
Transdifferentiation of Stem Cells:  
A Critical View
Ina Gruh and Ulrich Martin

Abstract Recently a large amount of new data on the plasticity of stem cells 
of various lineages have emerged, providing new perspectives especially for the 
therapeutic application of adult stem cells. Previously unknown possibilities of 
cell differentiation beyond the known commitment of a given stem cell have been 
described using keywords such as “blood to liver,” or “bone to brain.” Controversies 
on the likelihood, as well as the biological significance, of these conversions almost 
immediately arose within this young field of stem cell biology. This chapter will 
concentrate on these controversies and focus on selected examples demonstrating 
the technical aspects of stem cell transdifferentiation and the evaluation of the tools 
used to analyze these events.
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Abbreviations

BM Bone marrow
BMC Bone marrow cells
CAC Circulating angiogenic cells
eGFP Enhanced green fluorescent protein
EPC Endothelial progenitor cells
FISH Fluorescence in situ hybridization
GFP Green fluorescent protein
HNF Hepatocyte nuclear factor
HSC Hematopoietic stem cells
HUVEC Human umbilical cord vein cells
MAPC Multipotent adult progenitor cells
MHC Myosin heavy chain
MNC Mononuclear cells
MSC Mesenchymal stem cells
NOD-SCID Nonobese diabetic severe combined immunodeficient
NRCM Neonatal rat cardiomyocytes
USSC Unrestricted somatic stem cells

1 Introduction

During the past decade, stem cell research has become a rapidly evolving field 
providing new insights into developmental biology, as well as new hope for thera-
peutic applications. The most versatile stem cells to date are pluripotent embryonic 
stem cells (ESC) with the capability of differentiating into the whole panel of 
somatic cell types derived from all three germ layers, i.e., endoderm, mesoderm and 
ectoderm. Some cell types which can be generated from adult tissue have now been 
described to have similar characteristics; these cells include the so called “induced 
pluripotent” stem (iPS) cells [1, 2] or germ-line derived stem cells [3]. Notably, it 
is not clear at present whether the adult testis contains rare pluripotent stem cells 
in vivo. It is considered more likely that isolated unipotent spermatogonial stem 
cells can be reprogrammed into pluripotent stem cells under certain culture conditions. 
In contrast to ESC, the natural potential of stem and progenitor cells found in various 
organs of the adult body appears to be limited and was initially considered restricted 
to cells related to the respective organs, or at least derived from the same germ 
layer. This concept was challenged by reports on the plasticity of stem cells of 
various lineages going beyond these boundaries, an event which is often referred to 
as “transdifferentiation.”
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However, a critical view on the “transdifferentiation of stem cells” should 
start with a critical view on the term itself. The observation that one cell type can 
change its phenotype and become another cell type in vivo was described in 
1922 by Maccarty et al. to occur in ovarian tumors [4]. This phenomenon was 
termed “metaplasia” and believed to be mainly a response to physiological or 
pathological stress.

A classical example of metaplasia is the epithelial–mesenchymal transition 
(EMT), a highly conserved and fundamental process, mediated by transforming 
growth factor b (TGF-b) signaling, that governs morphogenesis in embryonic 
development and may also contribute to cancer metastasis [5]. The most promi-
nent feature of EMT is the complete loss of epithelial traits, such as E-cadherin 
expression, by the former epithelial cells and the acquisition of mesenchymal 
characteristics, such as vimentin and fibronectin expression, gaining invasive 
motility and others [6, 7].

In the adult organism, examples of metaplasia can be found in the eye, with 
reports dating back as early as 1934 [8]. More recent reports include the conver-
sion of limbal basal epithelial cells into corneal epithelial cells [9], retinal 
pigmental epithelial (RPE) cells into neural epithelium [10], conjunctival epithe-
lial cells into corneal epithelium [11] and neural retina into lens epithelium [12]. 
Another form of metaplasia in the eye, the conversion of lens epithelial cells into 
myofibroblasts [13], reflects a common mechanism of the body in response to 
injury, i.e., the replacement of functional tissue specific cells by myofibroblasts, 
e.g., in scar formation. This process is mediated by increased levels of tumor 
necrosis factor a (TNF-a) and/or TGF-b, and has been described for a large vari-
ety of cell types including, but not limited to, fat storing cells in the liver [14], 
tubular epithelial cells in the kidney [15], keratocytes in the skin [16], fibroblasts 
in the lung [17], the heart [18], and the prostate [19], as well as Schwann cells in 
the brain [20].

“Transdifferentiation is a subclass of metaplasia and by definition an irreversible 
switch of one already differentiated cell to another, resulting in the loss of one 
phenotype and the gain of another” [21].

Like other sources, this statement by Eberhard and Tosh explicitly defines 
“transdifferentiation” as a “nonstem cell” transformation. Therefore, under a criti-
cal view, the expression “transdifferentiation of adult stem cells” seems to be con-
tradictory in itself. However, in recent years this classical definition has been 
broadened when it became evident that adult stem cells with a presumed commit-
ment not only underwent differentiation into anticipated progenies, but differentia-
tion also resulted in phenotypes beyond the expected lineage of the respective stem 
cells. This “plasticity,” which has been defined as the ability to undergo transdif-
ferentiation, can be seen, for example, in the differentiation of hematopoietic stem 
cells into nonblood cells. Subsequently, we will use this broadened definition to 
investigate the alleged transdifferentiation of stem cells into, or from various tissues, 
reviewing conflicting reports in this relatively new field of stem cell research with 
a focus on technical aspects of the given data, the methods used, and their power to 
prove differentiation events unequivocally.
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Early reports on this previously unobserved form of differentiation were fairly 
surprising: “… But just because we scientists were surprised, it does not mean that 
the cells themselves were surprised by their broad potential! …” Eisenberg and 
Eisenberg [24].

3 Examples of Adult Stem Cell Transdifferentiation

3.1 Transdifferentiation into Hepatocytes

3.1.1 Hematopoietic Stem Cells

In vivo, liver progenitor/oval cells differentiate into hepatocytes and biliary epithe-
lial cells, repopulating the liver when the regenerative capacity of hepatocytes is 
impaired. Bone marrow (BM) derived hematopoietic stem cells (HSC), which, 
apart from their putative main function in the body, i.e., replenishing blood cells, 

2 Mechanism of Stem Cell Transdifferentiation

Stem cells were thought to differentiate usually into one or more typical cell types 
of the very tissue from which the respective stem cell originated. In addition to this 
lineage-restricted multipotentiality, stem cells, under certain circumstances seem to 
be able to cross lineage boundaries and differentiate into atypical cell types, or, as 
Rota et al. expressed it, to “break the law of tissue fidelity” [22]. Theoretically, this 
transdifferentiation can occur directly, or via the generation of an intermediate cell 
type. In this case, a de-differentiation of the stem cell would be followed by a sub-
sequent differentiation into another cell type [23] (Fig. 1).

Fig. 1 Mechanism of stem cell transdifferentiation. Modified after Koestenbauer et al. [23]
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have also been associated with organ repair. Transdifferentiation has been proposed 
as one underlying mechanism. After Petersen et al. identified BM as source of 
hepatic cells in 1999 [25], Lagasse et al. confirmed a therapeutic effect of HSC 
transplantation in mice with an inherited liver disease [26] and Theise et al. dem-
onstrated similar effects in humans [27]. This idea was then challenged by contra-
dictory reports by Wagers et al. [28], Dahlke et al. [29] and others [30, 31], 
introducing cell fusion as an alternative mechanism to transdifferentiation. Closer 
investigation of the methods used to analyze stem cell transdifferentiation in these 
respective studies provides insight into some of the contradicting results.

Petersen et al. recognized the bone marrow as a potential source of hepatic oval 
cells using cross-sex or cross-strain BM and whole liver transplantation in rats to 
trace the origin of the repopulating liver cells [25]. Following liver injury a propor-
tion of the regenerated hepatic cells were shown to be donor-derived as identified by 
markers for Y-chromosome, dipeptidyl peptidase IV (DPP IV) enzyme, and L21-6 
antigen. Immunohistochemical staining of hepatocyte-specific cytokeratins and flu-
orescence in situ hybridization (FISH) for X- and Y-chromosomes identified hepa-
tocyte engraftment. This was observed both in human females receiving male BM 
transplants and in male recipients of orthotopic female liver transplants [27]. In this 
study, peak values were observed in one of the liver transplant recipients with recur-
rent hepatitis C. Therefore, this setting resembled an injury approach in an animal 
model like that of Lagasse et al. who demonstrated that mice with an inherited liver 
disease (corresponding to human tyrosinaemia type 1) could be cured by HSC trans-
plantation leading to the reconstitution of functioning mature hepatocytes [26].

