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GloptiPoly is a Matlab/SeDuMi add-on to build and solve convex linear ma-
trix inequality (LMI) relaxations of non-convex optimization problems with
multivariate polynomial objective function and constraints, based on the the-
ory of moments. In contrast with the dual sum-of-squares decompositions of
positive polynomials, the theory of moments allows to detect global optimality
of an LMI relaxation and extract globally optimal solutions. In this report, we
describe and illustrate the numerical linear algebra algorithm implemented in
GloptiPoly for detecting global optimality and extracting solutions. We also
mention some related heuristics that could be useful to reduce the number of
variables in the LMI relaxations.

1 Introduction

Consider the global optimization problem

p = minx g0(x)
s.t. gi(x) ≥ 0, i = 1, 2 . . . , m

(1)

where the mappings gi : Rn → R, i = 0, 1, . . . , m are real-valued polynomials,
that is, gi ∈ R[x1, . . . , xn] for all i = 1, . . . , m. Depending on its parity, let
deg gi = 2di − 1 or 2di, and denote d = maxi di. Define

vk(x) = 1 x1 x2 . . . xn x2
1 x1x2 . . . x1xn x2

2 x2x3 . . . x2
n . . . xk

1 . . . xk
n

T

(2)
as a basis for the space of polynomials of degree at most k.

A polynomial g ∈ R[x1, . . . , xn] can be written

x → g(x) =
α∈Nn

gαxα
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where
xα = xα1

1 xα2
2 · · ·xαn

n

is a monomial of degree |α| = n
i=1 αi.

Following the methodology described in [12], we define for (generally non-
convex) problem (1) a hierarchy {Qk} of (convex) LMI relaxations

Qk

 p∗k = miny α(g0)αyα

s.t. Mk(y) 0
Mk−di (giy) 0, i = 1, 2, . . . , m

(3)

where

• each decision variable yα of y = {yα} corresponds to a monomial xα,
• Mk(y) is the positive semidefinite moment matrix of order k, and
• Mk−di (y) is the positive semidefinite localizing matrix of order k − di as-

sociated with the polynomial gi, for all i = 1, . . . , m.

Solving the sequence {Qk} of LMI relaxations (3) of increasing orders
k = d, d + 1, . . ., it is proved in [12] that under some mild assumptions on
the polynomials {gi}, we obtain a monotone sequence of optimal values p∗

k

converging asymptotically to the global optimal value p∗ of the original opti-
mization problem in (1), i.e. p∗k ↑ p∗ as k → ∞. Experimental results reveal
that in practice p∗k is very close to p∗ for relatively small values of k. In addi-
tion, in many cases the exact optimal value p∗ is obtained at some particular
relaxation Qk, that is, p∗ = p∗k for some relatively small k.

GloptiPoly is a user-friendly Matlab/SeDuMi add-on to build and solve
these LMI relaxations , see [10] and

www.laas.fr/∼henrion/software/gloptipoly.

In this report we describe the algorithm used in GloptiPoly to detect whether
the global optimum p∗ in (1) has been reached at some LMI relaxation Qk in
(3), i.e. whether p∗k = p∗ for some index k. We also describe how to extract
(one or several) global minimizers x∗ ∈ Rn to original problem (1), given a
solution y∗ of the LMI relaxation Qk in (3).

Note that there exist a dual approach to build hierarchy of LMI relaxations,
based on real algebraic geometry and sum-of-squares (SOS) decompositions of
positive polynomials [16]. In contrast with the theory of moments which works
in the space of measures on the primal space of solutions x ∈ Rn, the SOS
approach rather works in a (dual) space of polynomials, to obtain certificates
ensuring validity of bounds on the objective function. As a result, and so far,
in the latter approach there is no sufficient condition to check whether the
exact optimal value is obtained, and no solution extraction mechanism.

