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Abstract. This paper presents a Bayesian approach to the problem of searching for a single
lost target by a single autonomous sensor platform. The target may be static or mobile but
not evading. Two candidate utility functions for the control solution are highlighted, namely
the Mean Time to Detection, and the Cumulative Probability of Detection. The framework
is implemented for an airborne vehicle looking for both a stationary and a drifting target
at sea. Simulation results for different control solutions are investigated and compared to
demonstrate the effectiveness of the method.

1 Introduction

“We are sinking fast. Position ten miles south of San Remo... v

When rescue authorities receive a distress signal time becomes critical. The
probability of survival decreases rapidly in a matter of hours when lost at sea. The
prime focus of a rescue mission is to search for and find the castaways in the smallest
possible amount of time. The search, based on some coarse estimate of the target
location, must often be performed in low visibility conditions and despite strong
winds and high seas making the location estimate even more uncertain as time goes
by. Keeping these time and physical constraints in mind, what should be the optimal
search strategy?

This paper presents a Bayesian framework that integrates and predicts the effects
of the observations and the process model on the target distribution. The control
solution formulation is then described for a single autonomous vehicle searching for
a single non evading, but possibly mobile target.

The paper is organized as follows. First, the Bayesian filtering algorithm that
accurately maintains and updates the target state probability density function (PDF)
is described in Sect. 2. Section 3 describes the searching problem, highlights two
utility candidate functions and formulates the control optimization problem. Section
4 implements the framework for an airborne search vehicle and investigates the

! Mayday from yacht Winston Churchill, April 1959 [10]
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control solutions and the effectiveness of the approach for both a stationary, and a
drifting target. Finally, conclusions and ongoing research directions are highlighted.

2 Bayesian Analysis

This section presents the mathematical formulation of the Bayesian analysis from
which the control solutions presented in this paper are derived. The Bayesian ap-
proach is particularly suitable for combining, in a rational manner, non-linear motion
models and heterogeneous non-Gaussian sensor measurements with other sources
of quantitative and qualitative information [8][1].

In Bayesian analysis any quantity that is not known is modelled as a random
variable. The state of knowledge about such a random variable is expressed in the
form of a probability density function (PDF). Any new information in the form of a
probabilistic measurement or observation is combined with prior information using
the Baye’s theorem in order to update the state of knowledge and form the new a
posteriori PDF. That PDF forms the quantitative basis on which all control decisions
or inferences are made.

In the searching problem, the unknown variable is the target state vector x* € X’
which in general describes its location but could also include its attitude, velocity,
etc. The analysis starts by determining the a priori PDF of x!, p(x}|zo) = p(x}),
which combines all available information including past experience. For example,
this prior PDF could be in the form of a Gaussian distribution representing the
prior coarse estimate of the parameter of interest. If nothing is known about the
parameter, a least informative approach is to represent this knowledge by a uniform
PDEFE. Then, once the prior distribution has been established, the PDF of the target
state at time step k, p(xi |Z1.1 ), can be constructed recursively, provided the sequence
Z1.x = {21, ..., 2z} } of all the observations made by the sensor(s) on board the search
vehicle, zj, being the observation (or the set of observations, if multiple sensors)
made a time step k. This recursive estimation is done in two stages: prediction and
update.

2.1 Prediction

A prediction stage is necessary in Bayesian analysis when the PDF of the state to
be evaluated is evolving with time i.e. the target is in motion or the uncertainty
about its location is increasing. Suppose we are at time step & and the latest PDF
update, p(x}_;|z1.x—1) (from the the previous time step) is available. Then the
predicted PDF of the target state at time step k is obtained from the following
Chapman-Kolmogorov equation

p(x}|z1:6-1) = /p(xi\xi_ﬁp(xz_l\lek—l)dx}i_l (D

where p(x},|x}_,) is a probabilistic Markov motion model. If the motion model
is invariant over the target states, then the above integral is simply a convolution.
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Practically, this convolution is performed numerically by a discretization of the two
PDF’s on a grid, followed by the multiplication of their Fast Fourier Transforms
(FFT)’s, followed by an inverse FFT of the produce to retrieve the result.

