
Active-Set Methods
for Support Vector Machines

M. Vogt1 and V. Kecman2

1 Darmstadt University of Technology, Institute of Automatic Control,
Landgraf-Georg-Strasse 4, 64283 Darmstadt, Germany
mvogt@iat.tu-darmstadt.de

2 University of Auckland, School of Engineering, Private Bag 92019 Auckland,
New Zealand
v.kecman@auckland.ac.nz

Abstract. This chapter describes an active-set algorithm for quadratic program-
ming problems that arise from the computation of support vector machines (SVMs).
Currently, most SVM optimizers implement working-set (decomposition) techniques
because of their ability to handle large data sets. Although these show good results
in general, active-set methods are a reasonable alternative – in particular if the data
set is not too large, if the problem is ill-conditioned, or if high precision is needed.
Algorithms are derived for classification and regression with both fixed and variable
bias term. The material is completed by acceleration and approximation techniques
as well as a comparison with other optimization methods in application examples.

Key words: support vector machines, classification, regression, quadratic
programming, active-set algorithm

1 Introduction

Support vector machines (SVMs) have become popular for classification and
regression tasks [10, 11] since they can treat large input dimensions and show
good generalization behavior. The method has its foundation in classification
and has later been extended to regression. SVMs are computed by solving
quadratic programming (QP) problems

min
a

J(a) = aTQa + qTa (1a)

s.t. Fa ≥ f (1b)
Ga = g (1c)

the sizes of which are dependent on the number N of training data. The
settings for different SVM types will be derived in (10), (18), (29) and (37).

M. Vogt and V. Kecman: Active-Set Methods for Support Vector Machines, StudFuzz 177, 133–
158 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005

134 M. Vogt and V. Kecman

1.1 Optimization Methods

The dependency on the size N of the training data set is the most critical issue
of SVM optimization as N may be very large and the memory consumption
is roughly O(N2) if the whole QP problem (1) needs to be stored in memory.
For that, the choice of an optimization method has to consider mainly the
problem size and the memory consumption of the algorithm, see Fig. 1.

Interior Point Active-Set Working-Set

Memory O(N2) Memory O(N2
f) Memory O(N)

Small Medium Large

SVM Optimization Problems

� � �

� � �

� � �

Fig. 1. QP optimization methods for different training data set sizes

If the problem is small enough to be stored completely in memory (on
current PC hardware up to approximately 5000 data), interior point methods
are suitable. They are known to be the most precise QP solvers [7, 10] but
have a memory consumption of O(N2). For very large data sets on the other
hand, there is currently no alternative to working-set methods (decomposition
methods) like SMO [8], ISDA [4] or similar strategies [1]. This class of methods
has basically a memory consumption of O(N) and can therefore cope even
with large scale problems. Active-set algorithms are appropriate for medium-
size problems because they need O(N2

f +N) memory where Nf is the number
of free (unbounded) variables. Although Nf is typically much smaller than the
number of the data, it dominates the memory consumption for large data sets
due to its quadratic dependency.

Common SVM software packages rely on working-set methods because N
is often large in practical applications. However, in some situations this is
not the optimal approach, e.g., if the problem is ill-conditioned, if the SVM
parameters (C and ε) are not chosen carefully, or if high precision is needed.
This seems to apply in particular to regression, see Sect. 5. Active-set algo-
rithms are the classical solvers for QP problems. They are known to be robust,
but they are sometimes slower and (as stated above) require more memory
than working-set algorithms. Their robustness is in particular useful for cross-
validation techniques where the SVM parameters are varied over a wide range.
Only few attempts have been made to utilize this technique for SVMs. E.g., in
[5] it is applied to a modified SVM classification problem. An implementation
for standard SVM classification can be found in [12], for regression problems
in [13]. Also the Chunking algorithm [11] is closely related.

Active-Set Methods for Support Vector Machines 135

1.2 Active-Set Algorithms

The basic idea is to find the active set A, i.e., those inequality constraints that
are fulfilled with equality. If A is known, the Karush-Kuhn-Tucker (KKT)
conditions reduce to a simple system of linear equations which yields the
solution of the QP problem [7]. Because A is unknown in the beginning, it is
constructed iteratively by adding and removing constraints and testing if the
solution remains feasible.

The construction of A starts with an initial active set A0 containing the
indices of the bounded variables (lying on the boundary of the feasible region)
whereas those in F0 = {1, . . . , N}\A0 are free (lying in the interior of the
feasible region). Then the following steps are performed repeatedly for k =
1, 2, . . . :

A1. Solve the KKT system for all variables in Fk.
A2. If the solution is feasible, find the variable in Ak that violates the KKT

conditions most, move it to Fk, then go to A1.
A3. Otherwise find an intermediate value between old and new solution

lying on the border of the feasible region, move one bounded variable
from Fk to Ak, then go to A1.

The intermediate solution in step A3 is computed as ak = ηāk+(1−η)ak−1

with maximal η ∈ [0, 1] (affine scaling), where āk is the solution of the linear
system in step A1. I.e., the new iterate ak lies on the connecting line of ak−1

and āk, see Fig. 2. The optimum is found if during step A2 no violating
variable is left in Ak.

a1

a2

ak−1

āk

a1, a2 ≥ 0

ak = ηāk + (1−η)ak−1

Fig. 2. Affine scaling of the non-feasible solution

This basic algorithm is used for all cases described in the next sections, only
the structure of the KKT system in step A1 and the conditions in step A2 are
different. Sections 2 and 3 describe how to use the algorithm for SVM classifi-
cation and regression tasks. In this context the derivation of the dual problems
is repeated in order to introduce the distinction between fixed and variable
bias term. Section 4 considers the efficient solution of the KKT system, several
acceleration techniques and the approximation of the solution with a limited

136 M. Vogt and V. Kecman

number of support vectors. Application examples for both classification and
regression are given in Sect. 5.

2 Support Vector Machine Classification

A two-class classification problem is given by the data set {(xi, yi)}Ni=1 with
the class labels yi ∈ {−1, 1}. Linear classifiers aim to find a decision function
f(x) = wTx + b so that f(xi) > 0 for yi = 1 and f(xi) < 0 for yi = −1. The
decision boundary is the intersection of f(x) and the input space, see Fig. 3.

0 0.2 0.4

Margin

0.6 0.8 1

m

x1

x2

0

0.