In section 2 we state an algebraic condition ensuring global optimality of an
LMI relaxation, and we describe the numerical linear algebra algorithm used
to extract globally optimal solutions. In section 3 we mention some heuristics
based on this algorithm that can used to reduce significantly the number
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of variables in the LMI relaxations. Finally, in section 4 we comment on a
numerical behavior of GloptiPoly on unconstrained minimization problems.
Illustrative numerical examples are inserted throughout the text.

2 Extracting Globally Optimal Solutions

2.1 Global Optimality Condition

Let y∗ be an optimal solution of the LMI relaxation Qk in (3) (of order k). A
sufficient rank condition ensuring global optimality of the LMI relaxation is

rank Mk(y∗) = rank Mk−d(y∗). (4)

This condition can be checked numerically with the help of the singular value
decomposition [8]. Note however that the rank condition (4) is not necessary,
i.e. the global optimum p∗ may have been reached at some LMI relaxation of
order k (i.e., p∗ = pk), and yet rank Mk(y∗

k) > rank Mk−d(y∗
k).

That condition (4) is sufficient to ensure that p∗ = pk is a consequence of a
deep result of Curto and Fialkow [6]. In our present context, if condition (4) is
true, then by Theorem 1.6 in [6], y∗ is the vector of moments of a rankMk(y∗)-
atomic measure supported on the feasible set K = {x ∈ Rn | gi(x) ≥ 0, i =
1, . . . , m}.

In the important special case where the feasible set K can be writen

K = {x ∈ Rn | gi(x) = 0, i = 1, . . . , n; gn+j(x) ≥ 0, j = 1, . . . , m},
and the polynomial ideal I = g1, . . . , gn ⊂ R[x1, . . . , xn] is zero-dimensional
and radical, then condition (4) is guaranteed to hold at some index k. For
instance this is the case for boolean (or 0-1) optimization problems, and more
generally, bounded discrete optimization problems. For more details the in-
terested reader is referred to [13, 14, 15, 17].

2.2 Extraction Algorithm

Assume that the LMI relaxation Qk in (3) has been solved, producing a vector
y∗. Assume further that the rank condition (4) is satisfied. Then the main steps
of the extraction algorithm can be sketched as follows.

Cholesky Factorization

As condition (4) holds, y∗ is the vector of a rankMk(y∗)-atomic measure
supported on K. Hence, by construction of the moment matrix Mk(y∗), we
have

Mk(y∗) =
r

j=1

vk(x∗(j))(vk(x∗(j))T = V ∗(V ∗)T
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where
r = rank Mk(y∗) (5)

and
V ∗ = vk(x∗(1)) vk(x∗(2)) · · · vk(x∗(r))

where vk(x) is as in (2), and {x∗(j)}r
j=1 are r global minimizers of (1).

Extract a Cholesky factor V of the positive semidefinite moment matrix
Mk(y∗), i.e. a matrix V with r columns satisfying

Mk(y∗) = V V T . (6)

Such a Cholesky factor can be obtained via singular value decomposition, or
any cheaper alternative [8].

Matrices V and V ∗ span the same linear subspace, so the solution ex-
traction algorithm consists in transforming V into V ∗ by suitable column
operations. This is described in the sequel.

Column Echelon Form

Reduce matrix V to column echelon form

U =



1
x
0 1
0 0 1
x x x

...
. . .

0 0 0 · · · 1
x x x · · · x

...
...

x x x · · · x


by Gaussian elimination with column pivoting [8]. By construction of the
moment matrix, each row in U corresponds to a monomial xα in polynomial
basis v. Pivot elements in U (i.e. the first non-zero elements in each column)
correspond to monomials xβj , j = 1, 2, . . . , r of the basis generating the r
solutions. In other words, if

w = [xβ1 xβ2 . . . xβr ]
T (7)

denotes this generating basis, then it holds

v = Uw (8)

for all solutions x = x∗(j), j = 1, 2, . . . , r.
In summary, extracting the solutions amounts to solving polynomial sys-

tem of equations (8).
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Solving the Polynomial System of Equations

Once a generating monomial basis is available, it turns out that extracting
solutions of polynomial system of equations (8) amounts to solving a linear
algebra problem.

