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We consider the problem of minimizing a form on the standard simplex [equiv-
alently, the problem of minimizing an even form on the unit sphere]. Two
converging hierarchies of approximations for this problem can be constructed,
that are based, respectively, on results by Schmüdgen-Putinar and by Pólya
about representations of positive polynomials in terms of sums of squares. We
show that the two approaches yield, in fact, the same approximations.

1 Introduction

1.1 Representations of positive forms on the simplex

We consider the problem of minimizing a form (i.e., homogeneous polynomial)
p of degree d on the standard simplex; that is, the problem of computing

pmin := min p(x) s.t. x ∈ ∆ :=

�
x ∈ IRn

+ |
n;

i=1

xi = 1

�
. (1)

The polynomial
p̃(x) := p(x2

1, . . . , x
2
n)

is an even form of degree 2d and problem (1) can be reformulated as the
problem of minimizing p̃ on the unit sphere:

pmin = min p̃(x) s.t. x ∈ S :=

�
x ∈ IRn |

n;
i=1

x2
i = 1

�
. (2)

Equivalently, this is the problem of finding the maximum scalar t for which

p̃(x) − t ≥ 0 ∀x ∈ S; equivalently, p̃(x) − t x 2d ≥ 0 ∀x ∈ IRn. (3)
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Here,  x 2 = 
<n

i=1 x
2
i . Hence, lower bounds for the optimum value can be

obtained by replacing the condition (3) by some stronger conditions. Instances
of such stronger conditions are given below, for any integer r ≥ 0:*

p̃(x) − t x 2d
1  x 2r ∈ IR+

ev[X ] (4)

(p̃(x) − t x 2d) x 2r ∈ Σ2 (5)

p̃(x) − t ∈ IR+
ev,2(r+d)[X ] + (1 −  x 2)IR[X ] (6)

p̃(x) − t ∈ Σ2
2(r+d) + (1 −  x 2)IR[X ] (7)

Here, IR[X ] denotes the set of polynomials in the n variables x1, .., xn, IR+
ev[X ]

is the set of even polynomials with nonnegative coefficients, Σ2 is the set of
polynomials that are sums of squares, and a subscript 2(r + d) indicates the
bound 2(r + d) on the degree. (See section 1.2 for definitions and notation.)

Note that, in (4), one could replace IR+
ev[X ] by IR+[X ], since the polynomial

is even by construction.
Condition (4) can be equivalently reformulated in terms of the initial poly-

nomial p as p(x) − t

)
n;

i=1

xi

0d
 )

n;
i=1

xi

0r

∈ IR+[X ]. (8)

One can also reformulate condition (5) in terms of the original polynomial p,
using the following result of Zuluaga et al. [16].

Proposition 1 (Zualaga et al. [16]). Let p be a form of degree d and p̃(x) :=
p(x2

1, . . . , x
2
n) the associated even form. Then,

p̃ ∈ Σ2 ⇐⇒ p(x) =
;

I⊆{1,...,n}
|I|≡d mod 2

)6
i∈I

xi

0
pI , where pI ∈ Σ2

and pI is a form of degree d − |I|

The following implications obviously hold:

(4) =⇒ (5) =⇒ (3), (6) =⇒ (7) =⇒ (3).

Each of the conditions (4)-(7) permits to formulate a hierarchy of lower bounds
for pmin depending on r. For instance, the (linear) bound:

p
(r)
L := max t s.t. (4) (or (8)) holds, (9)

and the (semidefinite) bound:

p(r) := max t s.t. (5) holds. (10)
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Obviously,

p
(r)
L ≤ p

(r+1)
L , p(r) ≤ p(r+1), p

(r)
L ≤ p(r) ≤ pmin. (11)

Asymptotic convergence of the bounds p(r)
L to pmin as r goes to infinity, follows

from the following theorem of Pólya about representations of positive forms
on the simplex. .

Theorem 1 (Pólya [10]). Let p be a form which is positive on the standard
simplex ∆ = {x ∈ IRn | <

i xi = 1}. Then there exists an r ∈ IN such that

p(x) 

) 
n;

i−1

xi

0r

∈ IR+[X ].

Two other hierarchies of lower bounds can be defined analogously, using (6)
and (7), and they satisfy the analogue of (11). Their asymptotic convergence
to pmin follows from the following theorem of Schmüdgen (or its refinement
by Putinar) about representations of positive polynomials on compact semi-
algebraic sets.

Theorem 2. Let F be a semi-algebraic set of the form:

F = {x ∈ IRn | p1(x) ≥ 0, . . . , pk(x) ≥ 0}, where p1, . . . , pk ∈ IR[X ].