0.4

0.6

0.8

1

0.2

ξi
Boundary

yi = −1

yi = 1

Support
Vectors

Fig. 3. Separating two overlapping classes with a linear decision function

For separable classes, a SVM classifier computes a decision function having
a maximal margin m with respect to the two classes, so that all data lie outside
the margin, i.e., yif(xi) ≥ 1. Since w is the normal vector of the separating
hyperplane in its canonical form [10, 11], the margin can be expressed as m =
2/wTw. In the case of non-separable classes, slack variables ξi are introduced
measuring the distance to the data lying on the wrong side of the margin.
They do not only make the constraints feasible but are also penalized by a
factor C in the loss function to keep the deviations small [11]. These ideas
lead to the soft margin classifier:

min
w,ξ

Jp(w, ξ) =
1
2
wTw + C

N∑

i=1

ξi (2a)

s.t. yi(wTxi + b) ≥ 1− ξi (2b)

ξi ≥ 0, i = 1, . . . , N (2c)

The parameter C describes the trade-off between maximal margin and correct
classification. The primal problem (2) is now transformed into its dual one by
introducing the Lagrange multipliers α and β of the 2N primal constraints.
The Lagrangian is given by

Active-Set Methods for Support Vector Machines 137

Lp(w, ξ, b,α,β) =
1
2
wTw+C

N∑

i=1

ξi−
N∑

i=1

αi[yi(wTxi+b)−1+ξi]−
N∑

i=1

βiξi (3)

having a minimum with respect to the primal variables w, ξ and b, and a
maximum with respect to the dual variables α and β (saddle point condition).
According to the KKT condition (48a) the minimization is performed with
respect to the primal variables in order to find the optimum:

∂Lp

∂w
= 0 ⇒ w =

N∑

i=1

yiαixi (4a)

∂Lp

∂ξi
= 0 ⇒ αi + βi = C, i = 1, . . . , N (4b)

Although b is also a primal variable, we defer the minimization with respect
to b for a moment. Instead, (4) is used to eliminate w, ξ and β from the
Lagrangian which leads to

L∗
p(α, b) = −1

2

N∑

i=1

N∑

j=1

yiyjαiαjxT
i xj +

N∑

i=1

αi − b
N∑

i=1

yiαi . (5)

To solve nonlinear classification problems, the linear SVM is applied to fea-
tures Φ(x) (instead of the inputs x), where Φ is a given feature map (see
Fig. 4). Since x occurs in (5) only in scalar products xT

i xj , we define the
kernel function

K(x,x′) = ΦT(x)Φ(x′) , (6)

and finally (5) becomes

L∗
p(α, b) = −1

2

N∑

i=1

N∑

j=1

yiyjαiαjKij +
N∑

i=1

αi − b

N∑

i=1

yiαi (7)

with the abbreviation Kij = K(xi,xj). In the following, kernels are always
assumed to be symmetric and positive definite. This class of functions includes
most of the common kernels [10], e.g.

Nonlinear Mapping Linear SVM

x1

x2

Φ1(x)

Φ2(x)

Φ3(x)

Φ4(x)

y

Fig. 4. Structure of a nonlinear SVM

138 M. Vogt and V. Kecman

Linear kernel (scalar product): K(x,x′) = xTx′

Inhomogeneous polynomial kernel: K(x,x′) = (xTx′ + c)p

Gaussian (RBF) kernel: K(x,x′) = exp(− 1
2‖x− x′‖2/σ2)

Sigmoidal (MLP) kernel: K(x,x′) = tanh(xTx′ + d)

The conditions (48d) and (4b) yield additional restrictions for the dual vari-
ables

0 ≤ αi ≤ C , i = 1, . . . , N (8)

and from (4a) and (6) follows that

f(x) = wTΦ(x) + b =
∑

αi �=0

yiαiK(xi,x) + b . (9)

This shows the strengths of the kernel concept: SVMs can easily handle ex-
tremely large feature spaces since the primal variables w and the feature map
Φ are needed neither for the optimization nor in the decision function. Vectors
xi with αi �= 0 are called support vectors. Usually only a small fraction of the
data set are support vectors, typically about 10%. In Fig. 3, these are the
data points lying on the margin (ξi = 0 and 0 < αi < C) or on the “wrong”
side of the margin (ξi > 0 and αi = C).

From the algorithmic point of view, an important decision has to be made
at this stage: weather the bias term b is treated as a variable or kept fixed
during optimization. The next two sections derive active-set algorithms for
both cases.

2.1 Classification with Fixed Bias Term

We first consider the bias term b to be fixed, including the most important
case b = 0. This is possible if the kernel function provides an implicit bias,
e.g., in the case of positive definite kernel functions [4, 9, 14]. The only effect
is that slightly more support vectors are computed. The main advantage of a
fixed bias term is a simpler algorithm since no additional equality constraint
needs to be imposed during optimization (like below in (18)):

min
α

Jd(α) =
1
2

N∑

i=1

N∑

j=1

yiyjαiαjKij −
N∑

i=1

αi + b

N∑

i=1

yiαi (10a)

s.t. 0 ≤ αi ≤ C , i = 1, . . . , N (10b)

Note that Jd(α) equals −L∗
p(α, b) with a given b. For b = 0 (the “no-bias

SVM”) the last term of the objective function (10a) vanishes. The reason for
the change of the sign in the objective function is that optimization algorithms
usually assume minimization rather than maximization problems.

If b is kept fixed, the SVM is computed by solving the box-constrained
convex QP problem (10), which is one of the most convenient QP cases. To

Active-Set Methods for Support Vector Machines 139

solve it with the active-set method described in Sect. 1, the KKT conditions
of this problem must be found. Its Lagrangian is

Ld(α,λ,µ) =
1
2

N∑

i=1

N∑

j=1

yiyjαiαjKij −
N∑

i=1

αi + b

N∑

i=1

yiαi

−
N∑

i=1

λiαi −
N∑

i=1

µi(C − αi)

(11)

where λi and µi are the Lagrange multipliers of the constraints αi ≥ 0 and
αi ≤ C, respectively. Introducing the prediction errors Ei = f(xi) − yi, the
KKT conditions can be derived for i = 1, . . . , N (see App. A):

∂Ld

∂αi
= yiEi − λi + µi = 0 (12a)

0 ≤ αi ≤ C (12b)
λi ≥ 0, µi ≥ 0 (12c)
αiλi = 0, (C − αi)µi = 0 (12d)

According to αi, three cases have to be considered:

0 < αi < C (i ∈ F) ⇒ λi = µi = 0

⇒
∑

j∈F
yjαjKij = yi −

∑

j∈AC

yjαjKij − b
(13a)

αi = 0 (i ∈ A0) ⇒ λi = yiEi > 0

⇒ µi = 0
(13b)

αi = C (i ∈ AC) ⇒ λi = 0

⇒ µi = −yiEi > 0
(13c)