As pointed out to us by Monique Laurent, this fact has been rediscovered
many times. It is called Stickelberger theorem in textbook [19], and it is
credited to Stetter and Müller in [4], see also the recent work [9]. The method
can be sketched as follows.

Multiplication Matrices

For each first degree monomial xi, i = 1, 2, . . . , n extract from U the r-by-
r multiplication matrix Ni containing coefficients of monomials xixβj , j =
1, 2, . . . , r in generating basis (7), i.e. such that

Niw = xiw, i = 1, 2, . . . , n. (9)

Common Eigenvalues

As shown in [19], the entries of solutions x∗(j), j = 1, 2, . . . , r are common
eigenvalues of multiplication matrices Ni, i = 1, 2, . . . , n.

In order to compute these eigenvalues, we follow [4] and build a random
combination of multiplication matrices

N =
n

i=1

λiNi

where the λi, i = 1, 2, . . . , n are non-negative real numbers summing up to
one. Then, compute the ordered Schur decomposition [8]

N = QTQT (10)

where
Q = q1 q2 · · · qr

is an orthogonal matrix (i.e. qT
i qi = 1 and qT

i qj = 0 for i = j) and T is upper-
triangular with eigenvalues of N sorted increasingly along the diagonal.

Finally, the i-th entry x∗
i (j) of x∗(j) ∈ Rn is given by

x∗
i (j) = qT

j Niqj , i = 1, 2, . . . , n, j = 1, 2, . . . , r. (11)
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2.3 Example

Consider the non-convex quadratic optimization problem [12, Ex. 5]

p∗ = minx −(x1 − 1)2 − (x1 − x2)2 − (x2 − 3)2

s.t. 1 − (x1 − 1)2 ≥ 0
1 − (x1 − x2)2 ≥ 0
1 − (x2 − 3)2 ≥ 0.

Applying the first (k = 1) LMI relaxation we obtain p∗
1 = −3 and

rank M1(y∗) = 3.
With the second (k = 2) LMI relaxation we obtain p∗

2 = −2 and
rank M1(y∗) = rank M2(y∗) = 3. Rank condition (4) ensures global opti-
mality, so p∗ = p∗2 = −2.

The moment matrix of order k = 2 reads

M2(y∗) =


1.0000 1.5868 2.2477 2.7603 3.6690 5.2387
1.5868 2.7603 3.6690 5.1073 6.5115 8.8245
2.2477 3.6690 5.2387 6.5115 8.8245 12.7072
2.7603 5.1073 6.5115 9.8013 12.1965 15.9960
3.6690 6.5115 8.8245 12.1965 15.9960 22.1084
5.2387 8.8245 12.7072 15.9960 22.1084 32.1036


and the monomial basis (2) is

v2(x) = 1 x1 x2 x2
1 x1x2 x2

2
T

.

The Cholesky factor (6) of the moment matrix is given by

V =


−0.9384 −0.0247 0.3447
−1.6188 0.3036 0.2182
−2.2486 −0.1822 0.3864
−2.9796 0.9603 −0.0348
−3.9813 0.3417 −0.1697
−5.6128 −0.7627 −0.1365


whose column echelon form reads (after rounding)

U =


1
0 1
0 0 1

−2 3 0
−4 2 2
−6 0 5

 .

Pivot entries correspond to the following generating basis (7)

w = [1 x1 x2]
T .
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From the subsequent rows in matrix U we deduce from (8) that all the
globally optimal solutions x satisfy the polynomial equations

x2
1 = −2 + 3x1

x1x2 = −4 + 2x1 + 2x2

x2
2 = −6 + 5x2.

Multiplication matrices (9) of monomials x1 and x2 in generating basis w are
readily extracted from rows in U :

N1 = 

 0 1 0
−2 3 0
−4 2 2

 , N2 = 

 0 0 1
−4 2 2
−6 0 5

 .

Then choose e.g.