In follow-up studies, more sophisticated methods have been used to investigate 
the controversial fate of hematopoietic stem cells in the liver. Using chimeric ani-
mals, as well as green fluorescent protein (GFP)-positive:GFP-negative parabiotic 
mice, Wagers et al. showed that single HSC robustly reconstituted the BM, as well 
as peripheral blood leukocytes in these animals, but did not contribute appreciably 
to nonhematopoietic tissues, including brain, kidney, gut, liver, and muscle. It was 
concluded that transdifferentiation of circulating HSC and/or their progeny is an 
extremely rare event, if it occurs at all [28]. Wang et al. performed serial transplan-
tation of BM-derived hepatocytes [31]. Southern blot analysis and cytogenetic 
analysis of hepatocytes transplanted from female donor mice into male recipients 
provided evidence of fusion between donor and host cells rather than liver-specific 
(trans-) differentiation of hematopoietic stem cells. Reviewing the role of various 
stem cell populations, including hematopoietic stem cells in liver regeneration, 
Dahlke et al. claimed that closer scrutiny of the data published by Lagasse et al. 
[26] also reveals that cell fusion rather than transdifferentiation appears to be 
responsible for liver regeneration in their model [29].

Further studies investigating whether BM-derived liver progenitor/oval cells can 
repopulate the liver were unable to confirm the early data by Theise et al. and 
Lagasse et al. One possible explanation for this discrepancy might be the time point 
of analysis. Menthena et al. transplanted lethally irradiated female DPP IV-negative 
mutant F344 rats with wild-type male F344 BM cells [30]. Initially, donor-derived 
cells were detected in all liver sections of recipient rats after the application of 



78 I. Gruh and U. Martin

different liver injury protocols. However, most of the donor-derived clusters disap-
peared over time and very few oval cells (less than 1%) and none of the small 
hepatocytic clusters showed double labeling for the donor-derived DPP IV and 
hepatocyte markers. Consequently, the authors conclude that the sources of oval 
cells and small hepatocytes in the injured liver are endogenous liver progenitors 
which do not arise through transdifferentiation from BM cells.

In a comprehensive review of the available data, Thorgeirsson et al. suggested 
that one or more types of hematopoietic cells may rarely acquire the hepatocyte 
phenotype in the liver (frequency ~10−4). However, the nature of the hematopoietic 
cells involved and the mechanisms responsible for acquisition of a hepatocyte phe-
notype are still controversial. HSC do not appear to be direct precursors of hepato-
cytes; instead hepatocytes that carry a BM tag can be generated by fusion of 
hepatocytes with cells of the macrophage–monocyte lineage [32], which have been 
reported to be highly fusogenic [33]. Thorgeirsson et al. concluded that hematopoi-
etic cells contribute little to hepatocyte formation under either physiological or 
pathological conditions, but may provide cytokines and growth factors that promote 
hepatocyte functions by paracrine mechanisms.

Thus, an important question was raised by Thorgeirsson et al., that is which 
specific type of hematopoietic stem cell may be able to support liver regeneration. 
Meanwhile, different subsets of HSC were analyzed with respect to their hepatic 
differentiation capacity [34–36], again yielding contradictory findings. The discus-
sion around stem cell identity and definition of a pure population involves another 
issue, namely the request for the use of single cells as the ultimate test for multipo-
tentiality of a given stem cell. In 2001 Krause et al. demonstrated multiorgan, mul-
tilineage engraftment by a single BM-derived stem cell using an elegant model of 
serial stem cell transplantation in mice [37]. Injection of single, selected BM stem 
cells generated a variable proportion of epithelial cells in various organs such as the 
lung, gastrointestinal tract, skin, and liver. Notably in the liver, only BM-derived 
cholangiocytes were detected, and no bone marrow derived hepatocytes [37].

According to Krause et al., the different engraftment frequencies in different 
organs observed in their study may be due to (1) the degree of tissue damage induced 
by the transplant, (2) the residual tissue-specific stem cell capacity within the organ, 
and/or (3) the normal rate of cell turnover in each organ [37]. These factors, how-
ever, might also explain some of the differences in the outcome of other studies, i.e., 
the formation of BM-derived liver cells in the presence of tissue injury [25, 26] while 
no or low numbers of such cells were detected in the absence of injury [27].

Recently, another interesting explanation of apparent transdifferentiation events 
in the liver was proposed. In a comparative study, Brulport et al. transplanted four 
different types of human extrahepatic precursor cells (cord blood derived, mono-
cytes, BM, and pancreatic) into the livers of NOD/SCID mice. Initial results argued 
in favor of hepatic differentiation of the transplanted cells as they stained positive 
for human albumin and glycogen, given that the cells were negative for both markers 
before transplantation. However, cells with human nuclei (detected by in situ 
hybridization with human DNA-specific alu probes) did not show a hepatocyte-like 
morphology. In addition, they did not express cytochrome P450 3A4, a key marker 
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of functional hepatocytes, suggesting that the engrafted human cells represented a 
mixed cell type potentially resulting from partial transdifferentiation. Surprisingly, 
a human albumin-positive cell type with hepatocyte-like morphology was found to 
contain a mouse, but not a human nucleus, therefore challenging the existence of 
human cell transdifferentiation. Although unproven, Brulport et al. suggest hori-
zontal gene transfer as a likely mechanism, especially because small fragments of 
human nuclei were observed in mouse cells that originated from deteriorating trans-
planted cells. In conclusion, Brulport et al. provided evidence not favoring transdif-
ferentiation, but rather suggesting a complex situation including partial differentiation 
of cord blood-derived donor cells and possibly horizontal gene transfer.

3.1.2 Mesenchymal Stem Cells

In addition to hematopoietic stem cells, the BM contains mesenchymal stem cells 
(MSC), another type of stem cell extensively studied for organ regeneration. MSC 
are typically enriched via isolation of the plastic adherent, fibroblast-like cell 
fraction. Despite their functional heterogeneity, MSC populations obtained from 
various tissues commonly express a number of surface receptors including CD29, 
CD44, CD49a–f, CD51, CD73, CD105, CD106, CD166, and Stro1 and lack 
expression of definitive hematopoietic lineage markers including CD11b, CD14, 
and CD45 [38]. Mesenchymal stem cells were also detected in the peripheral blood, 
most likely mobilized from the BM [39].

While their differentiation into adipocytes, chondrocytes and osteocytes as 
described by Prockop et al. [40] has become the gold standard for proving MSC 
differentiation capacity, reports on MSC (trans-)differentiation into other lineages 
such as hepatocytes are highly controversial. Contribution of MSC to the liver has 
been described in baboons by Devine et al. who infused MSC retrovirally tagged 
with enhanced GFP (eGFP) in adult animals following lethal total body irradiation 
[41]. The resulting data, 9–21 months later, suggested that MSC could contribute 
to the liver and possess the capacity to proliferate in a hepatic environment. In vitro 
differentiation into hepatocyte-like phenotypes has also been described for MSC 
derived from several species including mice [42], rats [43] and humans [44].

One problem concerning reports on the potential contribution of BM-derived 
cells to liver regeneration, is the lack of a comparable definition of the cell type 
used. Most of the early studies investigated whole BM preparations, while others 
defined certain subpopulations, such as recycling stem (RS-) cells [45, 46] or 
“human bone-marrow derived multipotent stem cells” (hBMSC) [47]. For example, 
Verfaillie’s laboratory was able to demonstrate that postnatal BM-derived multipo-
tent adult progenitor cells (MAPC) can differentiate into hepatocyte-like cells in 
vitro [48]. While MAPC copurify from the BM with MSC, they are considered a 
distinct population with a different phenotype. Human and rodent MAPC represent 
a CD44-negative, CD45-negative, HLA class I- and II-negative, as well as a cKit-
negative subset of cells. When cultured on Matrigel with FGF-4 and HGF, they 
differentiated into epithelioid cells that expressed hepatocyte nuclear factor 3b 
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(HNF-3b), GATA4, cytokeratin 19 (CK19), transthyretin, and a-fetoprotein by day 
7, and expressed CK18, HNF-4, and HNF-1a on days 14–28 [48]. Another in vitro 
study by Khurana et al. characterized the potential subpopulation of BM cells 
(BMC) involved in the repair of injured liver tissue to be a distinct subset of lineage 
(Lin)-negative BMC coexpressing CXCR4 and oncostatin M receptor b (OSMRb), 
with/without stem cell antigen-1 (sca-1) [49].

Another problem became evident by the identification of cell fusion as the 
underlying mechanism for some of the earlier observations on MSC transdifferen-
tiation, very similar to what has been outlined above for hematopoietic stem cells. 
Alvarez-Diego et al. described the cell fusion between MSC and resident liver cells 
detected by means of sophisticated genetic labeling [50]. For this study, mice 
expressing Cre recombinase ubiquitously under the control of a hybrid cytomega-
lovirus (CMV) enhancer b-actin promoter were used, and the conditional Cre 
reporter mouse line R26R. In this line, the LacZ reporter is exclusively expressed 
after the excision of a loxP-flanked (floxed) stop cassette by Cre mediated recom-
bination, resulting in expression of the LacZ in fused cells.