A0 denotes the set of lower bounded variables αi = 0, whereas AC comprises
the upper bounded ones with αi = C. The above conditions are exploited in
each iteration step k. Case (13a) establishes the linear system in step A1 for
the currently free variables i ∈ Fk. Cases (13b) and (13c) are the conditions
that must be fulfilled for the variables in Ak = Ak

0 ∪ Ak
C in the optimum,

i.e., step A2 of the algorithm searches for the worst violator among these
variables. Note that Ak

0 ∩Ak
C = ∅ because αk

i = 0 and αk
i = C cannot be met

simultaneously. The variables αi = C in Ak
C also occur on the right hand side

of the linear system (13a).
The implementation uses the coefficients ai = yiαi instead of the Lagrange

multipliers αi. This is done to keep the same formulation for the regression
algorithm in Sect. 3, and because it slightly accelerates the computation. With
this modification, in step A1 the linear system

140 M. Vogt and V. Kecman

Hkāk = ck (14)

with
āk

i = yiᾱ
k
i

hk
ij = Kij

ck
i = yi −

∑

j∈Ak
C

ak
j Kij − b

for i, j ∈ Fk (15)

has to be solved. Hk is called reduced or projected Hessian. In the case of box
constraints, it results from the complete Hessian Q in (1) by dropping all rows
and columns belonging to constraints that are currently regarded as active. If
Fk contains p free variables, then Hk is a p× p matrix. It is positive definite
since positive definite kernels are assumed for all algorithms. For that, (14)
can be solved by the methods described in Sect. 4. Step A2 computes

λk
i = +yiE

k
i for i ∈ Ak

0 (16a)

µk
i = −yiE

k
i for i ∈ Ak

C (16b)

and checks if they are positive, i.e., if the KKT conditions are valid for i ∈
Ak = Ak

0 ∪ Ak
C . Among the negative multipliers, the most negative one is

selected and moved to Fk. In practice, the KKT conditions are checked with
precision τ , so that a variable αi is accepted as optimal if λk

i > −τ and
µk

i > −τ .

2.2 Classification with Variable Bias Term

Most SVM algorithms do not keep the bias term fixed but compute it during
optimization. In that case b is a primal variable, and the Lagrangian (3) can
be minimized with respect to it:

∂Lp

∂b
= 0 ⇒

N∑

i=1

yiαi = 0 (17)

On the one hand (17) removes the last term from (5), on the other hand it is
an additional constraint that must be considered in the optimization problem:

min
α

Jd(α) =
1
2

N∑

i=1

N∑

j=1

yiyjαiαjKij −
N∑

i=1

αi (18a)

s.t. 0 ≤ αi ≤ C , i = 1, . . . , N (18b)
N∑

i=1

yiαi = 0 (18c)

Active-Set Methods for Support Vector Machines 141

This modification changes the Lagrangian (11) to

Ld(α,λ,µ, ν) =
1
2

N∑

i=1

N∑

j=1

yiyjαiαjKij −
N∑

i=1

αi

−
N∑

i=1

λiαi −
N∑

i=1

µi(C − αi)− ν

N∑

i=1

yiαi

(19)

and its derivatives to

∂Ld

∂αi
= yi

N∑

j=1

yjαjKij − 1− λi + µi − νyi = 0 , i = 1, . . . , N (20)

where ν is the Lagrange multiplier of the equality constraint (18c). It can
be easily seen that ν = −b, i.e., Ld is the same as (11) with the important
difference that b is not fixed any more. With the additional equality constraint
(18c) and again with ai = yiαi the linear system becomes

(
Hk e
eT 0

)(
āk

bk

)

=
(

ck

dk

)
} p rows
} 1 row (21)

with
dk = −

∑

j∈Ak
C

ak
j and e = (1, . . . , 1)T . (22)

One possibility to solve this indefinite system is to use factorization methods
for indefinite matrices like the Bunch-Parlett decomposition [3]. But since
we retain the assumption that K(xi,xj) is positive definite, the Cholesky
decomposition H = RTR is available (see Sect. 4), and the system (21) can
be solved by exploiting its block structure. For that, a Gauss transformation
is applied to the blocks of the matrix, i.e., the first block row is multiplied by
(uk)T := eT(Hk)−1. Subtracting the second row yields

(uk)Tebk = (uk)Tck − dk . (23)

Since this is a scalar equation, it is simply divided by (uk)Te in order to find
bk. This technique is effective here because only one additional row/column
has been appended to Hk. The complete solution of the block system is done
by the following procedure:

Solve (Rk)TRkuk = e for uk .

Compute bk = −

∑

j∈Ak
C

ak
j +

∑

j∈Ak
C

uk
j ck

j

/
∑

j∈Ak
C

uk
j .

Solve (Rk)TRkāk = ck − ebk for āk .

142 M. Vogt and V. Kecman

The computation of λk
i and µk

i remains the same as in (16) for fixed bias term.
An additional topic has to be considered here: For a variable bias term,

the Linear Independence Constraint Qualification (LICQ) [7] is violated when
for each αi one inequality constraint is active, e.g., when the algorithm is
initialized with αi = 0 for i = 1, . . . , N . Then the gradients of the active
inequality constraints and the equality constraint are linear dependent. The
algorithm uses Bland’s rule to avoid cycling in these cases.

3 Support Vector Machine Regression

Like in classification, we start from the linear regression problem. The goal
is to fit a linear function f(x) = wTx + b to a given data set {(xi, yi)}Ni=1.
Whereas most other learning methods minimize the sum of squared errors,
SVMs try to find a maximal flat function, so that all data lie within an
insensitivity zone of size ε around the function. Outliers are treated by two
sets of slack variables ξi and ξ∗i measuring the distance above and below the
insensitivity zone, respectively, see Fig. 5 (for a nonlinear example) and [10].
This concept results in the following primal problem:

min
w,ξ,ξ∗

Jp(w, ξ, ξ∗) =
1
2
wTw + C

N∑

i=1

(ξi + ξ∗i) (24a)

s.t. yi −wTxi − b ≤ ε + ξi (24b)

wTxi + b− yi ≤ ε + ξ∗i (24c)
ξi, ξ

∗
i ≥ 0 , i = 1, . . . , N (24d)

To apply the same technique as for classification, the Lagrangian

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

εξi

Insensitivity
Zone

Regression
Function

ξi
*

x

y

Fig. 5. Nonlinear support vector machine regression

Active-Set Methods for Support Vector Machines 143

Lp(w, b, ξ, ξ∗,α,α∗,β,β∗) =
1
2
wTw + C

N∑

i=1

(ξi + ξ∗i)−
N∑

i=1

(βiξi + β∗
i ξ∗i)

−
N∑

i=1

αi(ε + ξi − yi + wTxi + b) (25)