N = 0.6909N1 + 0.3091N2 = 

 0 0.6909 0.3091
−2.6183 2.6909 0.6183
−4.6183 1.3817 2.9274


as a random combination of matrices N1 and N2. The orthogonal matrix in
Schur decomposition (10) is given by

Q = 

 0.4082 0.1826 −0.8944
0.4082 −0.9129 −0.0000
0.8165 0.3651 0.4472

 .
From equations (11), we derive the 3 optimal solutions

x∗(1) = 
1
2 , x∗(2) = 

2
2 , x∗(3) = 

2
3 .

2.4 Numerical Stability

As shown in [8], all the operations of the solution extraction algorithm are
numerically stable, except the Gaussian elimination step with column pivot-
ing. Practical experiments with GloptiPoly however reveal that ill-conditioned
problem instances leading to a failure of Gaussian elimination with column
pivoting are very scarce. This experimental property of Gaussian elimination
was already noticed in [8].

2.5 Number of Extracted Solutions

In virtue of relation (5), the number of solutions extracted by the algorithm is
equal to the rank of the moment matrix. Up to our knowledge, when solving
an LMI relaxation there is no easy way to control the rank of the moment
matrix, hence the number of extracted solutions.
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If there is no objective function in problem (1), by default GloptiPoly
minimizes the trace of the moment matrix. As a result, its rank is indirectly
minimized as well. Note however that, in constrast with trace minimization,
rank minimization under LMI constraints is a difficult non-convex problem.
Practical experiments reveal that low rank moment matrices are preferable
from the numerical point of view: they ensure faster convergence to the global
optimum. See also example 3.1 for an illustration of the impact of the trace
minimization heuristic on the number of extracted solutions.

3 Applications of the Extraction Algorithm

When rank condition (4) is not satisfied, then we still can attempt to apply
the extraction algorithm described in section 2. If the algorithm is successful
and returns feasible solutions reaching the relaxed optimal value p∗

k, then by
definition of the relaxation Qk, these solutions are global minimizers. This
is the topic of section 3.1. Unfortunately, this heuristic does not work sys-
tematically, and extracted solutions can be infeasible, as illustrated with a
counterexample in section 3.2.

If the algorithm is not successful, the column echelon form of the Cholesky
factor of the moment matrix may contain useful information that can some-
times be exploited to reduce significantly the number of variables, hence the
computational burden, in subsequent LMI relaxations. This heuristic is de-
scribed in section 3.3.

3.1 Rank Condition Non Satisfied but Global Optimum Reached

Even though rank condition (4) is not satisfied, the extraction algorithm can
be applied successfully, as shown by the following example.

Trace Minimization Heuristic

With the help of this example we also return to the comments of section 2.5
on the number of extracted solutions and the trace minimization heuristic.

Consider the polynomial system of equations [4, Ex. 5.2]

x2
1 + x2

2 − 1 = 0
x3

1 + (2 + x3)x1x2 + x3
2 − 1 = 0

x2
3 − 2 = 0.

There is no objective function to be minimized, so as indicated above
GloptiPoly solves the LMI relaxations by minimizing the trace of the moment
matrix.

Applying the least order (k = 2) LMI relaxation we obtain rankM1(y∗) = 4
and rankM2(y∗) = 7, so global optimum cannot be ensured via rank condition
(4).
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With the third LMI relaxation (k = 3) we obtain rank M1(y∗) =
rank M2(y∗) = rank M3(y∗) = 2, so rank condition (4) ensures global op-
timality.

From the extraction algorithm we derive the two globally optimal solutions

x∗(1) = 

 0.5826
−0.8128
−1.4142

 , x∗(2) = 

−0.8128
0.5826

−1.4142

 .

Now replacing the minimum trace LMI objective function in GloptiPoly
with a zero objective function, the third LMI relaxation returns rankM1(y∗) =
4 and rank M2(y∗) = rank M3(y∗) = 6, so rank condition (4) cannot ensure
global optimality.

