deposition of excessive extracellular
matrix resulting in the replacement of normal lung tissue with fibrotic scars.
Accompanying the alteration of normal lung architecture is the clinical manifes-
tation of progressive dyspnea worsening and reduced lung function resulting in
respiratory failure [46, 98]. Unlike other inflammatory and fibrotic lung diseases,
IPF does not respond to steroids and other potent immunosuppressive agents
largely fail to reduce death rates in patients with IPF; the only potential curative
treatment option at the moment is lung transplantation [108].

Patients with IPF are generally more than 50 years of age and two-thirds are
older than 60 years at disease presentation. The median survival of patients with
IPF is 2.8 years [20]. In the United States, the incidence and prevalence of IPF are
16.3 and 42.7 per 1,00,000 people, respectively [99]. Higher incidences are noted
for the 75 years or older age group, in which it is 76.4 per 1,00,000 people, as
compared to age group 18–34 years, with 1.2 per 1,00,000 people. An estimated
48,000 new IPF cases are diagnosed annually in the United States alone [98, 99].
In the United Kingdom, the overall incidence rate of IPF is 4.6 per 1,00,000 cases
per annum [49]. More than 4,000 new IPF cases are currently diagnosed each year
in the United Kingdom. The mortality rate from IPF has also increased over the
last two decades [87]; death rates from IPF have reported to be higher than death
rates from some cancers [58].

Unlike CF, to date, no specific genetic or acquired cause has been identified for
IPF; however, mutation in the genes encoding for hTERT [6, 38, 123] and SP-C [120]
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have been reported in the familial form of IPF. The pathophysiological process of IPF
is widely unknown. Previously, IPF was thought to be a consequence of chronic
pulmonary inflammation. However, non-responsiveness to anti-inflammatory or
anti-fibrotic drugs and lack of histopathological evidence of inflammation in IPF
lungs suggest that inflammation may not be an initiating trigger in the pathogenesis
of this disease [109]. An evolving hypothesis describes IPF as a consequence of
aberrant alveolar wound repair and regeneration, most likely due to a combination of
repeated AEC injury [31, 109], increased AEC apoptosis [14, 69, 125], dysregulated
epithelial-mesenchymal cross-talk [110], polarised immune response [114, 124] and
altered coagulation cascade [27, 64].

Stem cell-mediated regenerative therapeutic approaches have been proposed for
the treatment of IPF. To assist in these studies, several animal models of pulmonary
fibrosis have been developed [79], including the bleomycin-induced pulmonary
fibrosis model [53, 79], radiation-induced fibrosis [54], silica-induced fibrosis [33]
and asbestos-induced lung fibrosis models [21].

The bleomycin-induced pulmonary fibrosis mouse model provided a demon-
stration of migration and engraftment of endotracheal or systematically transplanted
MSCs towards the site of injuries of the lung and subsequent attenuation of
pulmonary fibrosis [91, 100]. Systemic administration of bone marrow-derived
MSCs after 4 h of bleomycin administration attenuated pulmonary inflammation,
reduced fibrosis, and decreased mortality after 14 days of injury. Transplanted
MSCs had engrafted into the injured alveoli with accompanying differentiation into
type II AEC-like phenotype [91]. However, when MSCs were administered after
7 days of injury, the MSC-mediated protective function was abrogated [91].
Complementary results were noted in independent studies [100]. In 2007, Ortiz and
colleagues showed that MSCs protected against bleomycin-induced lung injury and
reduced fibrosis by blocking pro-inflammatory cytokines such as TNF-a and IL-1 by
MSC-associated IL-1 receptor antagonist [90].

The administration of KGF-expressing MSCs or HSCs (haematopoietic stem
cells) in the bleomycin-induced mouse lung fibrosis model was associated with
reduced fibrosis via suppression of collagen accumulation [3]. KGF has an
established role in the repair of alveolar epithelium through stimulation of type II
AEC proliferation, migration and spreading [51, 93, 132]. This proof-of-concept
experiment demonstrated that genetically modified MSCs or HSCs with suitable
cytokine/growth factor have potential as a therapeutic strategy for pulmonary
fibrosis [3].