−
N∑

i=1

α∗
i (ε + ξ∗i + yi −wTxi − b)

of the primal problem (24) is needed. α, α∗, β and β∗ are the dual variables,
i.e., the Lagrange multipliers of the primal constraints. As in Sect. 2, the
saddle point condition can be exploited to minimize Lp with respect to the
primal variables w, ξ and ξ∗, which results in a function that only contains
α, α∗ and b:

L∗
p(α,α∗, b) =

1
2

N∑

i=1

N∑

j=1

(αi − α∗
i)(αj − α∗

j)Kij

−
N∑

i=1

(αi − α∗
i)yi + ε

N∑

i=1

(αi + α∗
i) + b

N∑

i=1

(αi − α∗
i)

(26)

The scalar product xT
i xj has already been substituted by the kernel function

Kij = K(xi,xj) to introduce nonlinearity to the SVM, see (6) and Fig. 5.
The bias term b is untouched so far because the next sections offer again two
possibilities (fixed and variable b) that lead to different algorithms. In both
cases, the inequality constraints

0 ≤ α
(∗)
i ≤ C , i = 1, . . . , N (27)

resulting from (48d) must be fulfilled. Since a data point cannot lie above
and below the insensitivity zone simultaneously, the dual variables α and α∗

are not independent. At least one of the primal constraints (24b) and (24c)
must be met with equality for each i. The KKT conditions then imply that
αiα

∗
i = 0. The output of regression SVMs is computed as

f(x) =
∑

α
(∗)
i �=0

(αi − α∗
i)K(xi,x) + b . (28)

The notation α
(∗)
i is used as an abbreviation if an (in-) equality is valid for

both αi and α∗
i .

3.1 Regression with Fixed Bias Term

The kernel function is still assumed to be positive definite so that b can be kept
fixed or even omitted. The QP problem (10) is similar for regression SVMs.
It is built from (26) and (27) by treating the bias term as a fixed parameter:

144 M. Vogt and V. Kecman

min
α, α∗

Jd(α,α∗) =
1
2

N∑

i=1

N∑

j=1

(αi − α∗
i)(αj − α∗

j)Kij −
N∑

i=1

(αi − α∗
i)yi

+ ε
N∑

i=1

(αi + α∗
i) + b

N∑

i=1

(αi − α∗
i)

(29a)

s.t. 0 ≤ α
(∗)
i ≤ C , i = 1, . . . , N (29b)

Again, (29) is formulated as a minimization problem by setting Jd(α,α∗) =
−L∗

p(α,α∗, b) with fixed b. For b = 0 the last term vanishes so that (29) differs
from the standard problem (37) only in the absence of the equality constraint
(37c). To find the steps A1 and A2 of an active-set algorithm that solves (29)
its Lagrangian

Ld(α,α∗,λ,λ∗,µ,µ∗) =
1
2

N∑

i=1

N∑

j=1

(αi − α∗
i)(αj − α∗

j)Kij

−
N∑

i=1

(αi − α∗
i)yi + ε

N∑

i=1

(αi + α∗
i) + b

N∑

i=1

(αi − α∗
i)

−
N∑

i=1

λiαi −
N∑

i=1

µi(C − αi)−
N∑

i=1

λ∗
i α

∗
i −

N∑

i=1

µ∗
i (C − α∗

i)

(30)

is required. Compared to classification, two additional sets of multipliers λ∗
i

(for α∗
i ≥ 0) and µ∗

i (for α∗
i ≤ C) are needed here. Using the prediction errors

Ei = f(xi)− yi, the KKT conditions for i = 1, . . . , N are

∂Ld

∂αi
= ε + Ei − λi + µi = 0 (31a)

∂Ld

∂α∗
i

= ε− Ei − λ∗
i + µ∗

i = 0 (31b)

0 ≤ α
(∗)
i ≤ C (31c)

λ
(∗)
i ≥ 0, µ

(∗)
i ≥ 0 (31d)

α
(∗)
i λ

(∗)
i = 0, (C − α

(∗)
i)µ(∗)

i = 0 . (31e)

According to αi and α∗
i , five cases have to be considered:

0 < αi < C, α∗
i = 0 (i ∈ F)

⇒ λi = µi = µ∗
i = 0, λ∗

i = 2ε > 0

⇒
∑

j∈F(∗)

ajKij = yi − ε−
∑

j∈A(∗)
C

ajKij
(32a)

Active-Set Methods for Support Vector Machines 145

0 < α∗
i < C, αi = 0 (i ∈ F∗)

⇒ λ∗
i = µi = µ∗

i = 0, λi = 2ε > 0

⇒
∑

j∈F(∗)

ajKij = yi + ε−
∑

j∈A(∗)
C

ajKij
(32b)

αi = α∗
i = 0 (i ∈ A0 ∩ A∗

0)

⇒ λi = ε + Ei > 0, λ∗
i = ε− Ei > 0

⇒ µi = 0, µ∗
i = 0

(32c)

αi = C, α∗
i = 0 (i ∈ AC)

⇒ λi = 0, λ∗
i = ε− Ei > 0

⇒ µi = −ε− Ei > 0, µ∗
i = 0

(32d)

αi = 0, α∗
i = C (i ∈ A∗

C)

⇒ λi = ε + Ei > 0, λ∗
i = 0

⇒ µi = 0, µ∗
i = −ε + Ei > 0

(32e)

Obviously, there are more than five cases but only these five can occur due
to αiα

∗
i = 0: If one of the variables is free ((32a) and (32b)) or equal to C

((32d) and (32e)), the other one must be zero. The structure of the sets A∗
0

and A∗
C is identical to that of A0 and AC , but it considers the variables α∗

i

instead of αi. It follows from the reasoning above that AC ⊆ A∗
0, A∗

C ⊆ A0

and AC ∩ A∗
C = ∅. Similar to classification, the cases (32a) and (32b) form

the linear system for step A1 and the cases (32c) – (32e) are the conditions to
be checked in step A2 of the algorithm.

The regression algorithm uses the SVM coefficients ai = αi − α∗
i . With

this abbreviation, the number of variables reduces from 2N to N and many
similarities to classification can be observed. The linear system is almost the
same as (14):

Hkāk = ck (33)

with
āk

i = ᾱk
i − ᾱ∗k

i

hk
ij = Kij

}

for i ∈ Fk ∪ F∗k

ck
i = yi −

∑

j∈Ak
C∪A∗k

C

ak
j Kij +

{
−ε for i ∈ Fk

+ε for i ∈ F∗k

(34)

only the right hand side has been modified by ±ε. Step A2 of the algorithm
computes

146 M. Vogt and V. Kecman

λk
i = ε + Ek

i

λ∗k
i = ε− Ek

i

}

for i ∈ Ak
0 ∪ A∗k

0 (35a)

and

µk
i = −ε− Ek

i

µ∗k
i = −ε + Ek

i

}

for i ∈ Ak
C ∪ A∗k

C . (35b)

These multipliers are checked for positiveness with precision τ , and the vari-
able with the most negative multiplier is transferred to Fk or F∗k.