However, by applying the extraction algorithm, we are able to extract 6
solutions

x∗(1) = 

−0.8128
0.5826

−1.4142

 , x∗(2) = 

 0.5826
−0.8128
−1.4142

 , x∗(3) = 

 0.0000
1.0000

−1.4142

 ,

x∗(4) = 

 1.0000
0.0000

−1.4142

 , x∗(5) = 

 0.0000
1.0000
1.4142

 , x∗(6) = 

1.0000
0.0000
1.4142


thus proving global optimality of the LMI relaxation.

3.2 Infeasible Extracted Solutions

When rank condition (4) is not satisfied, it may happen that solutions ex-
tracted by the algorithm are infeasible for the original optimization problem.
Since solutions are extracted from a convex LMI relaxation, they may be
feasible for a subset of the original constraints only.

Example

We consider the polynomial systems of equations arising from a test for nu-
merical bifurcation, originally described in [11] and listed in problem collection
[2]:

5x9
1 − 6x5

1x2 + x1x
4
2 + 2x1x3 = 0

−2x6
1x2 + 2x2

1x
3
2 + 2x2x3 = 0

x2
1 + x2

2 = 0.265625.

This system has 8 distinct real solutions.
The lowest order (k = 5) LMI relaxation yields rank M1(y∗) = 3 and

rank M2(y∗) = rank M3(y∗) = rank M4(y∗) = rank M5(y∗) = 4. Since d = 5,
rank condition (4) cannot ensure global optimality.
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The extraction algorithm on moment matrix M2(y∗) returns 4 solutions

x∗(1) = 

 0.3653
−0.3636
−0.0153

 , x∗(2) = 

 0.3653
0.3636

−0.0153

 ,

x∗(3) =

−0.3653
−0.3636
−0.0153

 , x∗(4) =

−0.3653
0.3636

−0.0153

 .

These solutions satisfy the second and third equations of the original problem,
but not the first equation. Indeed, since the solutions are extracted from a
convex relaxation of the original problem, they may be infeasible for a subset
of the original constraints.

Proceeding with the 6th order LMI relaxation, we obtain rankMi(y∗) = 2
for all i = 1, 2, . . . , 6, hence ensuring global optimality. The two extracted
solutions are

x∗(1) =

−0.2619
0.4439

−0.0132

 , x∗(2) =

 0.2619
0.4439

−0.0132

 .

3.3 Reducing the Number of LMI Variables

Suppose that at the LMI relaxation of order k, equation (8) holds for the solu-
tions to be extracted, i.e. some monomials in standard basis (2) are expressed
as linear combinations of monomials of generating basis (7).

If constraints of the original optimization problem become redundant
when replacing linearly dependent monomials with combinations of generating
monomials, then this results in a reduction of the monomial basis over which
subsequent LMI relaxations are built. A similar idea is used in 0-1 quadratic
problems to reduce the number of variables in successive LMI relaxations, see
[14].

In summary, application of the reduction algorithm at earlier LMI relax-
ations – at which global optimality cannot be ensured with rank condition
(4) – may result in a significant reduction of the problem dimensions. This
can be seen as a (heuristic) alternative to the (systematic) algebraic reduction
techniques of [7].

Example with Continuous Variables

Consider the following non-convex quadratic optimization problem suggested
by Etienne de Klerk and Radina Dontcheva:

p∗ = minx −(x1 − 1)2 − (x2 − 1)2 − (x3 − 1)2

s.t. 1 − (x1 − 1)2 ≥ 0
1 − (x2 − 1)2 ≥ 0
1 − (x3 − 1)2 ≥ 0

(12)

whose global optimum is p∗ = −3.
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At the first (k = 1) LMI relaxation, the 4x4 moment matrix M1(y∗) has
rank 4, so obviously no solution can be extracted. However, we obtain p∗

1 = −3,
so the global optimum is reached.

