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Abstract Embryonic stem cells are pluripotent cells isolated from the mammalian 
blastocyst. Traditionally, these cells have been derived and cultured with mouse 
embryonic fibroblast (MEF) supportive layers, which allow their continuous growth 
in an undifferentiated state. However, for any future industrial or clinical application 
hESCs should be cultured in reproducible, defined, and xeno-free culture system, 
where exposure to animal pathogens is prevented. From their derivation in 1998 
the methods for culturing hESCs were significantly improved. This chapter wills 
discuss hESC characterization and the basic methods for their derivation and 
maintenance.
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1 Introduction

Embryonic stem cells (ESCs) constitute a unique type of stem cells derived from 
the inner cell mass (ICM) of the mammalian blastocyst. ESCs differ from their 
adult counterpart by their distinctive potential to differentiate into every cell type of 
the adult body. Several items of evidence were presented for ESCs pluripotency: (1) 
when transferred into suspension culture in vitro, ESCs form cell aggregates known 
as embryoid bodies (EBs), with regions differentiate into embryonically-distinct 
cell types [17, 30]; (2) injection of ESCs into the hind limb of severe combined 
immunodeficient (SCID) mice induces the formation of teratomas which may 
include tissues representative for all three germ layers [70, 66]; (3) mouse ESCs 
were shown to contribute to chimeras and particularly to the germ cell line [7]; and 
finally, (4) several murine ESC lines were demonstrated to form entire viable 
fetuses [46]. Since the first derivation of ESCs in 1981 from mouse blastocysts [21, 
40], mouse ESCs were induced to differentiate in vitro into haematopoietic stem cell-
like cells [47, 31], neural precursors [8, 9], cardiomyocytes [33], endothelial cells 
[26, 71] and insulin-secreting cells [55, 38]. Thus the ability of these cells to dif-
ferentiate into representative cell types of the three embryonic germ layers was 
proven.

Since their initial derivation from mice [21, 40], ESC lines or ESC-like lines 
have been derived from other rodents [18, 22, 23], domestic animal species [49, 53, 
43], and from three non-human primates [64, 65, 56, 42]. However, only mouse 
ESCs demonstrate the entire set of features typical of ESCs, rendering them the 
most potent research model amongst other existing ESC lines.

The first step toward isolating human ESCs (hESCs) was achieved by Bongso 
and colleagues who described for the first time the ability to isolate ICM cells from 
human blastocysts and to culture them with inactivated mouse embryonic fibrob-
lasts (MEFs) for two passages while expressing alkaline phosphate activity and 
demonstrating ESC-like morphology [10]. In 1998, the first hESC lines were 
derived by Thomson and colleagues [66]. Accumulating knowledge shows that 
hESCs meet most of the criteria described for mouse ESCs.

The exceptional differentiation potential of ESCs underlines them as one of the 
best models to study early human development, lineage commitment and differen-
tiation processes; hopefully, in future they could also be used for cell-based therapy. 
Recently, a new source for pluripotent cells was proposed by Yamanaka et al., who 
succeeded in reprogramming mouse somatic cells and, later on, human somatic 
cells, to ESC-like cells [62, 63]. As their report states, an overexpression of four 
transcription factors, c-Myc, Oct4, Flf4 and Sox2, caused by retroviral infection, 
was sufficient to reprogram somatic cells [62, 41, 75]. These induced pluripotent 
stem (iPS) cells expressed typical ESC markers, formed the same colony morphol-
ogy and were able to differentiate into representative tissues of the three embryonic 
germ layers both in vitro and in vivo. Later on it was shown that reprogramming 
of somatic cells could be obtained, albeit with lower efficiency, when oncogene 
C-Myc was replaced and Oct4, Sox2, Nanog and Lin28 were used [76, 45].  
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iPS cells were already derived from embryonic fibroblasts [62, 41], hESC-derived 
fibroblasts [59], fetal fibroblasts [59, 76], foreskin fibroblasts [59, 76], adult skin 
[25,37] and adult liver and stomach cells [4]. Future studies will reveal which 
culture and differentiation protocols developed for hESCs will suit these cells 
as well.