The pre-clinical studies described previously suggest a role for MSCs as a
potential candidate for regenerative therapy for IPF. There are remaining concerns
that MSC have pro-fibrotic effects and could deteriorate the pathological condition
if they are applied in chronic lung fibrosis [131]. Yan and colleagues demonstrated
that after systemic application of MSCs at 4 h of irradiation-induced lung injury,
transplanted cells engrafted in the alveolar and bronchiolar epithelium and
differentiated into epithelial phenotype; however, MSCs administered at 60 and
120 days post-injury localised in interstitial spaces and differentiated into myofi-
broblasts, a fibrotic cell that plays major role in fibrogenesis [131]. These authors
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concluded that fate of MSC differentiation is controlled by the microenvironment
milieu and warned that MSC therapy might be ideal for ALI but may augment
fibrosis in chronic lung fibrosis, such as IPF.

Supporting the putative profibrotic nature of MSCs, an in vitro study demon-
strated that human and mouse MSCs secrete TGF-b1 and Wnt proteins that
stimulate both human/mouse lung fibroblast proliferation and collagen produc-
tion—two major hallmarks of lung fibrosis [104]. Prostaglandin E2 treatment
significantly inhibited resident MSC proliferation and collagen secretion and
abrogated fibrotic differentiation into myofibroblasts [126]. If this is true for MSCs
from common sources such as bone marrow and cord blood, prostaglandin E2
could be administered concomitantly with MSCs to reduce putative fibrotic effects.

Conversely, no TGF-b1 expression was detected in MSCs isolated from the
bone marrow of normal healthy individuals or patients with IPF; the expression of
fibroblast growth factor and VEGF was not significantly different in either case [5].
However, CXCR4, a potent chemokine receptor, was significantly over-expressed
in patients with IPF. The increased CXCR4 expression by IPF MSCs suggests that
the bone marrow is probably implicated in the pathophysiology of IPF by
mobilising resident MSCs in response to or preceding lung injury [5]. Further
study will confirm that whether this MSC mobilisation is a mere attempt to repair
lung injury or solely aggravates fibrosis in IPF.

6.2.4 Bronchial Asthma

Bronchial asthma, one of the most common chronic inflammatory lung diseases,
affects over 300 million people world-wide [76]. Asthma is characterised by
reversible airway obstruction, hyper-responsiveness of airway smooth muscle, and
airway inflammation. There is no permanent curative treatment for asthma; most of
the patients remain symptomatically controlled by combined mediation of bron-
chodilator and steroids. However, approximately 5 % of patients with asthma are
resistant to conventional therapy and suffer from substantial morbidity and mor-
tality [117]. The ability of MSCs to modulate the immune system encouraged
researchers to explore the potential of MSCs as an anti-asthmatic therapy.

The ragweed-induced mouse asthma model was used to demonstrate that
administration of bone marrow-derived MSCs ameliorated allergic and inflam-
matory responses in the airway [84]. After transplantation, animals were protected
from the majority of asthma-specific pathological changes, including inhibition of
eosinophil infiltration and excess mucus production in the lung, decreased levels of
Th2 cytokines (IL-4, IL-5, and IL-13) in bronchial lavage, and lowered serum
levels of Th2 immunoglobulins (IgG1 and IgE) [84].
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6.3 Pulmonary Vascular Disease

Pulmonary vascular disease is an umbrella term used to describe a group of
conditions associated with damage or alterations to the lung vasculature [35].
Diseases within this realm include pulmonary hypertension, pulmonary embolism,
pulmonary veno-occlusive diseases, arterio-venous malformation and pulmonary
edema [41]. Pulmonary hypertension is frequently associated with lung paren-
chymal damage and can present as a secondary complication of chronic lung
disease [35, 41]. The remaining conditions within the group are frequently asso-
ciated with vascular and cardiac pathologies.