(i) (Schmüdgen [15]) If F is compact, then every polynomial which is pos-

itive on F belongs to
;

I⊆{1,...,k}

)6
i∈I

pi

0
Σ2.

(ii) (Putinar [13]) Assume that F is compact and that there exists a polyno-
mial p0 ∈ Σ2+p1Σ

2+. . .+pkΣ2 for which the set {x | p0(x) ≥ 0} is compact.
Then every polynomial which is positive on F belongs to Σ2+p1Σ

2+. . .+pkΣ2.

Corollary 1. Every polynomial which is positive on the unit sphere belongs
to Σ2 + (1 − <n

i=1 x2
i )IR[X ].

This idea of constructing hierarchies of bounds for optimization over semi-
algebraic sets, based on real algebraic results about representations of positive
polynomials, has been explored by several authors.

In particular, Pólya’s result led Parrilo [8, 9] to introduce hierarchies of
conic relaxations for the cone of copositive matrices. These relaxations were
used by De Klerk and Pasechnik [6] for approximating the stable set problem
in graphs, and by Bomze and De Klerk [1] for constructing a PTAS for the
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minimization of degree 2 forms on the simplex. Hierarchies of conic relaxations
were introduced, more generally, for the cone of positive semidefinite forms,
in particular, by Faybusovich [2] (who also gives estimations on the quality of
the approximations) and by Zuluaga et al. [16]. These relaxations have been
used in the recent paper by De Klerk, Laurent and Parrilo [5] for giving a
PTAS for the minimization of a form of degree d on the simplex.

On the other hand, Putinar’s result led Lasserre [7] to define converging
hierarchies of semidefinite bounds for the approximation of polynomials on
(special) compact semi-algebraic sets.

The main contribution of this paper is to show that these two approaches,
based on Pólya’s and Schmüdgen-Putinar’s theorems, are in fact equivalent,
when applied to the problem of minimizing a form on the standard simplex
(or, equivalently, minimizing an even form on the unit sphere). More precisely,
we prove the following result in Section 2, showing that the assertions (4) and
(6) (resp., (5) and (7)) are equivalent.

Theorem 3. Let p be a form of degree d and let p̃(x) := p(x2
1, . . . , x

2
n) be the

associated even form of degree 2d. For every integer r ≥ 0, consider the linear
bound p

(r)
L (defined by (9)) and the semidefinite bound p(r) (defined by (10))

for the minimum value pmin of p over the standard simplex. Then,

p
(r)
L ≤ p(r) ≤ pmin,

p
(r)
L = max t s.t.

p̃(x) − t

)
n;

i=1

x2
i

0d
 )

n;
i=1

x2
i

0r

∈ IR+[X ]

= max t s.t. p̃(x) − t ∈ IR+
ev,2(r+d)[X ] +

)
1 −

n;
i=1

x2
i

0
IR[X ],

(12)

p(r) = max t s.t.

p̃(x) − t

)
n;

i=1

x2
i

0d
)

n;
i=1

x2
i

0r

∈ Σ2

= max t s.t. p̃(x) − t ∈ Σ2
2(r+d) +

)
1 −

n;
i=1

x2
i

0
IR[X ].

(13)

We conclude with a ‘negative result’ in Section 3, concerning representa-
tions of polynomials positive on the unit sphere, namely

q ∈ Σ2 +

)
1 −

n;
i=1

x2
i

0
Σ2 ⇐⇒ q ∈ Σ2.

Compare this to the representation p ∈ Σ2 + (1−<n
i=1 x2

i )IR[X ] in Corollary
1 that holds for any p positive on the unit sphere.
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1.2 Notation

The following notation will be used throughout the paper.
IR[x1, . . . , xn], also abbreviated as IR[X ], is the set of polynomials in n

variables. Write p ∈ IR[X ] as
<

α∈INn pαxα, where xα := xα1
1 · · ·xαn

n . Then,
pαxα is a term of p if pα 8= 0; |α| := 

<n
i=1 αi is the degree of the term pαxα,

and the degree of p is the maximum degree of its terms. A polynomial p is a
form if all its terms have the same degree; p is an even polynomial if α1, . . . , αn

are even for every term pαxα of p.
IRd[X ] is the set of polynomials with degree ≤ d; IR+[X ] is the set of

polynomials with nonnegative coefficients: p = 
<

α pαxα with pα ≥ 0 for all
α; IRev[X ] is the set of even polynomials: p = 

<
α pαx2α. Moreover, IR+

d [X ] :=
IR+[X ] ∩ IRd[X ], IR+

ev[X ] := IR+[X ] ∩ IRev[X ], IR+
ev,d[X ] := IR+

ev[X ] ∩ IRd[X ].
Σ2 is the set of polynomials that can be written as a sum of squares

of polynomials: p = 
<

( f
2
( for some f( ∈ IR[X ], and Σ2

d := Σ2 ∩ IRd[X ].
Obviously, IR+

ev[X ] ⊆ Σ2.