When k = 2, we have rank M1(y∗) = 4 and rank M2(y∗) = 7, and the
column echelon form of the Cholesky factor of the 10x10 moment matrix
M2(y∗) is given by

U =



1
0 1
0 0 1
0 2 0
0 0 0 0 1
0 0 0 0 0 1
0 0 2 0 0 0
0 0 0 0 0 0 1
0 0 0 2 0 0 0


in the monomial basis (2)

v2(x) = 1 x1 x2 x3 x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

T
.

Pivot entries in matrix U correspond to the following generating basis (7)

w(x) = [1 x1 x2 x3 x1x2 x1x3 x2x3]
T

which has 7 monomials.
From the rows in matrix U we deduce from (8) that solutions x to be

extracted satisfy the polynomial equations

x2
1 = 2x1

x2
2 = 2x2

x2
3 = 2x3.

(13)

The extraction algorithm fails however, because third degree monomials are
missing in U to build multiplication matrices (9).

Note however that when substituting monomials as in (13), constraints of
the original problem (12) become redundant since 1− (xi−1)2 = −x2

i +2xi =
0 ≥ 0, for i = 1, 2, 3. We can therefore replace monomials x2

i with 2xi and
remove constraints in the next LMI relaxation.

So when k = 3, instead of having a basis (2) with 20 monomials of degree 3,
we can use only 8 monomials to build the third LMI relaxation – with respect
to the previous basis of the second LMI relaxation, the only new element is
the third degree monomial x1x2x3. Using 8 monomials instead of 20 reduces
significantly the computational burden when solving the LMI relaxation. A
further reduction is achieved since redundant constraints can be removed and
the third LMI relaxation does not feature any localizing matrix.
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When applying the reduction algorithm on the moment matrix M3(y∗) of
rank 8, we obtain that monomial x1x2x3 belongs to the generating basis. Mul-
tiplication matrices are readily obtained, and the 8 expected globally optimal
solutions are extracted

x∗(1) = 

 0
0
0

 , x∗(2) = 

 2
0
0

 , x∗(3) = 

0
2
0

 , x∗(4) = 

 2
2
0

 ,

x∗(5) =

 0
0
2

 , x∗(6) =

 2
0
2

 , x∗(7) =

0
2
2

 , x∗(8) =

 2
2
2

 .

Example with Discrete Variables

Consider the Max-Cut problem

min − 1
2 i<j wij(1 − xixj)

s.t. xi ∈ {−1, +1}
in the case of a complete K5 graph with adjacency matrix

W =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 .

The first (k = 1) LMI relaxation yields p∗
1 = −6.25 and rank M1(y∗) = 5.

When k = 2 we obtain p∗2 = −6.25 and rankM1(y∗) = 5, rankM2(y∗) = 10.
When k = 3, we get p∗3 = −6 and rank M1(y∗) = 5, rank M2(y∗) = 10,

rank M3(y∗) = 20. The extraction algorithm returns
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U =



1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

−2 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 −2 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1
0 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 −1 −1 0 −1 0
0 −1 −1 −1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 −1 0 −1
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0


so that linearly dependent monomials in polynomial system of equations (9)
are as follows

x4x5 = −2 − x1x2 − x1x3 − x1x4 − x1x5 − x2x3 − x2x4 − x2x5 − x3x4 − x3x5

x1x2x3 = x4x5

x1x2x4 = x1x2x3

x1x2x5 = x1x2x4

x1x3x4 = x1x2x5

x1x3x5 = x1x3x4

x1x4x5 = −2x1 − x2 − x3 − x4 − x5 − x4x5 − x1x2x3 − x1x2x4 − x1x2x5 − x1x3x4

x2x3x4 = −x1 − x2 − x3 − x4 − x4x5 − x1x2x3 − x1x2x5

x2x3x5 = −x1 − x2 − x3 − x5 − x4x5 − x1x2x4 − x1x3x4

x2x4x5 = x1 + x3 + x4x5 + x1x2x5 + x1x3x4

x3x4x5 = x1 + x2 + x4x5 + x1x2x3 + x1x2x4.