2.2 Update

At time step k a new observation z; becomes available and the update is performed
using Bayes rule where all the observations are assumed to be independent. The
update is performed simply by multiplying the prior PDF (posterior from the pre-
diction stage) by the new conditional observation likelihood noted p(z|x},) as in
the following

p(xilz1:k) = Kp(x[z1:6-1) - p(2k[x],) 2

where the normalization factor K is given by

K= 1// [p(x},|21:6-1)p(21[x],) ] dx], ®)

Practically, the multiplication of (2) is performed numerically by multiplying to-
gether the corresponding elements of a grid.

3 The Searching Problem

This section describes the equations for computing the probability of detection of a
lost object referred to as the target. For further details on the searching problem the
reader is referred to [7] and [6].

If the target detection likelihood (observation model) at time step £ is given by
p(zy|x},) where z;, = Dy, for which Dy, represents a “detection” event at ¢, then
the likelihood of “no detection™, given a target state x|, is given by its complement

p(Dilx}) = 1 — p(Dlx}) 4)

At time step k, the conditional probability that the target does not get detected during
a sensor observation, p(Dy|2z1.x—1) = qx, depends on two things: the ‘no detection’
likelihood (4), and the latest target PDF p(x}|z1.5—1) (from the prediction stage
(1)). In fact g, corresponds exactly to the volume under the surface formed when
multiplying the two together (element-by-element for each given target state x}) as
in the following

p(Dylz1:5-1) = /p(ﬁk\xi)p(xilzl:k—l)dﬁc = qk )

Hence ¢y is given by the reduced volume (< 1) under the target state PDF after
having been carved out by the ‘no detection’ likelihood in the update stage (2), but
before applying the normalization factor to it. Notice that this volume is exactly the
inverse of the normalization factor K (see (3) for a ‘no detection’ event (z;, = D},)),
s0 ¢ = 1/K and is always smaller than 1. The joint probability of failing to detect
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the target in all of the steps from 1 to k, noted Q = p(ﬁlzk), is obtained from the
product of all the g;’s as follows

k k
Qv =[]p@iDri-1) =] & = Qe (©)
i=1 i=1

where D1.;,_1 corresponds to the set of observations z;.;—; where all observations
are equal to D. Therefore, in & steps, the probability that the target has been detected,
denoted Py, is given by

Pp=1-Qk )

It is also possible to compute the probability that the target gets detected for the
first time on time step &, denoted py, as follows

k—1 k—1
Pr = Hp(ﬁi‘ﬁlzi—l) [1 — p(ﬁk\ﬁhkﬂ)] = H qi [1 - Qk] = Q-1 [1 - Qk] 8
i=1 i=1

which in turn by summing over k provides a sequential method for evaluating Py, as

k
Pe=> pi=Pe1+px ©)
=1

For this reason P will be referred to as the ‘cumulative’ probability of detection at
time k to distinguish it from the conditional probability of detection at time k£ which
is equal to 1 — gi. Notice that as k goes to infinity, the cumulative probability of
detection increases towards one. With k increasing, the added probability of detection
Pk gets smaller and smaller as the conditional probability of detection (1 — g) gets
discounted by a continuously decreasing Q1.

The mean time to detection (MTTD) is the expectation of the number of steps
required to detect the target

E[k] =Y kpr = MTTD (10)
k=1

The goal of the searching strategy could either be to maximize the chances of
finding the target given a restricted amount of time by maximizing FPj over the
time horizon, or to minimize the expected time to find the target by minimizing the
MTTD. The difficulty though in evaluating the MTTD lies in the fact that one must
in theory evaluate py, for all k’s up to infinity.