2 Pólya’s and Putinar’s Theorems Give the Same
Bounds for Optimization on the Simplex

We prove here a slightly more general version of Theorem 3, which holds for
forms of even degree. We begin with some preliminary results.

Proposition 2. Let q be a form of even degree 2d ≥ 2. The following asser-
tions are equivalent:

q(x)

)
n;

i=1

x2
i

0r

∈ P (14)

q ∈ P +
*
1 −  x 2

1
IR[X ] (15)

where P stands for IR+
ev,2(r+d)[X ] or Σ2

2(r+d).

Proof. Suppose first that (14) holds. Then, the polynomial

f(x) := q(x)

)
n;

i=1

x2
i

0r

belongs to P and

f(x) = q(x)

)
1 − 1 +

n;
i=1

x2
i

0r

= q(x) +
r;

s=1

+
r

s

2
q(x)

)
n;

i=1

x2
i − 1

0s

,

which implies that
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q(x) = f(x) +
*
1 −  x 2

1 r;
s=1

+
r

s

2
q(x)

)
n;

i=1

x2
i − 1

0s−1

and, thus, (15) holds.

Suppose now that (15) holds; that is,

q(x) = s(x) + (1 −  x 2)r(x)

where s ∈ P and r ∈ IR[X ]. Then, q
(

x

x


/
= s

(
x


x

/

and, thus,

q(x) x 2r = s

+
x

 x 
2
 x 2(r+d) for all x ∈ IRn \ {0}. (16)

In what follows, we show that

f(x) := s

+
x

 x 
2
 x 2(r+d)

is a polynomial belonging to P . This implies that the polynomial q(x) x 2r

coincides with f(x) (by continuity) and, thus, belongs to P , which shows that
(14) holds.

Suppose first that P = IR+
ev,2(r+d)[X ]. Then, s(x) =

<
|α|≤r+d sαx2α, with

all sα ≥ 0. Therefore, f(x) =
<

|α|≤r+d sαx2α x 2(r+d−|α|), which is an even
polynomial with nonnegative coefficients and, thus, belongs to P .

Suppose now that P = Σ2
2(r+d). We begin with observing that one can

assume that each term of s has an even degree. To see it, write s = s0 +
s1, where each term of s0 (resp., of s1) has even (resp., odd) degree. Then,
s0(−x) = s0(x) and s1(−x) = −s1(x) for all x. As q is a form of even degree,
q(−x) = q(x) for all x. In view of (16), this implies that s(−x) = s(x) for all
x with  x = 1. Therefore, s1(x) = 0 and, thus, s(x) = s0(x) for all x with
 x = 1. Hence, one can replace s by s0 in the definition of f .

As s ∈ Σ2
2(r+d), write

s =
;

(

(s()2, s( = u( + v(

where s( are polynomials of degree ≤ r + d, u( consists of the terms of s(

whose degree has the same parity as r + d, and v( := s( − u(. Thus,

s =
;

(

(u()2 + (v()2 + 2
;

(

u(v(.

As each term of s, (u()2, and (v()2 has even degree, while each term of u(v( has
odd degree, we deduce that

<
( u(v( = 0, implying that s =

<
((u()2 + (v()2.

Therefore,
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f(x) = s 
+ 

x

 x 
2
 x 2(r+d) =

;
(

+
u(

+
x

 x 
2
 x r+d

22

+
+

v(

+
x

 x 
2
 x r+d

22

.

Observe now that u(

(
x


x

/
 x r+d = ϕ((x) and v(

(
x


x

/
 x r+d =  x ψ((x)

where ϕ( and ψ( are polynomials in x. Indeed, say, u((x) =
<

α u(,αxα. Then,

u(

(
x


x

/
 x r+d is equal to

<
α u(,αxα x r+d−|α|, which is a polynomial in x

since all r + d − |α| are even integers. Analogously for v(. This shows that

f(x) =
;

(

ϕ((x)2 +
;

(

ψ((x)2(
n;

i=1

x2
i )

belongs to P , thus concluding the proof.