Nevertheless, cell fusion not only accounts for misleading data on stem cell 
transdifferentiation, but can also have a therapeutic effect. Vassilopoulos et al. 
reported that transplanted BM regenerates liver by cell fusion in a model of tyrosi-
naemia type I [51]. Transplanted mice regained normal liver function and formed 
regenerating liver nodules with normal histology. Their hepatocytes expressed both 
donor and host genes, consistent with polyploid genome formation by fusion of 
host and donor cells.

Partial transdifferentiation was also observed, resulting in a chimeric phenotype 
with the expression of several lineage markers, but missing other markers funda-
mental to a bona fide functional cell type of a particular tissue. Lysy et al. demon-
strated the persistence of a chimerical phenotype after hepatocyte differentiation of 
human BM-derived MSC, with the MSC partially preserving their mesenchymal 
phenotype [52]. Only after transplantation of MSC-derived hepatocyte-like cells 
into the liver of SCID mice did these cells lose their chimeric phenotype, but they 
conserved their hepatocyte-lineage markers, indicating that a hepatic environment 
in vivo is necessary for full maturation into functional hepatocytes.

To date, there is still not a common understanding of the processes occurring 
after transplantation of mesenchymal stem cells into the hepatic environment; thus 
further research will be needed to clarify the mechanism, in addition to the biologi-
cal significance of MSC contribution to the liver.

3.2 Transdifferentiation into Myocytes

In contrast to studies on the hepatic differentiation of HSC, mostly investigating 
liver repopulation by circulating cells in vivo, studies on the conversion of HSC into 
different muscle cell types largely focused on stem cell transplantation via transmu-
ral injection directly into skeletal or heart muscle tissue in vivo.
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In 1998, Ferrari et al. reported that BM cells can contribute to myogenesis in 
response to physiological stimuli [53]. However, according to Ferrari et al., the 
origin of the BM-derived myogenic cells, as well as their physiological role in 
the homeostasis of muscle tissue, could not be defined. Further studies concen-
trated on the identification of the myogenic cell type within the BM. In 2003, using 
a lineage tracing strategy, Corbel et al. showed that the progeny of a single HSC 
can both reconstitute the hematopoietic system and contribute to muscle regenera-
tion [54]. Other reports identified immature myeloid cells as the predominant 
source of myogenic differentiation in vivo. Doyonnas et al. used fluorescence-
activated cell sorter (FACS)-based protocols to test distinct hematopoietic fractions 
and showed that only fractions containing c-kit-positive immature myelomonocytic 
precursors were capable of contributing to muscle fibers after intramuscular injection 
[55]. In a similar approach, Abedi et al. transplanted animals with different popula-
tions of BMC from GFP transgenic mice, and the presence of GFP-positive muscle 
fibers were evaluated in cardiotoxin-injured tibialis anterior muscles [56]. GFP-
positive muscle fibers were found mostly in animals that received either CD45-
negative, Lin-negative, c-Kit-positive, Sca-1-positive or Flk-2-positive populations 
of BMC, suggesting that HSC rather than mesenchymal cells or more differentiated 
hematopoietic cells are responsible for the formation of GFP-positive muscle 
fibers. According to Adebi et al. and in contrast to Doyonnas et al., a CD11b-positive 
population of BMC was also associated with the emergence of GFP-positive skeletal 
muscle fibers.

While the contribution of HSC to skeletal muscle regeneration was confirmed 
by several groups, the exact phenotype and developmental stage of contributing 
cells, as well as the exact mechanism remains to be elucidated. Particularly, the 
question as to what extent cell fusion might play a role in this setting has not been 
answered. In contrast, the probability of adult stem cell contribution to cardiac 
muscle is still the subject of an ongoing debate.

3.2.1 Whole Bone Marrow and Hematopoietic Stem Cells

Initial reports on the possibility of BM-derived stem cells to regenerate cardiac 
myocytes after myocardial infarction in vivo were published by the group of Piero 
Anversa [57, 58] and others [59–61] while Eisenberg et al. proposed cardiac dif-
ferentiation in vitro [62].

In 2001, Orlic et al. investigated whether ischemia damaged myocardium could 
be restored by transplanting BMC into infarcted mice [58]. Shortly after coronary 
ligation, Lin-negative/c-kit-positive cells were injected in the heart muscle wall 
bordering the infarct. This study claimed that donor cell-derived, newly formed 
myocardium occupied 68% of the infarcted portion of the ventricle 9 days after 
transplantation. In a similar study from the same group, a sex-mismatched mouse 
model with male eGFP-positive donor animals demonstrated that the engrafted 
cells were positive for eGFP, Y chromosome, and several myocyte-specific proteins 
including cardiac myosin and the transcription factors GATA-4, MEF2, and 
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Csx/Nkx2.5 [57]. The authors concluded that locally delivered BMC can generate 
de novo myocardium, ameliorating the outcome of coronary artery disease by 
improving several hemodynamic parameters [57, 58].

Coculture experiments with adult mouse BM cells and embryonic heart tissue 
seemed to confirm that hematopoietic progenitor cells are able both to integrate into 
cardiac tissue and to differentiate into cardiomyocytes [62]. Remarkably, Eisenberg 
et al. reported that macrophages cocultured with cardiac explants were also able to 
integrate into contractile heart tissue and undergo cardiac differentiation. Another 
cell population from the BM, the so-called Side Population (SP) cells, or highly 
purified CD34-negative/c-kit-positive/sca-1-positive cells, have also been reported 
to differentiate into cardiac lineages and improve cardiac function after transplanta-
tion into infarcted myocardium [60, 61]. According to Agbulut et al. BM-derived 
cells that can contribute to cardiac differentiation are present in total unpurified 
BM, but not in the sca-1-positive hematopoietic progenitor cell population [59]. 
However, the very small number of transdifferentiated cells (5.6 ± 2.3 cells per 3 × 
10−2 mm3 of mouse heart tissue at 7 days after transplantation of 6 × 106 cells) raised 
concern regarding their functional efficiency.

These early reports on transdifferentiation were challenged by contradictory 
data. Nygren et al. reported that BM-derived hematopoietic cells generate cardio-
myocytes at a low frequency through cell fusion, but not transdifferentiation [63]. 
While they were able to confirm earlier reports on efficient engrafting of unfrac-
tionated BMC and a purified population of hematopoietic stem and progenitor cells 
to the injured myocardium, they also found this engraftment to be transient. In 
addition, all engrafted cells expressed the pan-hematopoietic marker CD45, coex-
pressed myeloid blood lineage markers (Gr-1/Mac-1) failed to express cardiac-
specific markers. In contrast, BM-derived cardiomyocytes were observed outside 
the infarcted myocardium at a low frequency and were derived exclusively through 
cell fusion.

These results are in line with the observations of Murry et al., who used both 
cardiomyocyte-restricted and ubiquitously expressed reporter transgenes to track 
the fate of HSC transplants into normal and injured adult mouse hearts [64]. Their 
results indicated that HSC do not readily acquire a cardiac phenotype raising a 
cautionary note for clinical studies of infarct repair. The notion that hematopoietic 
cells may engraft to the myocardium without transdifferentiation into cardiomyo-
cytes was further corroborated by Balsam et al. by showing that HSC adopt mature 
hematopoietic fates in ischemic myocardium [65]. Cells were isolated from trans-
genic mice constitutively expressing GFP driven by the chicken b-actin promoter 
and injected directly into ischemic myocardium of wild-type mice. Abundant GFP-
positive cells were detected in the myocardium after 10 days, but by 30 days few 
cells were detectable. These GFP-positive cells did not express cardiac tissue-
specific markers; rather, most of the donor cells expressed the hematopoietic 
marker CD45 and myeloid marker Gr-1, suggesting that even in the microenviron-
ment of the injured heart, HSC adopt only hematopoietic fates. In contrast to widely 
publicized reports of HSC plasticity, Weissman et al. failed to reproduce transdif-
ferentiation of HSC to lineages comprising skeletal muscle, heart, brain or gut. 
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They concluded that rare cell fusion events and incomplete purifications of HSC 
contaminated with tissue-committed stem cells were likely explanations for the 
other published results [66].

In contrast to the negative findings concerning the transdifferentiation capacity 
of HSC into cardiomyocytes, the Anversa group published further data in favor of 
this phenomenon. In 2005, Kajstura et al. reported that BMC differentiated into 
cardiac cell lineages after infarction, independent of cell fusion [67]. In this publi-
cation, using the same mouse model as described in the reports of Orlic et al., 
transdifferentiation into cardiac myocytes was demonstrated by immunohistology 
followed by morphological measurements of infarcted and regenerated areas in 
addition to Y-chromosome FISH analysis. Finding no evidence of angiogenesis or 
myocyte proliferation in remote parts of the heart, the authors excluded a paracrine 
effect of injected BMC in myocardial recovery. Kajstura et al. attribute the obvious 
discrepancy between their findings and others to (1) technical differences in experi-
mental protocols, (2) identity of the applied donor cell(s), and (3) details in tissue 
preparation and immunocytochemical analysis of the myocardium. However, 
Kajstura et al. did not provide data on long-term engraftment beyond 10 days. In 
addition, the fact that Kajstura et al. did not observe angiogenesis or proliferation 
after cell transplantation, does not unequivocally exclude paracrine effects, e.g., on 
cardiomyocyte survival.