3.1 Optimal Trajectory

Optimality is always defined in relation to an objective, or utility function [9]. For the
searching problem there are two suitable candidates to evaluate a trajectory utility,
namely the cumulative probability of detection P, (9), and the MTTD (10).
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For an action sequence u = {uy, ..., uy, } over a finite time horizon of length
T = Ny dt, we thus have as an objective function either

k+ Ny k+ Ny
J,Ng)= > pi=Pun,— P or  JN)=— > ipi (1)
i=k i=k

The optimal control strategy u* is the sequence that maximizes that utility subject
to the vehicle limitations ur,g < u < uyp.

ut = {uj, ..., uy, } = arg max J(u, Ny) (12)

For the searching problem, because early actions strongly influence the utility of
subsequent actions, the longer the time horizon, the better the computed trajectory.
However, the computational cost follows the “curse of dimensionality” and with
increasing lookahead depth the solution becomes intractable. In practice only so-
lutions for very restricted lookahead length are possible. One way to increase the
lookahead without increasing the cost of the solution too much is to use piecewise
constant control sequences (see [5] and [2]) where each control parameters is main-
tained over a specified number of time steps. Such control solutions are said to be
‘quasi-optimal’ as they compromise the global optimality of the control solution for
a lower computation cost, but nevertheless, depending on the problem at hand, often
provide better trajectories than the ones computed with the same number of control
parameters but with shorter time horizons.

3.2 One-step Lookahead

Planning with a time horizon of only one step is an interesting special case of the
searching problem as both objective functions reduce to J(u, 1) = pg.

Also, because p, = Qr—1(1—qx) (8), maximizing py, at time step ¢, is equivalent
to maximizing (1 — qx) = p(Dg|z1.x—1), the conditional probability of detecting the
target (which corresponds to the volume under the surface resulting from the multi-
plication of the ‘detection’ likelihood with the predicted target PDF), or conversely
minimizing g, = p(Dg|2z1.1—1) (5), the conditional probability of ‘not detecting’
the target (volume under the surface resulting from multiplying the ‘no detection’
likelihood with the predicted target PDF). As will be seen in the results section 4.4,
this greedy from of searching strategy provides very sensible control solutions at
very low computational costs.

4 Application

The goal of the work presented in this paper is to ultimately implement and demon-
strate the framework for an autonomous search on one of the ACFR’s unmanned
air vehicle (UAV) as shown in Fig. 1a. ACFR has also developed a high fidelity
simulator (Fig. 1b) of the UAV’s hardware, complete with different sensor models,
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(b)
Fig. 1. Application: (a) one of the Brumby Mark-III uav’s been developed at ACFR as part of
the ANSER project. This flight vehicle has a payload capacity of up to 13.5 kg and operational
speed of 50 to 100 knots; (b) display of the high fidelity simulator

on which the flight software can be tested before being implemented on board the
platform almost without any modifications [3].

The rest of this section describes the implementation of the Bayesian searching
framework for a single airborne vehicle searching for a single non-evading lost target
that could either be stationary or mobile. However, the method is readily applicable
to searching problems of all kinds, be it ground, underwater or airborne search for
bushfires, lost hikers, enemy troops in the battlefield, or prospection for ore and oil,
or even to search for water or evidence of life on another planet.

4.1 Problem Description

The problem chosen for the illustration of the framework involves the search by an
airborne vehicle for a life-raft lost at sea. The search platform is equipped with a
GPS receiver, i.e. assuming perfect localization, and a searching sensor (e.g radar,
human eye, infrared or CCD camera) that can be modelled by a likelihood function
(over range and bearing) hence relating the control actions to the probability of
finding the target. There is one observation (full scan) made once every second.
The sensor is assumed to have perfect discrimination i.e. no false target detection.
However, it may fail to call a detection when the target is present i.e. miss contact.
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The omnibearing sensor’s maximum range ( 400m) is much smaller than the size of
the searching area (2km x 2km). Drift current and winds (of up to 30 knots) affect the
target distribution over time in a probabilistic way through the process model. The
target PDF is of general form (i.e. non-Gaussian) and is evaluated and maintained on
a discrete grid. As the length of the search is limited by the vehicle fuel autonomy,
the utility function selected is given by (11) (left) and consists of maximizing the
cumulative probability of finding the target in a fixed amount of time.