Lemma 1. Let q be a form of even degree 2d and let t be a real number. The
following assertions are equivalent:

q(x) − t x 2d ∈ P +

)
1 −

n;
i=1

x2
i

0
IR[X ] (17)

q(x) − t ∈ P +

)
1 −

n;
i=1

x2
i

0
IR[X ], (18)

where P stands for IR+
ev,2(r+d)[X ] or Σ2

2(r+d).

Proof. If (17) holds, then q(x) − t x 2d = s +
*
1 − <n

i=1 x2
i

1
r, where s ∈ P

and r ∈ IR[X ]. Therefore, q(x) − t = s +
*
1 − <n

i=1 x2
i

1
r + t

* x 2d − 1
1
.

Now,  x 2d − 1 =
*<n

i=1 x2
i

1d − 1 = (
<n

i=1 x2
i − 1)u(x), for some polynomial

u. Therefore, (18) holds.
Conversely, if (18) holds, then q(x)− t = s+

*
1 − <n

i=1 x2
i

1
r, where s ∈ P

and r ∈ IR[X ]. Then, q(x)− t x 2d = s+
*
1 − <n

i=1 x2
i

1
r− t

* x 2d − 1
1

and,
thus, (17) holds.

Theorem 4. Let q be a form of even degree 2d, qmin the minimum of q(x)
over the unit sphere, and r ≥ 0 an integer. Then,

q
(r)
L ≤ q(r) ≤ qmin, where

q
(r)
L := max t s.t.

q(x) − t

)
n;

i=1

x2
i

0d
)

n;
i=1

x2
i

0r

∈ IR+
ev[X ]

= max t s.t. q(x) − t ∈ IR+
ev,2(r+d)[X ] +

)
1 −

n;
i=1

x2
i

0
IR[X ],

(19)
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q(r) := max t s.t.

q(x) − t

)
n;

i=1

x2
i

0d
)

n;
i=1

x2
i

0r

∈ Σ2

= max t s.t. q(x) − t ∈ Σ2
2(r+d) +

)
1 −

n;
i=1

x2
i

0
IR[X ].

(20)

Proof. Follows directly from Proposition 2 (applied to the form q(x)− t x 2d)
and from Lemma 1.

Therefore, Theorem 3 follows from Theorem 4 applied to the (even) form
q(x) := p̃(x).

We have formulated in Theorem 4 two bounds for the minimum of a form
q of even degree on the unit sphere: a linear bound q

(r)
L and a semidefinite

bound q(r) using, respectively, representations in terms of even polynomials
and sums of squares of polynomials. At that point, one should point out that
the hierarchy of linear bounds is interesting only when q is an even form.
Indeed, if the form q is not even, then q

(r)
L = −∞ for all r ≥ 0; this follows

from the following facts.

Lemma 2. A polynomial p ∈ IR[X ] is even if and only if

p(x1, . . . , xn) = p(−x1, x2, . . . , xn) = . . . = p(x1, . . . , xn−1,−xn). (21)

Proof. Necessity is obvious. Conversely, assume that (21) holds; we show that
p is even. For this, let p1 be the sum of the even terms of p and set q := p−p1.
Then, q =

<
α qαxα where α has some odd component whenever qα 8= 0. As

p1 is an even form, it satisfies (21) and thus q too satisfies (21). We show that
q = 0, which implies that p = p1 is even. For this, write q = q1 + q2, where
q1 :=

<
α|α1 odd qαxα. Then, q(x) = q(−x1, x2, . . . , xn), q1(−x1, x2, . . . , xn) =

−q1(x), q2(−x1, x2, . . . , xn) = q2(x); hence,

q1(x) + q2(x) = q1(−x1, x2, . . . , xn) + q2(−x1, x2, . . . , xn) = −q1(x) + q2(x),

which implies that q1(x) = 0. From this follows that qα = 0 whenever α1 is
odd. The same reasoning applied to the other coordinates shows that all qα

are equal to 0.

Corollary 2. Given p ∈ IR[X ], the polynomial p(x)(
<n

i=1 x2
i )

r is even for
some r ≥ 0 if and only if p is even.

3 A Negative Result

Let us now turn to the question of existence of a stronger type of decomposi-
tion. Let q be a form of even degree 2d which is positive on the unit sphere.
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Then, q(x) > 0 for all x ∈ IRn \ {0}. In particular, q is positive on the unit
ball F := {x ∈ IRn | 1 − <n

i=1 x
2
i ≥ 0} except at the origin where it is zero.