How animated the controversy on the subject has become by now can be esti-
mated from the following statement of Kajstura et al.: “The assumption made by 
Balsam et al. [65] and Murry et al. [64] that the technical approach that they have 
used in the identification and measurement of myocardial structures is superior to 
that used in our laboratory does not reflect any scientific reality but the emotional 
disbelief that bone marrow cells can adopt myocardial cell lineages and repair the 
injured heart.”[67]

Nevertheless, it should be noted that some of the criticism concerning methods 
and conclusions described by the Anversa group might be justified. For example, 
Kajstura et al. report the difficulty of cell transplantation into the infarcted myocar-
dium with a 50% probability of correct injection. To control for this, rhodamine 
particles were added to the cell suspension used for transplantation. It was stated 
that “the unsuccessfully injected mice (no rhodamine particles) were considered the 
most appropriate control animals for the successfully treated mice” [67]. This prac-
tice obviously neglects general (nonspecific) effects of cell transplantation into the 
myocardium, in particular local inflammatory processes that can be expected after 
the usually injection-related death of transplanted cells. In addition, the improve-
ment in heart function after stem cell transplantation reported by Orlic et al. [57] 
leaves room for discussion as acquisition of functional data in small animals is 
extremely difficult and should be interpreted with caution.

The accuracy of Y-chromosome FISH analysis may be another issue. Kajstura et 
al. reported that this method underestimated the frequency of positive cells by 
nearly 50%. Other studies reported visualization of 62% of nuclei in a male mouse 
due to partial nuclear sampling as the plane of each section does not always cut 
through the Y-chromosome [37]. Thus, FISH data can show significant variations. 
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On the other hand, it has been argued that at least in the human system, data is 
available which demonstrate the existence of male cells in a female’s heart, totally 
unrelated to any cell transplantation, which in turn might lead to false-positive 
results. This phenomenon is attributable to the persistence of fetal cell microchi-
merism following the birth of male children, a fact that should be considered when 
using sex-mismatched transplantation models [68, 69].

Thus, the phenomenon of cardiac transdifferentiation of HSC is still controver-
sially discussed and should be addressed diligently and with an open mind in the 
future.

3.2.2 Mesenchymal Stem Cells

Most of the early reports on cardiac differentiation of MSC focused on the effect of 
5¢-azacytidine on MSC marker expression in vitro [70–72] and on the outcome of 
subsequent MSC transplantation into the infarcted myocardium [73–75] with con-
tradictory results. Although some studies claimed improvement of heart function 
after stem cell transplantation [75, 76], different explanations have been proposed 
including transdifferentiation [75], scar formation [77], improved revascularization 
[78] and/or cell fusion [50]. In contrast, and even though their influence on cardiac 
function has not been evaluated yet, calcification and/or ossification after MSC 
transplantation into the infarcted myocardium as demonstrated by Breitbach et al. 
show that these cells can also adapt fates with potentially deleterious effects in the 
engrafted tissue [79].

Wakitani et al. were among the first to describe a myogenic differentiation of 
BM-derived mesenchymal stem cells after treatment with the DNA demethylating 
compound 5¢-azacytidine [72]. Rat BM-derived MSC were exposed to 5¢-azacytidine 
for 24 h resulting in long, multinucleated myotubes with spontaneous contractions. 
Later studies using immortalized murine MSC, demonstrated not only the forma-
tion of myogenic structures, but the resulting cells displayed spontaneous beating, 
as well as the expression of several cardiac marker proteins, specific characteristics 
of cardiac myocytes [71]. Likewise, cardiac differentiation of murine MSC was 
described after cocultivation with rat cardiomyocytes [80]. However, it should be 
noted that the expression of certain cardiac marker genes alone, does not provide 
evidence for cardiac transdifferentiation. Other evidence, including the absence of 
markers from other lineages should be demonstrated, in addition to functionality of 
the resulting cell type.

Importantly, the DNA demethylating agent 5¢-azacytidine does not induce spe-
cific genes, but effects global gene expression, suggesting that partial “reprogram-
ming” rather than transdifferentiation of the MSC may occur. Recently, 5¢-azacytidine 
has been used to enhance the reprogramming efficiency of mouse and human 
somatic stem cells by ectopic expression of transcription factors, thus generating 
induced pluripotent stem (iPS) cells, by approximately tenfold [81].

Further studies aiming at the differentiation of MSC isolated from rat bone 
marrow yielded contradictory results. In contrast to Wakitani et al., other studies 
were not able to generate spontaneously contracting cells after 5¢-azacytidin or 5¢-
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aza-2-deoxycytidin treatment of MSC. Furthermore, the resulting cells did not 
express cardiac marker proteins such as cardiac myosin heavy chain, connexin 43 
or troponin [70]. Experiments in rats [74] and pigs [75] using marrow stromal cells 
showed an improved heart function after transplantation of 5¢-azacytidine-treated 
cells in an infarct model, as well as induced angiogenesis in the scar. However, 
improvement of cardiac function was also observed after transplantation of 
untreated BM stromal cells [73], as well as the formation of fibrotic scar tissue [77]. 
In the following years similar findings have been described after transplantation of 
human BM-derived cells [47, 76, 82].

Moreover, the mechanism of tissue engraftment and improvement of cardiac func-
tion is controversial. On one hand, cellular effects could play a decisive role if the 
applied cells led to an improvement by differentiation into functional cardiomyo-
cytes. On the other hand, there are also reports on the fusion of transplanted stem cells 
with cardiomyocytes [50, 83], which may account for false-positive data on transdif-
ferentiation. Nevertheless, fusion may also have a therapeutic effect as described for 
liver damage above [51]. Importantly, injected stem cells may exert paracrine effects 
potentially influencing the survival and/or proliferation of endogenous myocardial 
cells thereby reducing scar formation. Additionally, paracrine effects could result in 
stabilization of the infarcted area leading to an improvement of cardiac function. As 
the expression and secretion of cytokines, i.e., FGF, VEGF and angiopoetin, are 
upregulated in MSC under hypoxic conditions [84], enhanced vascularization by 
these cytokines is also plausible. In fact, the differentiation of MSC into endothelial 
phenotypes [78], as well as induction of cardiac nerve sprouting after MSC injection 
in a pig model of myocardial infarction [85] have been described.

Therefore, neither improvement of cardiac function nor homing of the trans-
planted cells to the myocardium as such, can provide clear evidence for the transdif-
ferentiation of MSC into cardiomyocytes. For that reason, there is a clear need to 
investigate the cellular events following transplantation in order to analyze further 
cell fate, i.e., engraftment and transdifferentiation. Müller-Ehmsen et al. showed 
effective engraftment, but poor mid-term persistence of mononuclear (MNC) and 
mesenchymal BMC in acute and chronic rat myocardial infarction in a sex-mis-
match setting [86]. The percentage of intramyocardially transplanted MNC or 
BMC in the heart decreased rapidly, independent from the donor cell type, donor 
cell number, and the application time (0–7 days post myocardial infarction). 
Besides the heart, transplanted cells were found predominantly in the lung and 
more rarely in liver and kidney. In other organs, donor cells were either absent or 
detected few in number.

Although Rota et al. worked with a similar animal model using transgenic mice 
for transplantation of BMC to the myocardium in a sex-mismatch setting, they 
obtained completely different results. According to their comprehensive study using 
sophisticated methods for donor cell detection and phenotype analysis, it was found 
that BMC adopt a cardiomyogenic fate in vivo [22]. Rota et al. reported that BMC 
engraft, both survive and grow within the spared myocardium following infarction 
by forming junctional complexes with resident myocytes. BMC and endogenous 
cardiomyocytes expressed connexin 43 and N-cadherin at their interface, as deter-
mined by immunofluorescence staining using primary antibodies directly labeled by 
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quantum dots to enable discrimination from autofluorescence. BMC subsequently 
transdifferentiated into cardiomyogenic and vascular phenotypes. This process 
seemed to occur independently of cell fusion (only diploid DNA and a maximum of 
two sex chromosomes were detected within the cells) and ameliorated structurally 
and functionally the outcome of the heart after infarction [22].