4.2 Motion Prediction

Vehicle Model The vehicle pose prediction model used for the planning purposes
is the following discrete time non-linear constant velocity model

2 1 1
Tho1 = Tp + 1 sin(zuy, dt) cos(0y, + =uy dt) (13)
U 2 2
s s 2V 1 s 1
Yer1 = Yn + — sin(zug dt) sin(0y, + < uy dt) 14
U 2 2
Ory1 = 0F +up dt (15)

where the turn rate control command u;. is maintained over the time interval dt. For
ug dt < 1, i.e. turn rate close to zero, (13) and (14) reduce to

xh . = xj + Vdtcos(0}) (16)
Yip1 = Yi + Vdisin(67) a7

The maximum turn rate amplitude (., = £1.1607 rad/s) corresponds to a 6g
acceleration, the UAV’s manoeuvre limit at V' = 50 m/s ( 100 knots).

Process Model The model of the target state evolution noted p(x}|x}_,), also
called the target process, or motion model maps the probability of transition from
a given previous state to x},, the target sate at time ¢. It is defined by the target’s
equations of motion and the known statistics of the wind and the drift currents
orientations and speeds. In this example, the life-raft is assumed to be drifting in the
same direction and at a velocity proportional to the wind velocity. It was found that
a joint distribution combining a Gaussian distribution for the wind direction with
mean pp and variance o7, and a Beta distribution for the velocity amplitude v where
v € [0, Uynaz] as in the following expression

c v 1 v, 1 —ong?
v,0) = —) (1 - - e % (18)
p( ) Umax <vmax ) ( Umazx ) A% 2770‘0,“11

where the mean velocity 1, = a/Vpmqz(a + b), and a, b, ¢ are the Beta distribution
parameters, with ¢ = % seems to agree well in many cases with real wind
data. The nice characteristics of a Beta distribution, over a Gaussian distribution
for example, is that the distribution is defined only on a limited interval which is

physically more realistic, and the function can also be skewed to various degrees by
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(a) b)
Fig. 2. Motion model: (a) target transition probability, p(xf€|x%,_1) for x§,_; =[0, 0], and (b)
its corresponding contour plot with actual wind data

adjusting the parameters a and b to match the actual data. Figure 2a shows a 3D plot
of the target transition probability where a = 4, b = 5, 09 = § and vynqee = 30 m/s.
Figure 2b shows the contour plot of the function in good agreement with real wind
data?. For the problem described in this paper the same parameters were used except
that the maximum wind velocity was set to 60 m/s giving a mean velocity of about
20 m/s ( 10 knots). Notice though that applying the convolution of the target prior
PDF with the motion model multiple times is the same mathematically as convolving
the motion model with itself multiple times and then convolving the results with the
prior target PDF. The convolutions of the motion model with itself renders it more
and more Gaussian like, even if the function was really far from being a Gaussian
in the beginning. Therefore, for a very long searching plan, or for the case where
observations only come very sporadically, a Gaussian approximation to the motion
model is satisfactory.

4.3 Observation Model

The observation or sensor model is a probabilistic function representing the likeli-
hood of the target being detected, or not (z;, = D or D), conditioned on the sensor
location and the state of the world.

It is not a trivial task to accurately model the sensor as many factors affect its
performance: the distance to the target, the target footprint and reflectance, the trans-
mission attenuation, and other environmental factors such as temperature, clutter
and obstructions, etc.

For the purpose of this paper an active sensor model such as a downward looking
millimeter wave radar was selected. It is assumed that the life raft has a radar reflector
mounted on its canopy. For such a sensor, the approximate signal power, S’, received
at the antennae after illumination of a target located at a distance d can be described

by the following formula:
SAantAtP 204
S = TR (19)

2 Wind data measured at the MIT sailing pavillon on the Charles River, Cambridge, MA.
Thanks to Eric Wile. http://cbiwind.org
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where S is the emitted power, A; and A, are the target and antennae footprints
respectively, p is the target backscattering coefficient and « is the transmission
attenuation factor which is greatly affected by the size, and density of the particles
(e.g. rain) in the atmosphere. The constant C' accounts for other environmental
factors (e.g. background noise, temperature, etc) and could be a function of d.