From these relations, fourth degree monomials can be expressed in gener-
ating basis (7)
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x1x2x3x4 = (x1x2x3)x4 = (x4x5)x4 = x5

x1x2x3x5 = (x1x2x3)x5 = (x4x5)x5 = x4

x1x2x4x5 = (x1x2x4)x5 = (x1x2x3)x5 = (x4x5)x4 = x5

x1x3x4x5 = (x1x3x4)x5 = (x1x2x5)x5 = x1x2

x2x3x4x5 = (x2x3x4)x5 = (−x1 − x2 − x3 − x4 − x4x5 − x1x2x3 − x1x2x5)x5

= −x1x5 − x2x5 − x3x5 − x4x5 − 2x4 − x1x2

and the only fifth degree monomial readily follows

x1x2x3x4x5 = (x1x2x3x4)x5 = 1.

At this stage, it is useless to proceed with higher order LMI relaxations since
no more linearly independent monomials of higher degree can be produced.

Consequently, the global optimum p∗ = p∗3 = −6 has been reached and 20
globally optimal solutions can be extracted from the above matrix U .

4 A Remark on the Numerical Behavior of GloptiPoly

Finally, we want to comment on a nice and surprising behavior of GloptiPoly
that we observed on some examples of unconstrained minimization.

In the case of unconstrained global minimization, that is when K is Rn,
only one LMI relaxation is useful, namely Mk(y) if deg g0 = 2k or 2k − 1.
Indeed,

(a) either g0 − p∗ is SOS and then p∗k = p∗, or
(b) g0 − p∗ is not SOS and then p∗k+j = p∗k < p∗ for all j = 1, 2, . . .

Therefore there is no need to try relaxations with orders higher than k.
However, in case (b) it may be worthy to still try higher order relaxations! In-
deed, because of the numerical inaccuracies involved in the solving procedure,
one may obtain convergence in a finite number of steps to a value and min-
imizers, very close to the exact value and the exact minimizers respectively!
Let us try to explain why.

If the space of polynomials x → g(x) = α gαxα is equipped with the
norm g = α |gα|, then the cone Σn of SOS polynomials is dense in the set
of polynomials nonnegative over the multidimensional box [−1, 1]n, see e.g.
[1]. 

Therefore, consider a nonnegative polynomial g0 that is not SOS, and
assume that g0 has a global minimizer x∗ ∈ [−1, 1]n with g0(x∗) = p∗. Then,
one may hope that an SOS polynomial gk, close to g0 (i.e., with gk −g0 < )
will provide a global minimizer close to x∗. Observe that for all x ∈ [−1, 1]n,

|gk(x) − g0(x)| = |
α 

[(gk)α − (g0)α] xα| ≤ gk − g0 ≤ .

However, one does not know how to construct such a sequence of SOS poly-
nomials {gk} with gk − g0 → 0.
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But let us see how GloptiPoly behaves on the following well-known exam-
ple of a non-negative polynomial which is not SOS, namely the polynomial
obtained by dehomogenization of Motzkin’s form:

g0(x) = 
1
27

+ x2
1x

2
2(x

2
1 + x2

2 − 1).

This polynomial is nonnegative (p∗ = minx g0(x) = 0 attained at |x1| = |x2| =√
3/3) but is not SOS.

• The least order (k = 3) LMI relaxation is unbounded, returning no useful
information. In principle one should stop here; we have detected that g0

is not SOS.
• when k = 4 the LMI relaxation is unbounded too.
• when k = 5 the LMI relaxation returns p∗

5 = −0.4036 and all the moment
matrices have full rank (in GloptiPoly we use a relative threshold of 10−3

to evaluate the numerical rank of a matrix)
• when k = 6 the LMI relaxation returns p∗

6 = −0.08241 and all the moment
matrices have full rank

• when k = 7 the LMI relaxation returns p∗
7 = −0.01675 and all the moment

matrices have full rank
• when k = 8 the LMI relaxation returns an almost zero optimum p∗

8 =
3.022 · 10−10, and rank M1(y∗) = 3, rank M2(y∗) = rank M3(y∗) = 4, thus
proving global optimality.