2 Methods for Isolating Escs

2.1 Source for Embryos

For the derivation of hESC lines, human embryos from in vitro fertilization (IVF) 
programs and embryos produced for research purposes [34] were used. These 
include surplus, apparently normal, embryos [2, 14, 57, 66], or low-grade or abnor-
mally fertilized oocytes that were disqualified for clinical uses [35, 61, 77]. Some 
of the embryos are genetically-abnormal embryos after pre-implantation genetic diag-
nosis (PGD) that would otherwise have been discarded [68, 39]. In these studies, 
hESC lines harboring specific genetic diseases were derived, demonstrating all 
hESC characteristics.

Alongside the traditional sources of embryos for the isolation of ESC lines, other 
optional sources were also suggested; parthenogenetic embryos resulting from 
activated oocytes, or single blastomers isolated from developing embryos using 
similar methods to those used for PGD (allowing using the donor embryo for repro-
ductive purposes). Vrana and colleagues demonstrated that an activated oocyte of a 
non-human primate can be used successfully for the derivation of ESC lines that 
exhibit all ESC features [67], though the extent of their differentiability is unknown. 
Mouse ESC lines were successfully derived from a single blastomer [13], using a 
technique in which a single blastomer is mixed with an already-established cell 
line, expansion of the newly derived line takes place and isolation is carried out by 
a selective tag. Both techniques have not yet been applied to human embryos.

Due to the progress in assisted reproductive medicine techniques, more embryos 
are currently available for hESC line derivation. It is estimated that over 500 hESC 
lines are obtainable for research worldwide [60]. This number indicates that the 
derivation of these lines is a reproducible procedure. The use of embryos for 
research, however, raised ethical concerns that were addressed by the publication 
of specific guidelines for the use of embryos for hESC studies [15].

2.2 Extraction of ICM

hESC lines are derived using the techniques developed in the 1970s for embryonal 
carcinoma (EC) cell lines and in the 1980s for mouse ESC line derivation. 
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Two principle methods can be used to isolate ICM cells from the blastocyst, 
namely immunosurgical and mechanical isolation.

Immunosurgical isolation is a simple method developed by Solter and Knowles 
[54], which aims to remove selectively the trophoectoderm layer of the blastocyst, 
leaving an isolated and intact ICM. A potential drawback of this method is the 
exposure of the embryo to anti-human whole serum antibodies, which normally 
attach to any human cell.However, penetration of the antibodies into the blastocyst 
is prevented due to cell–cell connections within the outer layer of the trophoblast, 
thus leaving the ICM cells unharmed. This is followed by incubation with guinea 
pig complement-containing medium which lysises all antibody-marked cells. The 
intact ICM is further rinsed and cultured with mitotically inactivated MEFs or an 
alternative feeder-layer that is known to support hESCs culture.

Alternatively, ICM cells can be isolated by selective and mechanical removal of 
the trophoectoderm layer under a stereoscope. After the embryo is released from 
the zona pellucida, the trophoblast layer is gently removed using 27 G needles or 
pulled Pasteur pipettes. Similarly to using the immunosurgery method, the isolated 
ICM cells should be further expanded using a suitable supportive layer.

2.3 Plating Intact Embryos Whole

ESCs lines can be derived simply by plating a whole zona-free embryo with mitoti-
cally inactivated MEFs or another suitable feeder-layer. The exposed embryo attaches 
to the feeder layer which, in return, permits the continuous growth of the ICM with 
the surrounding trophoblasts as monolayer. When the ICM reaches sufficient size it 
is selectively removed using mechanical methods and further propagated. Although 
simple, this method bears the risk of ICM differentiation, and the success rates tend 
to be lower as compares to the initial selective removal of the ICM.

2.4 Esc Characterization

Because of their uniqueness, much effort was invested in characterizing ESC cells. 
The first to be derived, i.e., mouse ESCs, are the most characterized ESCs, and 
therefore their list of features is used as a golden standard for other types of ESCs. 
The complete list of features is listed in Table 1.

When cultured in suitable conditions, ESCs are capable of prolonged undifferenti-
ated proliferation. During culture, the cells create uniform colonies exhibiting high 
nucleus-to-cytoplasm ratio, two or more nucleoli, and typical spaces between the cells.

ESCs exhibit and maintain normal diploid karyotype even after prolonged culture 
[1]. Incidences of karyotypic instability are uncommon [1, 20, 19, 14], suggesting 
that those observed represent random changes which often occur in cell culture.
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ESCs had been shown to be pluripotent, both in vitro and in vivo by EB formation 
[17, 30] and teratoma formation [70, 66], respectively.