If the probability of target detection is a function of the received power and the
signal-to-noise ratio, then the following expression should hold true

P S’ S’
[ = P =Pyg—o 20
Pstd S;td e S;td ( )

where by design, the reference, or ‘standard’ detection likelihood, P4 has a value
of one (or less) for a given amount of received signal power S’,, evaluated at
{dstd, asta}- Hence, by plugging (19) into the right side of (20), and after reduction,
a closed form expression for the detection likelihood is obtained:

4

P = Py et -2Aed=ounadeid) — pl = Dl @)
where the distance parameter d (= v/ h? + r2) is a function of the vehicle altitude i
and the "ground" range r (r? = (2! — z3)? + (y* — y3)?) to the target. In this paper
the following parameter values were used: Ps;q = 0.8, dstq = 250, h = 250, and
a = agtqg = 1/250. Figure 3 illustrates the corresponding detection likelihood and
its complement for a case where the sensor is located above x = y = 0. Another

A
0
i
,//I"‘“‘\\\\\‘
I

500 -500 500 -500

(@) (b)
Fig. 3. Observation model: (a) conditional detection likelihood, p(zx = D|x%) for _xi =[0,
0]; (b) conditional detection complement likelihood (likelihood of ‘miss’), p(z; = D|x}) =
1 —p(zr = Dlx},)

very important parameter, not considered, that would contribute to a decrease in the
detection likelihood with the ‘ground’ distance would be the height and wavelength
of the seas. In this paper it is assumed that the radar reflector is always above the
wave crests ensuring a direct line of sight to the emitting antennae.

Notice that in general, the detection likelihood of (21), p(z = D|x,), should
be conditioned on the uncertain sensor state, x;, and written p(z|x}, x5 ). Hence, it
should be convolved with the latest sensor state pdf, p(xj |z5.,), to obtain p(zx|x},)
prior to using it in the update equation (2). In this paper, perfect localization is
assumed so p(zx|x}, x5 ) = p(zk|x}).
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On a practical note when implementing an observation model, it is important that
the function be smooth, and that it decreases progressively to zero without any steps.
Otherwise, the objective function becomes jagged, effectively creating a multitude of
local minima along the function. This quantization effect is due to the discretization
of the target state PDF over the grid and has a very adverse effect for the convergence
of the control optimization algorithm making it very difficult to obtain, if at all, the
proper control value.

Also, because of the various assumptions made when modelling the observation
likelihood, one must be aware of the possibility of discrepancies between the com-
puted results and what would be the actual probability of detection. For computing
accurately the ‘cumulative’ probability of detection (9), one would have to use an
accurate observation model obtained through extensive in situ experimental testing
of the search sensor. Nevertheless a theoretical model, as obtained in (21), provides
areasonable approximation for Py, and is certainly sufficient for planning purposes,
as well as for evaluating different solutions and comparing between them.

4.4 Results

For all the results presented in this section, the initial target PDF is assumed to be a
symmetric Gaussian distribution centered at x+ = y = 0 with a standard deviation of
500m, and the searching vehicle is flying at an altitude of 250m, with the following
initial pose x§ = [z = —900, y5 = —900, 65 = 0].

Stationary Target Figure 4 shows the resulting ‘greedy’ (1-step lookahead) search
trajectory and the corresponding 3D views of the target PDF evolution at different
stages as the search progresses from 0 to 300 seconds. Although this solution is
very cheap computationally it often produces reasonable plans as it corresponds to
maximizing the local payoff gradient. However because of the myopic planning, the
vehicle fails to detect higher payoff values outside its sensor range and would keep
spiraling further and further away from the center as can be seen on Fig. 4d. Figure
4e displays in solid line the conditional probability of detection (1 — ¢;) obtained
at every time step t. The dashed line represents the actual probability p; that the
target gets detected for the first time on that time step, which is the same as the
solid line but discounted by (),—1. Notice the peaks in both functions as the search
vehicle flyby over a mode in the PDF. Figure 4f shows the ‘cumulative’ probability
Py, that the target as been detected by time step ¢. It is obtained from the integration
of the payoff function (dashed line) from Fig. 4e. Another phenomenon to notice
about the greedy search is the fact that because the volume under the PDF is always
equal to one, as the vehicle traverses a mode of the function (e.g. when it crosses
the original PDF mode for the first time (Fig. 4a), it has the effect of pushing away
the probability mass hence increasing the entropy of the distribution, consequently
making it harder and harder to increase the utility as time passes. The phenomenon
will be referred to as the scattering effect.