6.3.1 Pulmonary Hypertension

Pulmonary hypertension (PH) is rapidly progressive and often fatal disease char-
acterised by increased pulmonary arterial pressure, right heart dysfunction, and
lung vasculature remodelling leading to loss of alveolar vasculature [97]. MSC-
based therapy has been explored for application in the regeneration of pulmonary
vasculature because they secrete VEGF a potent stimulator of neovascularisation.
Intratracheal administration of bone marrow-derived MSCs in the monocrotaline-
induced rat PH model attenuated PH [9]. Transplantation of MSCs reduced
monocrotaline-induced pulmonary arterial pressure and improved pulmonary
vasculature through paracrine mediator(s). Immunohistochemistry showed no
evidence of endothelial differentiation of MSCs [9].

Intravenous administration of MSCs and eNOS-overexpressing MSCs in the
monocrotaline-induced rat PH model also resulted in attenuation of PH and improved
right ventricular hypertrophy in comparison to un-treated control groups [61].
Interestingly, the reduction of right ventricular hypertrophy was significantly higher
in the eNOS-overexpressing MSC treated group in comparison to the MSC groups,
suggesting that MSC-mediated improvement of pulmonary vasculature in PH could
be driven by modulation of nitric oxide secretion by the vascular endothelium [61].

7 Tissue Engineered Lung Tissue

Current research in the tissue engineering field is focused on exploration of
3-dimensional tissue culture systems for use in development of functional lung
tissue. The ultimate ambition of these studies is to reduce donor-dependent lung
transplantation [85, 122]. Because of the unique architecture of the lung and its
anatomical and physiological complexity, this presents a major challenge. Tissue-
engineered tracheas (wind pipe) have been developed using MSCs isolated from
various sources before being cultured on biodegradable and biosynthetic scaffolds to
generate tracheal cartilage for the repair of congenital tracheal defects in both animal
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and human clinical trial models [88, 89]. Very recently, a group of tissue engineers,
stem cell researchers, and medical professionals developed a functional human
airway by culturing MSC-derived chondrocytes on an acellular tracheal scaffold,
which was subsequently transplanted in a female patient who had suffered airway
damage from tuberculosis [73]. Macchiarini and colleagues first decellularised a 7-
cm long segment of human trachea taken from a 51-year-old white female donor who
had died of cerebral hemorrhage. The recipient’s bone marrow-derived MSCs were
differentiated into chondrocytes and airway epithelial cells cultured using in vitro
tissue culture system. The MSC-derived chondrocytes were seeded on the external
surface of the acellular trachea and epithelial cells seeded on the luminal surface, in
an equal ratio, and cultured in an air–liquid interface rotating bioreactor for 96 h.
After in vitro preparation, the tracheal construct was transplanted to the left bronchus
of the recipient, which improved breathing difficulties without graft rejection [73].
This achievement should encourage the development of more complicated parts of
the lung, such the alveoli and pulmonary vasculature, in the near future.

8 Challenges for MSC Therapy in Pulmonary Disease

Although pre-clinical data provide evidence of promising therapeutic benefits of
MSCs in various pulmonary diseases, many hurdles remain. Some important
parameters such as MSC choice, dose, timing, route of administration, and selection
of suitable clinical conditions for cell therapy need to be established before clinical
application [2]. As a route of administration, intravenous, intra-arterial, and intra-
tracheal routes have all been implemented in animal models for MSC delivery. MSC
engraftment was higher when administered into injured lungs through the intrave-
nous route [43], whereas administration through the intra-arterial route was
accompanied by complications associated with microvasculature occlusion [45].
The intratracheal route was also demonstrated to be suitable for efficient engraftment
[52, 70]. Clinical trials of MSCs in pulmonary diseases, such as COPD, although
safe, have not yet evidenced an appropriate efficacy of repair. The prospects of
MSC-based regenerative cell therapy for the treatment of pulmonary diseases will be
determined by the outcome of future large-scale clinical trials.
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