One may wonder whether an extension of Putinar’s result might still hold,
permitting to conclude that

q ∈ Σ2 + 

)
1 −

n;
i=1

x2
i

0
Σ2. (22)

Scheiderer [14] has recently investigated such extensions of Putinar’s result
(see Corollary 3.17 in [14]).

Proposition 3 (Example 3.18 in [14]). Let p ∈ IR[X ] be a polynomial for
which the level set

K := {x ∈ IRn | p(x) ≥ 0}
is compact. Let q ∈ IR[X ] be nonnegative on K. Assume that the following
conditions hold:

1. q has only finitely many zeros in K, each lying in the interior of K.
2. the Hessian 72q is positive definite at each of these zeroes.

Then q ∈ Σ2 + pΣ2.

Unfortunately, in the case where K is the unit ball and q a positive semidef-
inite form of degree at least 4, this theorem does not apply (since the Hessian
of q is zero at the origin). In fact, one can show that in this case such a de-
composition (22) exists only when q itself is a sum of squares.

Proposition 4. Let q be a form of degree 2d. Then,

q ∈ Σ2 +

)
1 −

n;
i=1

x2
i

0
Σ2 ⇐⇒ q ∈ Σ2.

Proof. The ‘if’ part being trivial, we prove the ‘only if’ part. Assume that
q = f + (1 − <n

i=1 x2
i )g, where f, g ∈ Σ2; we show that q ∈ Σ2. Write

f =
<

( f2
( and g =

<
k g2

k. Let s ≥ 0 be the largest integer for which each term
of f(, gk has degree≥ s; that is, f((x) =

<
|α|≥s f(,αxα, gk(x) =

<
|α|≥s gk,αxα

for all :, k and at least one of the polynomials f(, gk has a term of degree s.
Define f �

( as the sum of the terms of degree s in f( and f ��
( := f( − f �

(; then,

f �
((x) =

;
|α|=s

f(,αxα, f ��
( (x) =

;
|α|≥s+1

f(,αxα.
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Analogously, define

g�k(x) := 
;
|α|=s

gk,αxα, g��k (x) :=
;

|α|≥s+1

gk,αxα.

We have that

q = q1 + q2, where q1 :=
;

(

(f �
()

2 +
;

k

(g�k)2, and

q2 := 2
;

(

f �
(f

��
( + 2

;
k

g�kg��k +
;

(

(f ��
( )2 +

;
k

(g��k )2 −
)

n;
i=1

x2
i

0
g.

Therefore, q1 is a (nonzero) form of degree 2s, while each term of q2 has degree
≥ 2s + 1. If s ≤ d − 1, then q is a form of degree 2d ≥ 2s + 2, which implies
that q1 = 0, a contradiction. Hence, s ≥ d and, in fact, s = d. From this
follows that q2 = 0 and, thus, q = q1 is a sum of squares.

4 Conclusion

We conclude with some comments on the computational implications of The-
orem 4 where we showed that

q(r) := max t s.t.

q(x) − t

)
n;

i=1

x2
i

0d
 )

n;
i=1

x2
i

0r

∈ Σ2

= max t s.t. q(x) − t ∈ Σ2
2(r+d) +

)
1 −

n;
i=1

x2
i

0
IR[X ].

The first representation of q(r) corresponds to various relaxations intro-
duced in the literature for different special cases of the problem

qmin = min q(x) s.t. x ∈ S :=

�
x ∈ IRn |

n;
i=1

x2
i = 1

�
, (23)

by

1. De Klerk and Pasechnik [6] for obtaining the stability number of a graph;
2. Parrilo [9], Bomze and De Klerk [1], Faybusovich [2], and De Klerk, Lau-

rent and Parrilo [5] for minimization of forms on the simplex.

The difficulty with these approaches up to now was that — once an exact
relaxation was obtained — it was not clear how to extract a globally optimal
solution of problem (23).
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The second representation of q(r) in Theorem 4 corresponds exactly to the
dual form of the SDP relaxation obtained by applying the general methodol-
ogy introduced by Lasserre [7] to problem (23).

The approach of Lasserre [7] has now been implemented in the software
package Gloptipoly [3] by Henrion and Lasserre.

The authors have also described sufficient conditions for the relaxation
of order r to be exact, and have implemented an algorithm for extracting
an optimal solution if it is known that the relaxation of order r is exact.
The extraction procedure only involves linear algebra on the primal optimal
solution of the relaxation; see [4] for details.

Theorem 4 therefore shows how to apply the solution extraction proce-
dure implemented in Gloptipoly to the relaxations studied by De Klerk and
Pasechnik [6], Parrilo [9], Bomze and De Klerk [1] and Faybusovich [2].
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