Intuitively, for a given fixed trajectory length, one could imagine that instead of
rushing to the PDF’s peak as in the greedy solution, the optimal strategy would be
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d e
Fig. 4. Greedy sga)rch for a static target: (a) to (d() %D views of the vehicle trajectory and updated
target PDF at time ¢ = 25, 60, 180 and 300 respectively; (e) conditional (solid line) and
‘discounted’ (dashed line) probability of detecting the target on step k (p(D|2z1:x) = 1 — g,
and pr, = Qx(1 — qx)); (f) accumulated probability of detection P

0,
0.7;

(@ (b)
Fig. 5. Trajectory optimization: (a), (b) quasi-optimal path for a 120s search (12 control
parameters maintained for 10s each) at time ¢, = 60 and 120 respectively; (c) comparison
between P}, evolutions (fop), and control selections u(k)’s (bottom) for the ‘greedy’ solution
(solid line), and the quasi-optimal solution (dashed line)

to circle around the peak but without flying over it, in such a manner as to plow the
probability mass towards the peak, effectively compressing it (reducing the entropy),
in order to increase the payoff of the last observations. In fact, as shown on Figs.
S5a and 5b, this is exactly what happens. The piecewise constant ‘optimal’ control
solution with 12 parameters, for a 120s trajectory, shows the path spiraling in instead
of spiraling out. The comparison between the utility function evolutions (Fig. 5c)
shows what one would anticipate. The greedy solution first gets a head start as it
goes straight to the peak to finish with P29 = .59, but the ‘quasi-optimal’ solution
progresses steadily to ultimately finish with Pjo = .77, a 29% increase.

Drifting Target This section demonstrates the method for a drifting target with
a process model as described in Sect. 4.2. The optimization technique is the same
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used as for the static target, but the computational costs are increased by a few
fold as the convolution operation needed for the target prediction stage is quite
costly. This is also compounded by the fact that because the PDF is moving, a larger
grid is necessary, making it even more costly to perform the convolution and the
optimization. Nevertheless, the greedy solution is still very effective. The 3D plots
of the search evolution are shown on Fig. 6. This time, though because of the lack
of anticipation intrinsic to the greedy solution, it doe not quite reach as high a level
of cumulative detection probability (solid line on Fig. 8) as it did for the static case
(P3p0 = .71 vs. .91). Figure 7 shows the results for a piecewise constant control

BOOG

o .
-2000 (a)

8000 BOOG

B0

2000 2000

2000 ° (c) “2500 " ao0p (d)

Fig. 6. Greedy (1s lookahead) search for a drifting target: (a) to (d) 3D views of the searching
vehicle trajectory and updated target PDF at time ¢;, = 60, 120, 180, and 300 respectively

solution with a time horizon of 30s split into three parameters and recomputed every
10s as in a feedforward control strategy. Comparing Fig. 7a with Fig. 6a really shows
the positive effect of anticipation. This effect is also seen in the ultimate value of Py,
(.87 vs..71), a gain of over 22% (Fig. 8). The computational cost though is about 25
times higher.

5 Summary and Future Work

This paper introduced a general Bayesian framework for the searching problem of
a single target. The approach presented explicitly considers the search vehicle kine-
matics, the sensor detection function, as well as the target arbitrary motion model.
It was demonstrated to find efficient search plans that maximize the probability of
finding the target given a fixed time limit by maintaining an accurate target location
PDF of general form, and by explicitly modelling the target’s process model.
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8000
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Fig. 7. Feedforward piecewise constant parametric control for a drifting target: 3D views of
vehicle trajectory and updated target PDF at time t; = 60, 120, 180, and 300 respectively.
The planning is done with 30s lookahead (3 control parameters each maintained for 10s) and
replanned every 10s.

0.