3.2 Regression with Variable Bias Term

If the bias term is treated as a variable, (26) can be minimized with respect
to b (i.e., ∂L∗

d/∂b = 0) resulting in

N∑

i=1

(αi − α∗
i) = 0 . (36)

Like in classification, this condition removes the last term from (29a) but must
be treated as additional equality constraint:

min
α, α∗

Jd(α,α∗) =
1
2

N∑

i=1

N∑

j=1

(αi − α∗
i)(αj − α∗

j)Kij

−
N∑

i=1

(αi − α∗
i)yi + ε

N∑

i=1

(αi + α∗
i)

(37a)

s.t. 0 ≤ α
(∗)
i ≤ C , i = 1, . . . , N (37b)

N∑

i=1

(αi − α∗
i) = 0 (37c)

The Lagrangian of this QP problem is nearly identical to (30):

Ld(α,α∗,λ,λ∗,µ,µ∗, ν) =
1
2

N∑

i=1

N∑

j=1

(αi − α∗
i)(αj − α∗

j)Kij

−
N∑

i=1

(αi − α∗
i)yi + ε

N∑

i=1

(αi + α∗
i)− ν

N∑

i=1

(αi − α∗
i)

−
N∑

i=1

λiαi −
N∑

i=1

µi(C − αi)−
N∑

i=1

λ∗
i α

∗
i −

N∑

i=1

µ∗
i (C − α∗

i)

(38)

Active-Set Methods for Support Vector Machines 147

Classification has already shown that the Lagrange multiplier ν of the equality
constraint is basically the bias term (ν = −b) that is treated as a variable.
Compared to fixed b, (31) also comprises the equality constraint (37c), but
the five cases (32) do not change. Consequently, the coefficients ai = αi − α∗

i

with i ∈ F ∪F∗ and the bias term b are computed by solving a block system
having the same structure as (21):

(
Hk e
eT 0

)(
āk

bk

)

=
(

ck

dk

)
} p rows
} 1 row (39)

with
dk = −

∑

j∈Ak
C∪A∗k

C

ak
j and e = (1, . . . , 1)T (40)

i.e., the only difference is dk which considers the indices in both Ak
C and A∗k

C .
This system can be solved by the algorithm derived in Sect. 2. The KKT
conditions in step A2 remain exactly the same as (35).

4 Implementation Details

The active-set algorithm has been implemented as C MEX-file under MAT-
LAB for classification and regression problems. It can handle both fixed and
variable bias terms. Approximately the following memory is required:

• N floating point elements for the coefficient vector,
• N integer elements for the index vector,
• Nf(Nf + 3)/2 floating point elements for the triangular matrix and the

right hand side of the linear system,

where Nf is the number of free variables in the optimum, i.e., those with
0 < α

(∗)
i < C. As this number is unknown in the beginning, the algorithm

starts with an initial amount of memory and increases it whenever variables
are added. The index vector is needed to keep track of the stets F (∗), A(∗)

C and
A(∗)

0 . It is also used as pivot vector for the Cholesky decomposition described
in Sect. 4.1. Since most of the coefficients ai will be zero in the optimum,
the initial feasible solution is chosen as ai = 0 for i = 1, . . . , N . If shrink-
ing and/or caching is activated, additional memory must be provided, see
Sects. 4.4 and 4.5 for details.

Since all algorithms assume positive definite kernel functions, the kernel
matrix has a Cholesky decomposition H = RTR, where R is an upper tri-
angular matrix. For a fixed bias term, the solution of the linear system in
step A1 is then found by simple backsubstitution. For variable bias term, the
block-algorithm described in Sect. 2.2 is used.

148 M. Vogt and V. Kecman

4.1 Cholesky Decomposition with Pivoting

Although the Cholesky decomposition is numerically stable, the active-set
algorithm uses diagonal pivoting by default because H may be “nearly indef-
inite”, i.e., it may become indefinite by round-off errors during the computa-
tion. This occurs e.g. for Gaussian kernels having large widths. There are two
ways to cope with this problem: First, to use Cholesky decomposition with
pivoting, and second, to slightly enlarge the diagonal elements to make H
“more definite”. The first case allows to extract the largest positive definite
part of H = (hij). All variables corresponding to the rest of the matrix are
set to zero then.

Usually the Cholesky decomposition is computed element-wise using axpy
operations defined in the BLAS [3]. However, the pivoting strategy needs the
updated diagonal elements in each step, as they would be available if outer
product updates were applied. Since these require many accesses to matrix
elements, a mixed procedure is implemented that only updates the diagonal
elements and makes use of axpy operations otherwise:

Compute for i = 1, . . . , p:
Find k = arg max{|h̄ii|, . . . , |h̄pp|}.
Swap rows and columns i and k symmetrically.
Compute rii =

√
h̄ii.

Compute for j = i + 1, . . . , p:

rij =

(

hij −
i−1∑

k=1

rkirkj

)/

rii

h̄jj ← h̄jj − r2
ij

where p is the size of the system, h̄jj are the updated diagonal elements and
“←” indicates the update process. The i-th step

• • •

i
↓
• •

j
−→
•

• • • • •
◦ ◦ ◦ ◦ ← i

× ∗ ∗
j ↘ × ∗

×

of the algorithm computes the i-th row (◦) of the matrix from the already
finished elements (•). The diagonal elements (×) are updated whereas the
rest (∗) remains untouched. The result can be written as

PHPT = RTR (41)

Active-Set Methods for Support Vector Machines 149

with the permutation matrix P. Of course the implementation uses the pivot
vector described above instead of the complete matrix. Besides that, only the
upper triangular part of R is stored, so that only memory for p(p + 1)/2
elements is needed. This algorithm is almost as fast as the standard Cholesky
decomposition.

4.2 Adding Variables

Since the active-set algorithm changes the active set by only one variable per
step, it is reasonable to modify the existing Cholesky decomposition instead
of computing it form scratch [2]. These techniques are faster but less accurate
than the method described in Sect. 4.1, because they cannot be used with
pivoting. The only way to cope with definiteness problems is to slightly enlarge
the diagonal elements hjj .