Most of the data presented in this study relate to rather early time-points after 
transplantation (up to 48 h) and some of the data on long-term engraftment have 
been challenged by other studies. Rota et al. using two-photon laser scanning fluo-
rescence microscopy (TPLSM) demonstrated that some donor-derived cells 
develop electrical stimulation-evoked rhod-2 transients in synchrony with host 
cardiomyocytes 30 days following transplantation [22]. However, Scherschel et al. 
claim that control experiments demonstrating sufficient in situ z-axis spatial resolu-
tion to discriminate between signals originating in donor and host cells under the 
experimental conditions employed were lacking [87]. Based on previous reports 
[88, 89], they conclude that it is highly possible that the rhod-2 transients observed 
in donor-derived cells in the study arose as a consequence of fluorescence contami-
nation from juxtaposed host cardiomyocytes, and do not represent intrinsic cardio-
myogenic activity in the donor cell.

Ghodsizad et al. detected neither transdifferentiation nor fusion of cord blood 
derived mesenchymal cells after transplantation into the acutely ischemic lateral 
wall of the left ventricle [90]. They applied an alternative somatic cell type, human 
cord-blood derived unrestricted somatic stem cells (USSC), in a porcine model of 
acute myocardial infarction. Although a remarkable improvement of cardiac func-
tion was demonstrated using transesophageal echocardiography, sex- and species-
specific FISH/immunostaining failed to detect engrafted donor cells 8 weeks 
postinfarction. Since differentiation, apoptosis, and macrophage mobilization at the 
infarct site were excluded as underlying mechanisms, paracrine effects are most 
likely to account for the observed functional effects of the USSC treatment. One 
possible reason for the failure of long-term engraftment might originate from the 
fact that a xenogeneic model was used for this study. As immunodeficient pigs are 
unavailable to date, to mimic the setting of small animal experiments in SCID mice, 
an immunosuppressive regimen has to be used in this setting. However, it is impor-
tant to note that an effective immunosuppression in the human-to-pig xenotrans-
plantation setting is difficult to achieve and a rapid rejection of the xenograft might 
have occurred despite the medication.

In summary, the outcome following stem cell transplantation into the infarcted 
heart seems to depend strongly on the donor cell type(s) and particularly on the 
animal model used in the respective study.

3.2.3 Endothelial Progenitor Cells

The blood is also a source for another progenitor cell type that has been tested for 
heart repair. Circulating endothelial progenitor cells (EPC) and endothelial cells 
have been proposed for transdifferentiation into cardiomyocytes [91, 92]. However, 
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these reports have been challenged by others that attributed these findings either to 
cell fusion [93], inappropriate viral labeling of transplanted donor cells [94], or 
concerns regarding donor cell detection and stringency of data analysis [95]. In addi-
tion, serious doubts on the cell type identity of EPC have been raised [96–98].

The identification of human EPC disproved the assumption that a postnatal vas-
cularization depended exclusively on the proliferation and migration of terminally 
differentiated endothelial cells. EPC were identified based on their expression of 
CD34 and flk-1, as well as their adherence to tissue culture plastic surfaces. In 
contrast to leukocytes, they are CD45-negative and express further endothelial 
marker proteins, e.g., Tie-2 and CD117 [99].

After transplantation of labeled EPC into ischemic tissue of mice and rabbits, the 
cells were incorporated into neovascularized areas of capillaries and smaller arter-
ies [99]. Thus, in the adult organism EPC may ameliorate reduced perfusion as in 
myocardial infarction and lead to improved cardiac function [100].

First reports on a cardiac transdifferentiation of endothelial cells were published 
by Condorelli et al. in 2001. Endothelial cells of various origins were labeled first 
using adenoviral or lentiviral vectors and subsequently cocultivated with neonatal 
rat cardiomyocytes or transplanted into ischemic areas of an infarcted mouse heart. 
In up to 10% of the labeled cells, the expression of cardiac marker proteins was 
detected by immunofluorescence staining. Such double staining as an indicator of 
transdifferentiation of endothelial cells was observed only after direct cell–cell 
contact of endothelial cells and cardiomyocytes [92]. However, these results might 
potentially be due to the transfer of viral vectors from one cell type to another as 
was proposed by Blomer et al. [94] and others [101, 102].

In contrast to Condorelli et al., Welikson et al. reported in 2006 that human 
umbilical vein endothelial cells (HUVEC) fuse with cardiomyocytes, but do not 
activate cardiac gene expression [93]. Analysis with a Cre/lox recombination assay 
indicated that virtually all HUVEC containing cardiac markers had indeed fused 
with cardiomyocytes.

A similar controversy exists on the cardiac differentiation potential of endothe-
lial progenitor cells. In 2003, cardiac differentiation of circulating human endothe-
lial progenitor cells after cocultivation with neonatal rat cardiomyocytes was 
described by Badorff et al. [91]. Within these cultures, an increase in cell size was 
demonstrated for the 1,1¢-dioctadecyl-3,3,3¢,3¢-tetramethylindocarbocyanine (DiI)–
labeled EPC and immunofluorescence staining determined that approximately 10% 
of these labeled cells expressed cardiac marker proteins. Notably, double staining 
was observed only after direct cell–cell contact. Dye transfer between EPC and 
cardiomyocytes demonstrated the formation of gap junctions between the two cell 
types. Control experiments were carried out using fixed cardiomyocytes to exclude 
the possibility of cell fusion as an underlying reason for the double labeling.

To date, cardiac differentiation of EPC as described by Badorff et al. has not 
been confirmed by other groups and the phenotype of the cells used in the study is 
controversial. Different studies defined EPC as VEGFR2-positive/CD133-positive/
CD34-positive subpopulations of MNC [103], or as CD34-positive/VEGFR2-
positive [104] or CD133-positive/VEGFR2-positive cells originating from the BM 
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and mobilizing as the need arises [105]. However, CD34-negative cell populations 
have also been identified which have differentiated into EPC and endothelial cells 
[106]. While the cells described by Badorff et al. were assumed to have an endothe-
lial phenotype due to the uptake of acetylated low density lipoprotein (LDL) and 
binding of the lectin Ulex europaeus agglutinin-1 (UEA-1), more recent data sug-
gest that these cells represent almost exclusively monocytes/macrophages [95, 98]. 
Only a small percentage of the cells express endothelial markers; therefore, they 
have been termed “circulating angiogenic cells“ (CAC) [96]. The CD14-positive/
CD34-negative cell population within the expanded EPC might exert a proang-
iogenic effect by releasing paracrine factors [107]. In addition, CD14-positive cells 
release cytokines that may be important signals for wound healing [108, 109]. 
Recently, it has been confirmed that blood-derived monocytes [98], as well as other 
immune cells [97] can mimic EPC due to LDL uptake and lectin binding abilities 
in addition to colony forming capacities.

In contrast to Badorff et al., a study by our group performing coculture experi-
ments with DiI-labeled huEPC and neonatal rat cardiomyocytes (NRCM) did not 
support transdifferentiation of huEPC into functionally active cardiomyocytes. 
Gruh et al. analyzed the cocultivated cells by means of flow cytometry, 3D confocal 
laser microscopy, species-specific RT-PCR for the expression of human cardiac 
marker genes, and electron microscopy [95]. Although FACS analysis and conven-
tional wide-field fluorescence microscopy suggested the existence of DiI-positive 
human cardiomyocytes in cocultures, we obtained no convincing evidence of car-
diac differentiation of huEPC. Rather, DiI-positive cardiomyocytes were identified 
as necrotic NRCM or NRCM-derived vesicles with high levels of autofluorescence, 
or alternatively, as NRCM lying on top of or below labeled huEPC or huEPC frag-
ments. Accordingly, no expression of human Nkx2.5, GATA-4, or cardiac troponin 
I was detected. Although it cannot be excluded that slightly different culture condi-
tions may have prevented transdifferentiation in our own experiments, our data 
highlight technical limitations of FACS analysis and conventional 2D immunofluo-
rescence, as well as confocal microscopy for the analysis of stem cell differentiation 
in coculture settings.

3.3 Transdifferentiation into Neuronal Cells

3.3.1 Hematopoietic Stem Cells

First reports on the contribution of HSC to the brain described the differentiation 
into microglia and macroglia in adult mice [110], and were later confirmed in sev-
eral studies [111, 112]. In contrast, the contribution of HSC to other cell types in 
the brain is controversial and initial reports on neuronal differentiation of HSC 
[113–115] could not be confirmed by others [116, 117]. These discrepancies have 
led to a discussion on the validity of different approaches used for cell tracing in 
transplantation experiments [118].
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To test the ability of adult HSC to contribute to the central nervous system, 
Eglitis et al. transplanted adult female mice with donor BMC genetically marked 
with either a retroviral tag or by using male donor cells [110]. Using in situ hybridi-
zation histochemistry, a continuing influx of BM-derived hematopoietic cells into 
the brain was detected. These cells were widely distributed throughout regions in 
the brain, including the cortex, hippocampus, thalamus, brain stem, and cerebel-
lum. When in situ hybridization histochemistry was combined with immunohisto-
chemical staining using lineage-specific markers, some BM-derived cells were 
positive for the microglial marker F4/80. Other BM-derived cells expressed the 
astroglial marker glial fibrillary acidic protein (GFAP). From these results, Eglitis 
et al. concluded that some microglia and astroglia arise from a precursor that is a 
normal constituent of adult BM. This idea became widely accepted [111, 112]; 
however it was followed by controversial discussions regarding the contribution of 
HSC to other cell types in the brain.