The moment matrix of second order reads

M2(y∗) =


1.0000 0.0000 0.0000 0.3333 0.0000 0.3333
0.0000 0.3333 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.3333 0.0000 0.0000 0.0000
0.3333 0.0000 0.0000 0.1111 0.0000 0.1111
0.0000 0.0000 0.0000 0.0000 0.1111 0.0000
0.3333 0.0000 0.0000 0.1111 0.0000 0.1111


from which we readily extract the four globally optimal solutions

x∗(1) = −0.5773
−0.5773 , x∗(2) = 0.5773

−0.5773 ,

x∗(3) =
−0.5773

0.5773 , x∗(4) =
0.5773
0.5773 .

From the dual LMI [12, 16], we can obtain the SOS decomposition

g8(x) =
32

i=1

a2
i q

2
i (x) + εr(x) ≈ g0(x) on [−1, 1]2,

where
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• polynomials qi(x) and r(x) are normalized such that their coefficient vec-
tors have unit Euclidean norm,

• ε ≤ 10−8 < a2
i , i.e. positive scalar parameter ε is less than a given thresh-

old, and positive scalar coefficients a2
i in the decomposition are greater

than the threshold,
• deg qi(x) ≤ 8, since GloptiPoly solved the eighth LMI relaxation,
• there are 32 (!) terms in the SOS decomposition.

The above SOS decomposition is approximate in the sense that parameter ε
is small, but non-zero. It turns out that in GloptiPoly numerical inaccuracy
(roundoff errors) helped to find a higher degree SOS polynomial g8 close to
Motzkin polynomial on [−1, 1]2.

Thus, everything looks like if in the solving procedure of the dual relaxation
Q∗

k (see [12] for notations) the constraints

X, Bα = (g0)α, |α| ≤ 2k,

are replaced automatically by

X, Bα = (g0)α + α, |α| ≤ 2k,

with appropriate small perturbations { α}, chosen by the solver!
In a similar vein, it can be useful to add a redundant constraint of the

type
g1(x) = R2 − x 2

2 ≥ 0,

and consider the optimization problem min{g0(x) | g1(x) ≥ 0}, to obtain guar-
anteed convergence of the successive associated LMI relaxations.

Now consider problem (1) where g0(x) is the above Motzkin polynomial
and g1(x) is the above radius constraint with R = 1 (to include the 4 global
minima). With GloptiPoly we obtain already at the third LMI relaxation the
SOS decomposition

g0(x) =
6

i=1

a2
i q

2
i (x) + g1(x)

2

i=1

b2
i r

2
i (x)

with only 6 and 2 terms such that deg qi ≤ 3 and deg ri ≤ 2, respectively.

5 Conclusion

Solution extraction is straightforward when the moment matrix has rank-one:
in this case the solution vector is equal to the first order moment vector.
When the moment matrix has rank greater than one, we have proprosed in
section 2 a systematic extraction procedure, implemented in version 2.2 of the
GloptiPoly software.
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The extraction algorithm is applied when moment matrices satisfy rank
condition (4), in which case it is always successful and yields globally optimal
solutions. However, as pointed out in section 3, when the rank condition is
not satisfied, a heuristic consists in applying the extraction algorithm anyway.
Either the algorithm is successful and we are done (see section 3.1) or the
algorithm fails, but still some information can be exploited to reduce the
number of variables in subsequent LMI relaxations (see section 3.3). Note
however that these ideas are not currently implemented in GloptiPoly.

Note finally that an incomplete extraction procedure was sketched in [3] in
the case of LMI relaxations for polynomial systems of equations, and partly
motivated us to devise a more general algorithm. A specific extraction proce-
dure was also described in [18, Section 5] in the case of quadratic optimization
problems with one (possibly non-convex) quadratic constraint, or one linear
constraint jointly with one concave quadratic constraint.
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