If a p-th variable is added to the linear system, a new column and a new
row are appended to H. As any element rij of the Cholesky decomposition is
calculated solely from the diagonal element rii and the sub-columns i and j
above the i-th row (see Sect. 4.1), only the last column needs to be computed:

Compute for i = 1,. . . ,p:

rip =

(

hip −
i−1∑

k=1

rkirkp

)/

rii

The columns 1, . . . , p − 1 remain unchanged. This technique is only effective
if the last column is appended. If an arbitrary column is inserted, elements of
R need to be re-computed.

4.3 Removing Variables

Removing variables from an existing Cholesky decomposition is a more so-
phisticated task [2, 3]. For that, we introduce an unknown matrix A ∈ R

M×p

with

H = RTR = ATA and QA =
(
R
0

)

, (42)

i.e., R also results from the QR decomposition of A. Removing a variable
from the Cholesky decomposition is equivalent to removing a column from A:

Q(a1 . . . ak−1,ak+1 . . . ap) =
(
r1 . . . rk−1, rk+1 . . . rp

0

)

(43)

The non-zero part of the right hand side matrix is of size p × (p − 1) now
because the k-th column is missing. It is “nearly” an upper triangular matrix,
only each of the columns k + 1, . . . , p has one element below the diagonal:

150 M. Vogt and V. Kecman

• • •

k−1
↓
•

k+1
↓
• •

• • • • •
• • • • ← k − 1
∗ ∗ ∗
× ∗ ∗ ← k + 1

× ∗
×

The sub-diagonal elements are removed by Givens rotations Ωk+1, . . . ,Ωp:

Ωp · · ·Ωk+1Q
︸ ︷︷ ︸

Q̃

Ã =
(
R̃
0

)

(44)

R̃ is the Cholesky factor of the reduced matrix H̃, see [2, 3] for details.
However, it should be mentioned that modification techniques often do

not lead to a strong acceleration. As long as Nf remains small, most of the
computation time is spent to check the KKT conditions in A (during step A2
of the algorithm). For that, the algorithm uses Cholesky decomposition with
pivoting when a variable is added to its linear system, and the above modi-
fication strategy when a variable is removed. Since only few reduction steps
are performed repeatedly, round-off errors will not be propagated too much.

4.4 Shrinking the Problem Size

As pointed out above, checking the KKT conditions is the dominating factor
of the computation time because the function values (9) or (28) need to be
computed for all variables of the active set in each step. For that, the active-
set algorithm uses two heuristics to accelerate the KKT check: shrinking the
set of variables to be checked, and caching kernel function values (which will
be described in the next section).

By default, step A2 of the algorithm checks all bounded variables. How-
ever, it can be observed that a variable fulfilling the KKT conditions for a
number of iterations is likely to stay in the active set [1, 10]. The shrinking
heuristic uses this observation to reduce number of KKT checks. It counts the
number of consecutive successful KKT checks for each variable. If this num-
ber exceeds a given number s, then the variable is not checked again. Only if
there are no variables left to be checked, a check of the complete active set is
performed and the shrinking procedure starts again.

In experiments, small values of s (e.g., s = 1, . . . , 5) have caused an ac-
celeration up to a factor of 5. This shrinking heuristic requires an additional
vector of N integer elements to count the KKT checks of each variable. If the

Active-Set Methods for Support Vector Machines 151

correct active set is identified, shrinking does not change the solution. How-
ever, for low precisions τ it may happen that the algorithm chooses a different
approximation of the active set, i.e., different support vectors.

4.5 Caching Kernel Values

Whereas the shrinking heuristic tries to reduce the number of function evalu-
ations, the goal of a kernel cache is to accelerate the remaining ones. For that,
as much kernel function values Kij as possible are stored in a given chunk of
memory to avoid re-calculation. Some algorithms also use a cache for the func-
tion values fi (or prediction error values Ei = fi − yi, respectively), e.g. [8].
However, since the active-set algorithm changes the values of all free variables
in each step, this type of cache would only be useful when the number of free
variables remains small.

The kernel cache has a given maximum size and is organized as row cache
[1, 10]. It stores a complete row of the kernel matrix for each support vector –
as long as space is available. The row entries corresponding to the active
set are exploited to compute (9) or (28) for the KKT check, whereas the
remaining elements are used to rebuild the system matrix H when necessary.
The following caching strategy has been implemented:

• If a variable becomes ai = 0, then the according row is marked as free in
the cache but not deleted.

• If a variable becomes ai �= 0, the algorithm first checks if the according
row is already in the cache (possibly marked as free). Otherwise, the row
is completely calculated and stored as long as space is available.

• When a row should be added, the algorithm first checks if the maximum
number of rows is reached. Only if the cache is full, it starts to overwrite
those rows that have been marked as free.

The kernel cache allows a trade-off between computation time and memory
consumption. It requires N ×m floating point elements for the kernel values
(where m is the maximum number of rows that can be cached), and N integer
elements for indexing purposes. It is most effective for kernel functions hav-
ing high computational demands, e.g., Gaussians in high-dimensional input
spaces. In these cases it usually speeds up the algorithm by a factor 5 or even
more, see Sect. 5.2

4.6 Approximating the Solution

Active-set methods check the KKT conditions of the complete active set (apart
from the shrinking heuristics) in each step. As pointed out above, this is a huge
computational effort which is only reasonable for algorithms that make enough
progress in each step. Typical working-set algorithms, on the other hand,
avoid this complete check and follow the opposite strategy: They perform

152 M. Vogt and V. Kecman

only small steps and therefore need to reduce the number of KKT evaluations
to a minimum by additional heuristics.

The complete KKT check of active-set methods can be exploited to approx-
imate the solution with a given number NSVmax of support vectors. Remember
that the NSV support vectors are associated with

• Nf free variables 0 < α
(∗)
i < C (i.e., those with i ∈ F (∗)).

• NSV −Nf upper bounded variables α
(∗)
i = C (i.e., those with i ∈ A(∗)

C).

The algorithm simply stops when at the end of step A3 a solution with more
than NSVmax support vectors is computed for the first time:

• If Nk
SV > NSVmax then stop with the previous solution.

• Otherwise accept the new solution and go to step A1.

The first case can only happen if in step A2 an i ∈ A(∗)
0 was selected and in

step A3 no variable is moved back to A(∗)
0 . All other cases do not increase the

number of support vectors.
This heuristic approach does not always lead to a better approximation

if more support vectors are allowed. However, experiments (like in Sect. 5.2)
show that typically only a small fraction of support vectors significantly re-
duces the approximation error.

5 Results

This section shows experimental results for classification and regression. The
proposed active-set method is compared with the well-established working-
set method LIBSVM [1] for different problem settings. LIBSVM (Version 2.6)
is chosen as a typical representative of working-set methods – other imple-
mentations like SMO [8] or ISDA [4] show similar characteristics. Both algo-
rithms are available as MEX functions under MATLAB and were compiled
with Microsoft Visual C/C++ 6.0. All experiments were done on a 800 MHz
Pentium-III PC having 256 MB RAM.