In 2000, Brazelton et al. reported the expression of neuronal phenotypes from 
BM-derived cells, following intravascular delivery of genetically marked adult 
mouse BM into lethally irradiated adult mice. These cells persisted in the brain for 
at least 6 months after transplantation, as assessed by flow cytometry and showed 
typical neuronal gene expression profiles (NeuN, 200-kilodalton neurofilament, 
and class III beta-tubulin) demonstrated by confocal microscopy [113].

In the same year, Mezey et al. showed that transplanted adult BMC migrated into 
the brain and differentiated into cells that expressed neuron-specific antigens [114]. 
Later, the same group also investigated whether HSC contribute to neuronal cells 
in humans. To this effect, they examined postmortem brain samples from females 
who had received BM transplants from male donors [115]. Using a combination of 
neuron-specific antibodies for immunocytochemistry and FISH histochemistry, 
cells containing Y-chromosomes were detected in several brain regions. Most of 
these cells were identified as nonneuronal (e.g., endothelial cells); however, 
neurons in the hippocampus and cerebral cortex were detected. The distribution of 
the labeled cells was not homogeneous with clusters of Y-chromosome-positive 
cells, suggesting that single progenitor cells underwent clonal expansion and dif-
ferentiation. Mezey et al. concluded that adult human BMC can enter the brain and 
generate neurons in a manner similar to rodent cells.

In contrast to these data, Castro et al. report the failure of BMC to transdifferen-
tiate into neural cells in vivo, both after transplantation of BM-derived side population 
cells, as well as unfractionated BM [116]. None of the recipients had donor-derived 
neural-like cells in the brain and cervical spinal cords, regardless of injury. 
Comments on this report by Mezey et al. point out that this discrepancy might be 
due to the different methodologies used for cell tracing [118]. While Mezey et al. 
used immunocytochemistry in combination with FISH histochemistry for 
Y-chromosome-positive cells in a sex-mismatch model, Castro et al. used geneti-
cally labeled donor cells from a Rosa-LacZ mouse strain expressing the LacZ 
reporter gene under transcriptional control of the Rosa26 promoter. The latter 
approach, however, depends on uniform ubiquitous transgene expression in the 
tissues analyzed, as well as on error-prone detection methods [119]. Therefore, it is 
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not unlikely that the study by Castro et al. underestimated the actual number of 
donor-derived cells in their model.

Interestingly, another study using a reporter gene approach for labeling of HSC 
was also not able to detect transdifferentiation of BM-derived cells into neuronal 
lineages. In 2006, Roybon et al. investigated whether highly purified mouse adult 
HSC, characterized by lineage marker depletion and expression of the cell surface 
markers Sca1 and c-Kit (Lin-negativ/Sca1-positive/c-Kit-positive), can be stimu-
lated to adopt a neuronal fate [117]. In this study, transgenic mice expressing GFP 
under control of the chicken b-actin promoter were used. First, Roybon et al. tried 
to induce neural differentiation in vitro with protocols that have been successfully 
used to differentiate either neuronal or embryonic stem cells or multipotent adult 
progenitor cells from BM into neuronal cells. As a result, up to 50% of the cells 
expressed the neural progenitor marker nestin. However, electrophysiological 
recordings on neuron-like cells showed that these cells were incapable of generating 
action potentials. Therefore, at least in vitro, HSC did not seem to be able to 
differentiate into functional neuronal cell types. According to Roybon et al., neither 
cocultivation with neural precursors nor transplantation into the striatum or cerebel-
lum of wild-type mice, resulted in HSC-derived cells with a true neuronal phe-
notype. Rather, the applied HSC differentiated into macrophage/microglia or died.

One major point of criticism concerning the findings of Castro et al. raised by 
Mezey et al. was that blue LacZ-positive microglia, which like other monocyte/
macrophage cells originate from HSC, were absent from the brains of the trans-
planted animals. In contrast, Roybon et al. did find GFP-positive microglia after 
HSC transplantation. Thus, their method seems valid for the detection of transdif-
ferentiated neuronal cells in principle, in return raising doubts on the data presented 
by Brazelton et al. and Mezey et al. In conclusion, further studies using sophisti-
cated methods are mandatory to unambiguously prove or disprove the contribution 
of BM-derived HSC to functional neuronal cell types in vivo.

3.3.2 Mesenchymal Stem Cells

It was reported by several groups that stem cells isolated from the BM were capable 
of differentiation towards neural like cells (reviewed in [120]). Most studies based 
their conclusions on an evaluation of changes in cell morphology, i.e., the forma-
tion of neurite-like structures, and on the detection of neuronal-cell specific marker 
gene expression, mostly detected by immunohistology. However, other studies 
demonstrated that neuronal marker expression was already present in undifferenti-
ated MSC [121] and is induced in response to stress [122, 123]. In addition, these 
studies questioned the validity of morphological analyses of neuronal transdiffer-
entiation in vitro. While some studies attributed the beneficial effects of MSC 
transplantation to the brain as a result of transdifferentiation [124], immunological 
effects have also been considered [125].

Early reports on neuronal transdifferentiation of MSC were contradicted, for 
example by in vitro experiments based on protocols by Woodbury et al. [126], that 
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used exposure to certain chemicals as a neural differentiation stimulus for MSC. 
Investigation with time-lapse video recording showed that the formation of neurites 
is not the result of an outgrowth of dendrite- and axon-like structures, but merely a 
result of cell shrinkage and retraction of the cell edge in response to stress [122, 
123, 127]. In addition, some neural marker proteins have been found to be 
expressed in undifferentiated MSC [121]. Furthermore, exposure of MSC to stress 
causes an increase in expression levels of the neural markers neuronal nuclei 
(NeuN), neuron-specific enolase (NSE) [123], neurofilament 200 (NF200) and tau 
[122].

In addition, for MAPC from the BM, Raedt et al. reported a baseline expression 
of neural markers beta III tubulin and NF200. Furthermore, the application of several 
protocols for neural differentiation did not result in an increase in expression levels 
as determined using real-time PCR and immunohistochemistry [128].

Nevertheless, in vivo experiments using MSC for transplantation into the brain 
yielded positive results. In 2006, Arnhold et al. investigated the therapeutic poten-
tial of MSC by stereotactic engraftment into the lateral ventricle of adult rats [124]. 
They reported that human BM stromal cells display certain neural characteristics 
and integrate into the subventricular compartment after injection into the liquor 
system and took up a close host graft interaction without any degenerative influence 
on the host cells. Arnhold et al. reported morphological, as well as immunohisto-
chemical evidence for a transdifferentiation of MSC within the host tissue.

In contrast, Gerdoni et al. obtained different results investigating the therapeutic 
effect of MSC transplantation to the brain in experimental autoimmune encephalo-
myelitis [125]. MSC-treated mice showed a significantly milder disease and fewer 
relapses compared to control mice. This was also accompanied with a decreased 
number of inflammatory infiltrates, reduced demyelination, and axonal loss. 
However, no evidence of GFP-labeled neural cells was detected inside the brain 
parenchyma, thus not supporting the hypothesis of MSC transdifferentiation. In 
contrast, the analysis of in vivo T- and B-cell responses and antibody titers suggested 
that the beneficial effect of MSC in experimental autoimmune encephalomyelitis is 
mainly the result of an interference with the pathogenic autoimmune response.

In fact, it is conceivable that any stem cell transplantation may lead to a reaction 
that could be characterized as a “proregenerative inflammation.” In this setting, the 
induced lesion, as well as the transplanted cells can trigger the attraction of immune 
cells to the site of transplantation and result in a proregenerative cytokine release.

4 Critical Aspects of Differentiation Experiments

4.1 Cell Type Identity

Identifying the stem cell type used in experiments investigating transdifferentia-
tion is critical. For a comparative analysis of stem cell plasticity, especially when 
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being performed by different groups, an unambiguous definition of the cell’s 
phenotype is crucial. However, besides inconsistencies in the protocols for isola-
tion and cultivation of the described cells, the rapidly expanding knowledge on 
stem cell populations and subpopulations complicates an objective comparison of 
the existing data. While early reports investigated the fate of “adult BMC” [114] 
or “BM stromal cells” [73], others used different subpopulations. These were clas-
sified either by the expression of single marker proteins like “CD34-positive 
BMC”[35], “purified BM Sca-1-positive cells” [59], or differentiation potential as 
for “multipotent adult progenitor cells (MAPC)” [106] or “human BM-derived 
multipotent stem cells” (hBMSC) [47]. To address inconsistencies, Horwitz et al. 
suggested a clarification of the nomenclature for MSC in an International Society 
for Cellular Therapy position statement [129]. Herein, the authors propose that the 
plastic-adherent cells currently described as mesenchymal stem cells be termed 
multipotent mesenchymal stromal cells, while the term mesenchymal stem cells 
should be reserved for a subset of these (or other) cells that demonstrate stem cell 
activity by clearly stated criteria. These include demonstrations of long-term 
survival with self-renewal capacity and tissue-repopulation with multilineage 
differentiation. For both cell populations, the acronym MSC may be used, however, 
investigators should unequivocally define the acronym in their work.