ESCs express surface markers specific to the undifferentiation stage. While 
mouse ESCs strongly express surface marker stage-specific embryonic antigen-1 
(SSEA-1), and do not express SSEA3, SSEA4, tumor recognition antigen-60 
(TRA-1-60) and TRA-1-81, non-human primate ESCs and hESCs strongly express 
SSEA-4, TRA-1-60, and TRA-1-81, weakly express SSEA-3 and do not express 
SSEA1 at all [66, 57]. ESCs also express some specific genes, the most recognized 
is Oct 4, a transcription factor known to be involved in the process of ESC self 
maintenance [48]. Another transcription factor, Nanog, was recognized as having a 
role in the cells’ renewal and is often used to define undifferentiated ESCs [11, 44]. 
Additional genes were found to be strongly expressed in hESCs and mESCs and 
were collected into a set of markers that identify undifferentiated ESCs [6].

Mouse ESCs remain in the S phase of the cell cycle for the majority of their 
lifespan; HESCs, like mouse ESCs, do not exhibit X inactivation. While maintained 
at the undifferentiated stage, both X chromosomes are active and, upon differentia-
tion, one chromosome undergoes inactivation [16]. Recently, additional support to 
this finding was reported; however, it was also found that some hESC lines vary in 
their X-inactivation status [27, 24, 51, 52]. This may be indicative of a different and 
later source for some of the lines rather than the ICM, such as the epiblast stage.

As with other cell lines, single human ES cells possess all other features of the 
tested line, and their clonallity was demonstrated [1].

3 Methods for Hesc Culture

3.1 Defined Culture System

Any future exploitation of hESCs for clinical and industrial purposes will require a 
reproducible, well-defined, and animal-free culture system for their routine culture. 

Table 1 List of ESC characteristics

Derived from the ICM of pre-implantation embryo, at the blastocyst stage
Capable of prolonged undifferentiated proliferation in culture
Exhibit and maintain normal diploid karyotype
Pluripotent
Able to integrate into all fetal tissues during embryonic development following injection into 

the blastocyst, including the germ layer (For obvious ethical reasons, the ability to examine 
how hESCs integrate into fetal tissues during embryonic development is restricted)

Clonogenic, i.e., each single ESC possesses all other features
Express high levels of OCT 4 and Nanog, transcription factors known to be involved in the 

process of ESCs self maintenance
Can be induced to differentiate after continuous culture in an undifferentiated state
Remain in the S phase of the cell cycle for the majority of their lifespan
Do not show X chromosome inactivation
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The traditional culture and isolation methods for hESCs, however, include inacti-
vated MEFs as feeder layers and medium supplemented with high percentage of 
fetal bovine serum (FBS) [66]. The feeder layer plays a dual role of supporting ESC 
proliferation and preventing their spontaneous differentiation. In order to prevent 
any exposure of the cells to animal photogenes, hESCs must be cultured with 
medium supplemented with serum replacement, with no animal product, and the 
MEFs should be replaced by human feeder or with a cellular matrix, such as 
fibronectin, or laminin. A few steps toward meeting these requirements have 
already been achieved.

The simplest alternative to the culture method based on the use of MEF and FBS 
is the use of human supportive layer and medium supplemented with either human 
serum or serum replacement.Several cell types were found suitable to support 
undifferentiated hESCs, including human fetal-derived fibroblasts [58], foreskin 
fibroblasts [3, 28], and adult marrow cells [12]. Human fetal-derived fibroblasts and 
foreskin fibroblasts were also found to support the isolation of new hESC lines in 
animal-free or serum-free conditions [58, 28, 29].

Although these culture systems move us closer to the desired goal of animal-free 
conditions, they cannot be regarded as well-defined. The need to culture the feeder 
lines themselves, which will limit the large-scale culture of hESCs, the differences 
between batches of feeder-layer cells and the use of human serum rule this system 
out as defined. The ideal culture method would therefore be a combination of an 
animal-free matrix and both serum and animal-free medium. In 2001, Xu and col-
leagues made a significant advance in this respect: their newly culture method relied 
on Matrigel, laminin or fibronectin as matrix and 100% MEF-conditioned medium, 
supplemented with serum replacement [72].When cultured in these conditions, 
hESCs can be stably maintained for over a year and still exhibit their ESC charac-
teristics. However, this method still holds the disadvantages of exposure to animal 
pathogens through the MEF-conditioned medium or Matrigel matrix, possible variations 
between batches of MEFs used for the production of the conditioned medium and 
the needs for simultaneous culture of both the feeders and the hESCs.