Since the environmental conditions are identical for both algorithms,
mainly the computation time is considered to measure the performance. By
default, both use shrinking heuristics and have enough cache to store the com-
plete kernel matrix if necessary. The influence of these acceleration techniques
is examined in Sect. 5.2.

5.1 Classifying Demographic Data

The first example considers the “Adult” database from the UCI machine
learning repository [6] that has been studied in several publications. The goal
is to determine from 14 demographic features weather a person earns more
than $ 50,000 per year. All features have been normalized to [−1, 1]; nominal

Active-Set Methods for Support Vector Machines 153

features were converted to numeric values before. In order to limit the com-
putation time in the critical cases, a subset of 1000 samples has been selected
as training data set. The SVMs use Gauss kernels with width σ = 3 and a
precision of τ = 10−3 to check the KKT conditions.

Table 1 shows the results when the upper bound C is varied, e.g., to find
the optimal C by cross-validation. Whereas the active-set method is nearly
insensitive with respect to C, the computation time of LIBSVM differs by
several magnitudes. Working-set methods typically perform better when the
number Nf of free variables is small. The computation time of active-set meth-
ods mainly depends on the complete number NSV of support vectors which
roughly determines the number of iterations.

Table 1. Classification: Variation of C

C 10−1 100 101 102 103 104 105 106

Time 8.7 s 7.4 s 4.3 s 5.4 s 8.4 s 12.3 s 11.1 s 10.8 s
Active NSV 494 480 422 389 379 364 357 337

Set Nf 11 20 37 81 139 190 242 271
Bias 0.9592 0.7829 0.0763 2.0514 3.5940 2.0549 −26.63 −95.56

Active Time 7.9 s 6.1 s 3.7 s 5.7 s 8.6 s 11.5 s 11.9 s 9.6 s
Set NSV 510 481 422 391 378 364 360 339

(b = 0) Nf 14 17 37 78 139 190 245 273

Time 0.6 s 0.5 s 0.5 s 0.9 s 3.1 s 21.1 s 156.2 s 1198 s
LIB NSV 496 481 422 390 379 366 356 334
SVM Nf 16 22 38 82 139 192 243 268

Bias 0.9592 0.7826 0.0772 2.0554 3.5927 2.0960 −26.11 −107.56

Train 24.4% 19.0% 16.6% 13.8% 11.4% 8.0% 5.1% 3.4%
Error

Test 24.6% 18.2% 16.9% 16.6% 17.9% 19.4% 21.5% 23.2%

Also a comparison between the standard SVM and the no-bias SVM (i.e.,
with bias term fixed at b = 0) can be found in Table 1. It shows that there
is no need for a bias term when positive definite kernels are used. Although a
missing bias usually leads to more support vectors, the results are very close
to the standard SVM – even if the bias term takes large values. The errors on
the training and testing data set are nearly identical for all three methods.
Although the training error can be further reduced by in increasing C, the
best generalization performance is achieved with C = 102 here. In that case
LIBSVM is finds the solution very quickly as Nf is still small.

5.2 Estimating the Outlet Temperature of a Boiler

The following example applies the regression algorithm to a system identifi-
cation problem. The goal is to estimate the outlet temperature T31 of a high

154 M. Vogt and V. Kecman

Boiler

T41

F31

P11

T31

T31(k) = f(T41(k), T41(k − 1), T41(k − 2),

F31(k), F31(k − 1), F31(k − 2),

P11(k), P11(k − 1), P11(k − 2),

T31(k − 1), T31(k − 2))

(45)

Fig. 6. Block diagram and regression model of the boiler

efficiency (condensing) boiler from the system temperature T41, the water flow
F31 and the burner output P11 as inputs. Details about the data set under
investigation can be found in [13] and [14]. Based on a theoretical analysis,
second order dynamics are assumed for the output and all inputs, so the model
has 11 regressors, see Fig. 6. For a sampling time of 30 s the training data set
consists of 3344 samples, the validation data set of 2926 samples. Table 2
compares the active-set algorithm and LIBSVM when the upper bound C is
varied. The SVM uses Gauss kernels having a width of σ = 3. The insensi-
tivity zone is properly set to ε = 0.01, the precision used to check the KKT
conditions is τ = 10−4. Both methods compute SVMs with variable bias term
in order to make the results comparable. The RMSE is the root-mean-square
error of the predicted output on the validation data set. The simulation error
is not considered because models can be unstable for extreme settings of C.

Table 2. Regression: Variation of C for σ = 3 and τ = 10−4

C 10−2 10−1 100 101 102 103 104 105

Time 211.8 s 46.9 s 8.3 s 1.5 s 0.7 s 0.7 s 0.9 s 1.2 s
Active RMSE 0.0330 0.0164 0.0097 0.0068 0.0062 0.0062 0.0064 0.0069

Set NSV 1938 954 427 143 91 87 92 116
Nf 4 10 25 36 52 77 91 116

Time 7.9 s 4.5 s 2.7 s 3.0 s 7.7 s 39.1 s 163.2 s ?
LIB RMSE 0.0330 0.0164 0.0097 0.0068 0.0062 0.0092 0.0064 ?
SVM NSV 1943 963 433 147 95 90 98 ?

Nf 10 23 35 45 56 80 97 ?

Concerning computation time, Table 2 shows that LIBSVM can efficiently
handle a large number NSV of support vectors (with only few free ones)
whereas the active-set method shows its strength if NSV is small. For C = 105

LIBSVM converged extremely slow so that it was aborted after 12 hours.
In this example, C = 103 is the optimal setting concerning support vectors
and error. Also the active-set algorithm’s memory consumption O(N2

f) (see
Sect. 1) is not critical: When the number of support vectors increases, typi-
cally most of the Lagrange multipliers are bounded at C so that Nf remains
small.

Active-Set Methods for Support Vector Machines 155

Table 3. Regression: Variation of σ for C = 103 and τ = 10−4

σ 0.5 1 2 3 4 5 6 7

Time 2.3 s 1.2 s 0.8 s 0.7 s 0.8 s 0.9 s 0.8 s 1.0 s
Active RMSE 0.0278 0.0090 0.0064 0.0062 0.0061 0.0059 0.0059 0.0057

Set NSV 184 129 96 87 88 94 96 108
Nf 184 129 94 77 60 49 40 39

Time 4.1 s 13.7 s 25.1 s 38.2 s 31.8 s 22.4 s 15.4 s 13.1 s
LIB RMSE 0.0278 0.0091 0.0064 0.0062 0.0061 0.0070 0.0058 0.0057
SVM NSV 196 134 96 90 92 102 99 110

Nf 196 134 95 80 66 60 42 44

cond(H) 3·105 8·106 2·108 3·108 2·108 1·108 2·108 2·108

A comparison with Table 1 confirms that the computation time for the
active-set method mainly depends on the number NSV of support vectors,
whereas the ratio Nf/NSV has strong influence on working-set methods.