The analysis of transdifferentiation processes is especially complicated in the 
case of mixed populations or when investigating in vivo migration and homing to 
sites of injury. Besides engraftment of a single cell type potentially leading to the 
regeneration of damaged tissue, synergistic effects might play a key role. This 
might be conceivable following transplantation of BMC with different cell subtypes 
exerting proangiogenic, antiapoptotic and/or antiinflammatory effects. For exam-
ple, the expression and secretion of cytokines like FGF, VEGF and angiopoetin in 
MSC [84], could potentially modulate the transdifferentiation capacity of other cell 
types. The complications resulting from the use of mixed cell populations can be 
circumvented by the clonal transplantation of single cells as performed, for exam-
ple, by Krause et al. [37]. However, this approach has certain limitations and may 
be difficult to perform for many cell types, as in vivo cell survival and proliferation 
capacity following a single cell transplantation are usually low.

One of the most prominent examples of a controversial cell type identification 
is the ongoing debate regarding “endothelial progenitor cells” (EPC) or “circulating 
angiogenic progenitor cells” (CAC). In recent years, difficulties in discriminating 
between EPC and cells of monocytic/macrophage origin became more and more 
evident [91, 96, 99, 103]. It was demonstrated that blood derived monocytes [98], 
as well as immune cells [97] can mimic EPC; thus questioning the validity of ear-
lier reports.

Obviously, not only the potential cell source for transdifferentiation can be 
controversial, but surely also the cell type resulting from this event. The question 
being: which criteria need to be met by the resulting cell to be considered a hepa-
tocyte, cardiomyocyte or neuronal cell? When Lysy et al. investigated the hepatic 
differentiation of MSC, the resulting cells displayed expression of several hepato-
cyte markers such as albumin, alpha-fetoprotein, cytokeratin 18, representing at 
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least “hepatocyte-like” cells [52]. However, it was also demonstrated that these 
cells partially retained mesenchymal markers, suggesting that the cells were not 
“fully” differentiated. Consequently, it seems to be crucial to define the conditions 
that have to be fulfilled by cells to be considered a fully differentiated and most of 
all functional cell type.

4.2 Cell Labeling

As studies on transdifferentiation frequently involve more than one cell type, e.g., 
in cocultivation approaches or transplantation settings, an optimal cell labeling 
method has to be applied for an interpretable read-out of the experiment.

The first possibility for cell labeling is with fluorescent dyes that bind to cellular 
components covalently or noncovalently. For example, in a study investigating the 
cardiac differentiation potential of endothelial progenitor cells, cells were labeled 
through the uptake of DiI-LDL prior to cocultivation with neonatal rat cardiomyo-
cytes [91]. This approach has several drawbacks: (1) dyes are diluted upon further 
cell division, (2) once labeled, dead cells will retain the label and (3) fluorescent 
cell debris can be taken up by other cells, e.g., macrophages, or stick to other cells 
leading to false positive results.

Some of these problems can be overcome using genetic labeling, most com-
monly with reporter genes such as LacZ and GFP. These reporter genes have been 
used in combination with ubiquitous promoters, for example to investigate the 
capacity of BMC to transdifferentiate into neural cells after transplantation to the 
brain. As described above, Castro et al. used genetically labeled donor cells from a 
Rosa-LacZ mouse strain expressing the LacZ reporter gene under transcriptional 
control of the Rosa26 promoter [116], while Roybon et al. used cells expressing 
GFP under control of the chicken b-actin promoter [117]. Both studies did not 
provide evidence for transdifferentiation events, in contrast to Mezey et al., who 
used immunocytochemistry in combination with FISH histochemistry for 
Y-chromosome-positive cells in a sex-mismatch model [115]. It is known, that a 
reporter gene assay depends on uniform ubiquitous transgene expression in the 
analyzed cells; therefore, it is crucial that the transcriptional activity of a given 
promoter is on a similar level in both undifferentiated and differentiated (stem) 
cells. As was demonstrated for murine embryonic stem cells, promoter activity may 
vary significantly throughout the process of differentiation [130]. This issue should 
be considered a possible explanation for discrepancies in the outcome of adult stem 
cell differentiation experiments using genetic labeling.

In addition to the mere labeling of cells by ubiquitous reporter gene expression, 
conditional genetic labeling techniques have added greatly to the knowledge on 
stem cell transdifferentiation. Tissue specific promoters can be used to switch on 
reporter gene expression only in case of differentiation towards a certain cell 
type.
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Rota et al. used the reporters eGFP and a c-myc-tagged nuclear-targeted-Akt 
transgene, both driven by the cardiac-specific a-myosin-heavy-chain (a-MHC) 
promoter, to investigate the cardiomyogenic fate of BMC [22]. However, for this 
approach, the cell specificity of the promoter has to be carefully analyzed, as leaky 
or unspecific expression in other cell types may occur, especially in case of higher 
copy numbers of the transgenes within the cells [131]. Recently, sophisticated 
genetic labeling has been used for the detection of cell fusion. As described above, 
Alvarez-Dolado et al. used a conditional Cre/lox recombination, enabling detection 
of fused cells by X-gal staining for LacZ expression [50].

Another important issue is how the transgene is transferred to the cells. When 
transgenic cell lines or animals are not available, the gene transfer has to be 
performed directly before the experiment, by using either standard transfection 
methods or viral vectors. Both with plasmid transfection and nonintegrating viral 
vectors, e.g., adenoviruses, the problem of signal dilution can occur in dividing 
cells. In contrast, integrating viruses like lentiviral vectors, have turned out to be an 
efficient method for stable gene transfer for both in vitro and in vivo studies. 
However, we have identified an important weakness of this method in cases where 
cells need immediate transplantation after preparation, e.g., to prevent cell death, 
differentiation or dedifferentiation [94]. Although these cells are usually washed 
several times following viral transduction, there may be the risk of viral vector shut-
tle via transplanted cells resulting in undesired in vivo transduction of recipient 
cells. We explored a potential viral shuttle via ex vivo lentivirally transduced car-
diomyocytes in vitro, following transplantation into the brain and peripheral mus-
cle. By this, we demonstrated that even after extensive washing, infectious viral 
vector particles can be detected in cell suspensions. As a result, the lentiviral vector 
particles stably transduced resident cells of the recipient central nervous system and 
muscle in vivo.

This phenomenon can also be seen using other cell types, as was confirmed by 
further studies demonstrating that retroviral particles adhere nonspecifically, or 
“hitchhike,” to the surface of T-cells [132]. After transplantation, secondary trans-
duction has been observed due to the adherence of vector particles to hematopoietic 
target cells [102] or endothelial cells [101]. In some cases, for example in a study 
by Condorelli et al., these findings might be one of the possible reasons for the 
discrepancies among studies investigating stem cell differentiation in transplanta-
tion models and cocultivation systems [92].

4.3 Imaging Techniques

Transplantation models and cocultivation systems suffer from another diffi-
culty, as the identification of transdifferentiated cells can be complex. Methods 
based on immunohistology have to be carefully evaluated with respect to the 
specificity of the obtained signals, inclusion of all necessary controls and 
exclusion of staining artifacts. As described above, the detection of the LacZ 
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transgene relies on error-prone detection methods, including the risk of unspe-
cific staining after prolonged incubation [119]. Detection of GFP or using 
immunofluorescence approaches can also be impaired by high levels of tissue 
or cell-specific background fluorescence [133]. Importantly, high levels of 
autofluorescence can frequently be observed in necrotic or apoptotic cells lead-
ing to false interpretations, in particular in transplantation or coculture-based 
transdifferentiation experiments. Laflamme et al. reported that apart from the 
normal autofluorescence in striated heart muscle, this fluorescence increases 
after myocardial injury due to accumulated lipofuscin, blood-derived pigments 
and other intrinsic fluorochromes such as flavins and reduced nicotinamide 
adenine dinucleotide (NADH) [134]. While early reports using GFP-labeled 
cells for transplantation might have overlooked this fact, recent publications 
used GFP-specific antibodies and/or validation of the emission spectrum to 
unequivocally identify GFP-expressing cells [135]. Increasing levels of 
autofluorescence in the course of a coculture experiment, as has been demon-
strated by our group using flow cytometry analyses as shown in Fig. 2 [95], can 
potentially lead to misinterpretation of the obtained data as might be the case in 

Fig. 2 Conventional flow cytometry analysis is not suitable to identify DiI-positive human 
cardiomyocytes within cocultures of human endothelial cell progenitors (huEPC) and neonatal 
rat cardiomyocytes (NRCM). Analyses of cocultures (e,f), as well as of monocultures of huEPC 
(a,b) and NRCM (c,d) at day 2 (a,c,e) and day 6 (b,d,f) demonstrate a significant increase in 
sarcomeric a-actinin-positive cardiomyocytes displaying red DiI-like fluorescence. Modified 
after Gruh et al. [95]
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reports on the alleged cardiac differentiation potential of endothelial progenitor 
cells [91].