Indeed, the same group proposed an improvement to this culture system, where 
the MEF-conditioned medium was removed by supplementing the medium with 
40 ng mL−1 basic fibroblast growth factor (bFGF) and 75 ng mL−1 Flt-3 ligand [73].

Extensive work has been carried out to improve further the feeder-layer free 
culture system of hESCs. As a result, several agents were reported to support undif-
ferentiated hESC cultures in feeder layer- free conditions. Amongst them the com-
bination of TGF

b1
 and bFGF [78], activin [5], high concentration of Noggin [74], 

high concentration of bFGF [69, 74], Bio [50], and a blend of five factors used in 
defined culture media [36]. It is therefore reasonable to assume that more than one 
pathway is involved in maintaining hESC potency. Further study is required in 
order to clarify the mechanism underlying these factors’ involvement in hESC self-
maintenance.

The majority of the existing hESC lines were derived with feeder layers [66, 
57, 2, 14].The first report of a feeder layer-free derivation of a hESC line was 
reported by Klimanskaya and colleagues, in which MEF-produced matrix and 
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medium supplemented with a high dose of bFGF (16 ng mL−1), LIF, serum 
replacement and plasmanate were used [32]. In this study, six new hESC lines 
were successfully derived, exhibiting ESC features after prolonged culture of over 
30 passages. This pioneering work proves the feasibility of a supportive feeder 
layer-less derivation of hESCs, although the culture system includes some non-
defined materials. A recent publication by Ludwig and colleagues reported the 
derivation of two new hESC lines using a defined serum- and animal-free medium, 
and feeder layer-free culture conditions [36].The matrix consisted of a mixture of 
human collagen, fibronectin and laminin, and the medium was supplemented with 
five growth factors, including TGF

b1
 and bFGF. The newly derived cells sustained 

most hESC features after several months of continuous culture. Thus, for the first 
time, defined, animal-, serum- and feeder-free culture conditions for hESCs are 
presented. However, the two new hESC lines were reported to harbor karyotype 
abnormalities; one 47, XXY after 4 months of continuous culture and the second 
exhibited trisomy 12 after 7 months of continuous culture. It is unknown whether 
the embryos were originally defected or whether these events of karyotype abnor-
malities occurred during prolonged culture.

3.2 Suspended Culture System

Culture of hESCs requires meticulous care which includes daily medium change, 
routine passaging every 4–6 days, and occasionally mechanical removal of differ-
entiated colonies from the culture. Although hESCs can be cultured in these conditions 
in large quantities, the use of hESCs for therapy and for industrial applications 
requires a scalable and controlled culture system for both differentiated and undif-
ferentiated hESCs. To this end we recently developed a novel suspension culture 
system for undifferentiated hESCs. The new three dimensional (3D) culture system 
is based on medium supplemented with 15% serum replacement, cytokines and 
bFGF. Four cell lines, H9.2, I3, I4 and I6, were cultured in suspension in Petri 
dishes where they spontaneously formed spheroid clumps. Cells cultured in this 
system for over a year, maintained all ESC features, including expression of specific 
markers, stable karyotype, and the developmental potential to differentiate into 
representative tissues of the three embryonic germ layers in vitro and in vivo. The 
calculated cell doubling time was 35.2 ± 1.3 h, similarly to a previous report on 
hESCs in 2D cultures [1]. Correspondingly, the cultures were split every 5–7 days 
– the same splitting interval of cells cultured with MEFs.

One month after being transferred into a stirred dynamic culture using either 
shaking Erlenmeyer’s or spinner flasks, the spheroid clumps formed by the cells 
remained similar to those observed within cells cultured statically using Petri 
dishes. hESCs cultured for 3 months in the dynamic system maintained stable 
karyotype, were strongly positive for undifferentiation markers, and remained 
pluripotent. During 10 days of culture in the dynamic culture cell number increased 
25-fold. Thus the novel culture system reported here makes it possible to expand 
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undifferentiated hESCs in suspension cultures which will facilitates the large-scale 
culture of hESCs needed in the clinic and industry.
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