0.8]
0.7]
0.6]
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0.4
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Fig. 8. Drifting target results: comparison between the detection probability P results from
the greedy, 1s lookahead (solid line), and the piecewise constant (dashed line) solution from
Figs. 6 and 7

The control solutions presented included the special case of a one step lookahead
solution. This greedy solution demonstrated quite sensible trajectories for a very low
computational cost. The ‘quasi-optimal’ solution for the static target was obtained
with a piecewise constant control parametrization. It showed that the optimal solution
for a given trajectory length initially delays its reward and tries to concentrate the
probability mass into one location, reducing the entropy, and hence delaying the
“scattering" effect, in order to reap greater benefits later in time. For the the drifting
target, it was shown that increasing the lookahead depth over the greedy solution
improved the trajectory efficiency, at the expense of greater computational costs, by
providing it with a sense of ‘anticipation’.

Having a sensor range much smaller than the searching area cause the target PDF
to rapidly become very non-Gaussian even if it was originally the case. Because of
the nature of the search problem it is very important to be able to keep track of the
complete target distribution. Any grid based approach such as the one followed in this



222 F. Bourgault, T. Furukawa, and H.F. Durrant-Whyte

paper is intrinsically subject to the curse of dimensionality, and as soon as one needs
to increase the search area, the resolution of the grid, or the number of dimensions in
the state-space, computational costs tend to get out of hand. As part of the ongoing
research effort, techniques such as Monte Carlo methods, or particle filters [4], as
well as the so called kernel methods are being investigated. A decentralized version
of the Bayesian framework presented in this paper for a multiple vehicle search is
also part of ongoing investigations.

Beyond the demonstration of the approach on a single and then multiple real
autonomous platforms, the ultimate objective of this research is to eventually have
multiple platforms participating in actual search and rescue (SAR) missions with
real-time cooperative planning and fully integrated human in the loop inputs. As
shown by the results presented, the technique as the potential to greatly improve on
current SAR protocols, which in turn could be critical in saving human lives.

Acknowledgement

This work is partly supported by the ARC Centre of Excellence programme, funded
by the Australian Research Council (ARC) and the New South Wales State Gov-
ernment. The authors wish to thank Ali Goktogan from ACFR, the developer of
the RMUS simulator, for his assistance with the simulation implementation. Also,
thanks to Erik Wile from MIT for the wind data.

References

1. J.O.Berger. Statistical decision theory and Bayesian analysis. Springer series in statistics.
Springer-Verlag, New York, 2nd edition, 1985.

2. T. Furukawa. Time-subminimal trajectory planning for discrete nonlinear systems. Engi-
neering Optimization, 34:219-243,2002.

3. A.H. Goktogan, E. Nettleton, M. Ridley and S.Sullarieh. Real time multi-uav simulator.
In IEEE International Conference in Robotics and Automation, Taipei, Taiwan, 2003.

4. N.J.Gordon,D.J. Salmond, and A.F.M. Smith. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. /EE Proceedings-F, 140(2):107-113, April 1993.

5. H.J.W.Lee, K.L. Teo, V. Rehbock, and L.S. Jennings. Control parametrization enhancing
technique for time optimal control problems. Dyn. Sys. and Appl., 6(2):243-262, April
1997.

6. J.S. Przemieniecki. Mathematical Methods in Defence Analyses. AIAA Education Series.
American Institute of Aeronautics and Astronautics, Inc., Washington, DC, 2nd edition,
1994.

7. L.D. Stone. Theory of Optimal Search, volume 118 of Mathematics in Science and
Engineering. Academic Press, New York, 1975.

8. L.D. Stone, C.A. Barlow, and T.L. Corwin. Bayesian Multiple Target Tracking. Mathe-
matics in Science and Engineering. Artech House, Boston, 1999.

9. K.L. Teo, C.J. Goh, and K.H. Wong. A Unified Computational Approach to Optimal
Control Problems. Longman Scientific and Technical, 1991.

10. Debbie Whitmont. An Extreme Event. The compelling, true story of the tragic 1998
Sydney-Hobart Race. Random House Pty Ltd, Sydney, Australia, 1999.



	1 Introduction
	2 Bayesian Analysis
	2.1 Prediction
	2.2 Update

	3 The Searching Problem
	3.1 Optimal Trajectory
	3.2 One-step Lookahead

	4 Application
	4.1 Problem Description
	4.2 Motion Prediction
	4.3 Observation Model
	4.4 Results

	5 Summary and Future Work
	References