When using conventional two-dimensional image analysis for the evaluation 
of double or multiple immunostaining, sometimes a genuine colocalization within 
the same cell is hard to discern from an overlay of signals from two neighboring 
cells and three-dimensional confocal imaging should be preferred instead [95]. 
However, even in the case of three-dimensional analysis, data interpretation can 
be difficult.

In some cases, another dimension has to be included: the monitoring of the cell’s 
fate over time. As described above, time-lapse video recording was able to reveal 
that morphological changes associated with a presumed neuronal differentiation of 
mesenchymal stem cells were actually not a result of outgrowing neurites, but of 
cell shrinkage in response to stress signals [122, 123, 127].

Immunohistology and immunofluorescence can also be error-prone and com-
mon problems include a weak signal from otherwise specific antibodies and/or 
nonuniform staining. For example, in our xenogeneic pig model studies, we have 
observed this problem when using an antibody detecting a human mitochondrial 
antigen. We found that this antibody led to nonuniform staining when used to detect 
different human cell types. On one hand, it conferred strong labeling of cardiomyo-
cytes while on the other, human fibroblasts showed insufficient staining. While this 
finding is in line with expected differences in metabolic activity and numbers of 
mitochondria per cell in the two cell types, it prevented the use of this antibody in 
our study. Alternatively, another antibody directed against human nuclear antigen 
(HuNu) was used [90].

The high background of unspecific staining can also be a problem and unfortu-
nately, published data often lack critical controls such as images of the appropriate 
isotype staining control. As long as images show the detection of structural proteins 
resulting in distinct staining patterns, e.g., cardiomyocyte specific staining of con-
tractile proteins that shows clearly visible cross-striations, this might not be prob-
lematic. Otherwise, it is difficult to discern diffuse staining of cytoplasmic proteins 
from background levels. It is therefore advised to include these controls either in 
the original publication or as online supporting material. Moving forward, both 
editors and reviewers should be made aware that these controls would add to the 
reliability, and thus quality of the published data.

Unfortunately, appropriate isotype controls are not always available. This is true 
when using rabbit serum for staining. The correct control would be preimmunized 
serum obtained from the same animal. Thus, experiments using unpurified serum 
should at least include negative control staining with other, nontarget cells; and the 
specificity of immunostaining strategies with unpurified antibodies should be inter-
preted with caution.
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4.4 Data Interpretation

The interpretation of transdifferentiation experiments can be difficult when too 
many conclusions are drawn from too little data. Early reports on the presumed 
neural differentiation of mesenchymal stem cells provide an important example. In 
this case, initial reports concentrated on the apparent morphology of the cells, as 
well as the detection of a limited number of markers [120]. Only later did data 
disprove the initial reports by demonstrating that some neural marker proteins are 
already expressed in undifferentiated MSC [121] and that stress causes an increase 
in the expression level of several neural markers [122, 123].

Similarly, later studies investigating differentiation of transplanted stem cells set 
out to analyze not only colocalization of donor-derived and tissue-specific markers, 
but also considered cell fusion as an alternative mechanism. In 2003, Wang et al. 
demonstrated that cell fusion was the principal source of BM-derived hepatocytes 
by investigating the ploidy of the presumably transdifferentiated donor cells [31]. 
Subsequent studies using the same assays, for example a study published by Sato 
et al., tried to elucidate the cellular components of human BM that potently dif-
ferentiated into hepatocytes. Sato et al. stated that cell fusion was not likely 
involved, as both human and rat chromosomes were independently identified by 
FISH [136]. However, fusion as an underlying mechanism for the detection of dou-
ble labeled, presumably transdifferentiated cells, cannot be excluded from earlier 
reports, as this possibility was not explicitly investigated.

Early in vivo data on the transdifferentiation of adult stem cells concentrated on 
the therapeutic effects following stem cell transplantation. Improved heart function 
and increased angiogenesis in the scar were observed after transplantation of 
5-azacytidine-treated marrow stromal cells in an infarct model [74, 75]. Although 
some labeled bone marrow-derived cells within the infarct region stained positively 
for a cardiac marker protein, it remains unclear to what extent transdifferentiation 
into cardiomyocytes is the reason for the improvement or whether this may be due 
to other cardio-protective effects as described above [77, 78, 84, 85]. Therefore, 
functional improvement alone, does not provide evidence of transdifferentiation 
and leaves room for different interpretations with respect to the impact of individual 
effects triggered by stem cell transplantation.

4.5 Biological Significance

Most of the experiments investigating stem cell transdifferentiation represent a 
highly artificial setting with limited biological significance in vivo. This holds true 
especially for transplantation experiments, whereby stem cells are transferred from 
one part of the body to another, and sometimes to a rather remote compartment. 
These settings may not resemble naturally occurring stem cell mobilization and/or 
recruitment processes; and therefore, might not be ideal to mimic and investigate 
in vivo regeneration. However, the importance of stem cell transplantation, as a 
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future method with great clinical significance, should not be overshadowed by the 
complications of replicating the exact events occurring in nature.

Indeed, the detection of a therapeutic effect does not prove stem cell transdif-
ferentiation per se, even unequivocally confirmed stem cell transdifferentiation into 
another somatic cell type does not guarantee a therapeutic effect. When Wu et al. 
investigated whether human BMC could contribute to liver regeneration in vivo, 
they detected cells from extrahepatic sources that had homed to the tissue, ultimately 
transdifferentiating into hepatocytes. However, these cells did not increase in 
number, thus a robust repopulation of the tissue was not observed [137].

It should be noted that, apart from the role of transdifferentiation of stem cells in 
tissue regeneration following injury, and/or in homeostasis, this process might also 
have an impact on pathogenesis. For example, it has been proposed recently that 
BM-derived circulating precursor cells participate in the development of human lung 
fibrosis and lesion formation, especially in bronchiolitis obliterans [138].

In reality, the biological significance of transdifferentiation, with respect to its 
meaning, is still poorly understood. The question remains to be determined 
whether transdifferentiation reflects a natural process, i.e., an inherent ability of a 
given cell to switch its fate under certain conditions, or an artificial change in its 
expression profile, as might be the case for differentiation processes induced by 
treatment with 5-azacytidine. As this agent confers the demethylation of DNA 
leading to a random induction of gene expression, subsequent changes could be 
interpreted as an artificially-induced reprogramming, a rather hard reset of the cel-
lular differentiation program.

Lastly, the incidence of transdifferentiation and/or cell fusion might also play a 
role in determining biological significance. To date, only rare events have been 
described, and although interesting, the findings might be irrelevant for therapeutic 
purposes in vivo, due to the low frequency of occurrence.

5 Conclusions

New data on the plasticity of stem cells of various lineages have emerged. These 
data, in addition to the developing new field of adult stem cell differentiation, are 
not without controversy. Today, most of the reported discrepancies cannot be 
explained satisfactorily due to several reasons. For example, many studies lack a 
common starting point, i.e., it remains unclear whether the exact same cell popula-
tion was analyzed. In addition, the methodology for precise analyses of differentia-
tion events is still rapidly evolving. As a reaction to criticism concerning early and 
sometimes too enthusiastic reports on the transdifferentiation of stem cells and its 
envisaged therapeutic potential, sophisticated methods have been developed or 
adapted, e.g., in the area of cell labeling, imaging and tracing. However, to prove 
unequivocally stem cell transdifferentiation, there is a clear need to prove the func-
tionality of the resulting cell type. It is not sufficient to show that a given cell looks 



Transdifferentiation of Stem Cells: A Critical View 99

like a transdifferentiated cell solely due to the expression of specific marker pro-
teins, but to answer the question as to whether it acts accordingly.

As the field of stem cell biology progresses, it will be crucial to analyze further 
not only if a certain stem cell type differentiates into a certain phenotype, whether or 
not expected, but also to investigate in detail how this process works. This will 
include the identification of key factors inducing cell fate switches, and the molecular 
mechanisms and chronological sequence of the conversion itself. This includes the 
question of how we, as investigators, force a given cell to transdifferentiate into a 
desired cell type, for example by the over-expression of cell-type specific transcrip-
tion factors, regardless of the in vivo and/or in vitro significance of the particular 
conversion.

By focusing on these mechanisms, insight into the original question will be 
addressed: Do stem cells undergo direct differentiation towards a more specialized 
somatic cell, or, must they be reprogrammed or “de”-differentiated, thereby first 
changing into a more common ancestor to then be “trans”-differentiated into spe-
cialized cells ultimately involving the same pathways as in organ development.
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