Table 3 examines a variation of the Gaussians’ width σ for C = 103 and τ =
10−4. As expected, the computation time of the active-set algorithm is solely
dependent on the number of support vectors. For large σ the computation
times of LIBSVM decrease because the fraction of free variables gets smaller,
whereas for small σ another effect can be observed: If the condition number
the system matrix H in (33) or (39) decreases, the change in one variable
has less effect on the other ones. For that, the computation time decreases
although there are only free variables and their number even increases.

Table 4 compares the algorithms for different precisions τ in case of σ = 5
and C = 102. Both do not change the active set for precisions smaller then
10−5. Whereas LIBSVM’s computation time strongly increases, the active-set
method does not need more time to meet a higher precision. Once the active
set is found, active-set methods compute the solution with “full” precision,
i.e., a smaller τ does not change the solution any more. For low precisions,

Table 4. Regression: Variation of τ for σ = 5 and C = 102

τ 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

Time 0.1 s 0.3 s 0.9 s 1.0 s 1.1 s 1.1 s 1.1 s 1.1 s
Active RMSE 0.0248 0.0063 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059

Set NSV 8 49 108 118 122 122 122 122
Nf 7 17 23 33 39 39 39 39

Time 0.2 s 2.9 s 4.5 s 4.9 s 7.7 s 9.9 s 18.9 s 25.9 s
LIB RMSE 0.0220 0.0060 0.0059 0.0058 0.0058 0.0058 0.0058 0.0058
SVM NSV 30 90 119 121 123 123 123 123

Nf 30 73 49 40 39 39 39 39

156 M. Vogt and V. Kecman

Table 5. Regression: Influence of shrinking and caching on the computation time
for σ = 5, C = 102, τ = 10−4

Cached Rows 0 50 100 120 150 200

No shrinking 16.97 s 8.65 s 3.45 s 2.78 s 2.76 s 2.76 s
s = 10 5.91 s 3.30 s 1.63 s 1.37 s 1.35 s 1.35 s
s = 3 3.80 s 2.22 s 1.24 s 1.07 s 1.05 s 1.05 s
s = 2 3.45 s 2.13 s 1.18 s 1.05 s 1.02 s 1.02 s
s = 1 2.75 s 1.73 s 1.05 s 0.93 s 0.90 s 0.90 s

the active-set method produces more compact solutions, because it is able to
stop earlier due to its complete KKT check in each iteration.

The influence of shrinking and caching is examined in Table 5 for σ = 5,
C = 102 and τ = 10−4, which yields a SVM having NSV = 118 support
vectors. It confirms the estimates given in Sects. 4.4 and 4.5: Both shrinking
and caching accelerate the algorithm by a factor of 6 in this example. Used in
combination, they lead to a speed-up by nearly a factor of 20. If shrinking is
activated, the cache has minor influence because less KKT checks have to be
performed. Table 5 also shows that it is not necessary to spend cache for much
more than NSV rows, because this only saves the negligible time to search for
free rows.

A final experiment demonstrates the approximation method described in
Sect. 4.6. With the same settings as above (σ = 5, C = 102, τ = 10−4) the
complete model contains 118 support vectors. However, Fig. 7 shows that the
solution can be approximated with much less support vectors, e.g. 10–15 %.

0 10 20 30 40 50

−40

−20

0

O
bj

ec
tiv

e
F

un
ct

io
n

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Number of Support Vectors

A
pp

ro
xi

m
at

io
n

E
rr

or

Fig. 7. Regression: Approximation of the solution

Active-Set Methods for Support Vector Machines 157

Whereas the objective function is still decreasing, more support vectors do
not significantly reduce the approximation error.

6 Conclusions

An active-set algorithm has been proposed for SVM classification and regres-
sion tasks. The general strategy has been adapted to these problems for both
fixed and variable bias terms. The result is a robust algorithm that requires
approximately 1

2N2
f +2N elements of memory, where Nf is the number of free

variables and N the number of data. Experimental results show that active-set
methods are advantageous

• when the number of support vectors is small.
• when the fraction of bounded variables is small.
• when high precision is needed.
• when the problem is ill-conditioned.

Shrinking and caching heuristics can significantly accelerate the algorithm.
Additionally, its KKT check can be exploited to approximate the solution with
a reduced number of support vectors. Whereas the method is very robust to
changes in the settings, it not should be overseen that working-set techniques
like LIBSVM are still faster in certain cases and can handle larger data sets.

Currently, the algorithm changes the active set by only one variable per
step, and (despite shrinking and caching) most of the computation time is
spent to calculate the prediction errors Ei. Both problems can be improved
by introducing gradient projection steps. If this technique is combined with
iterative solvers, also a large number of free variables is possible. This may be
a promising direction of future work on SVM optimization methods.

References

1. Chang CC, Lin CJ (2003) LIBSVM: A library for support vector machines.
Technical report. National Taiwan University, Taipei, Taiwan 134, 150, 151, 152

2. Gill PE et al. (1974) Methods for Modifying Matrix Computations. Mathematics
of Computation 28(126):505–535 149, 150

3. Golub GH, van Loan CF (1996) Matrix Computations. 3rd ed. The Johns Hop-
kins University Press, Baltimore, MD 141, 148, 149, 150

4. Huang TM, Kecman V (2004) Bias Term b in SVMs again. In: Proceedings of
the 12th European Symposium on Artificial Neural Networks (ESANN 2004),
pp. 441–448, Bruges, Belgium 134, 138, 152

5. Mangasarian OL, Musicant DR (2001) Active set support vector machine clas-
sification. In: Leen TK, Tresp V, Dietterich TG (eds) Advances in Neural In-
formation Processing Systems (NIPS 2000) Vol. 13, pp. 577–583. MIT Press,
Cambridge, MA 134

6. Blake CL, Merz CJ (1998) UCI repository of machine learning databases. Uni-
versity of California, Irvine, http://www.ics.uci.edu/∼mlearn/ 152

158 M. Vogt and V. Kecman

7. Nocedal J, Wright SJ (1999) Numerical Optimization. Springer-Verlag, New
York 134, 135, 142, 158

8. Platt JC (1999) Fast training of support vector machines using sequential min-
imal optimization. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in
Kernel Methods – Support Vector Learning. MIT Press, Cambridge, MA 134, 151, 152

9. Poggio T et al. (2002) b. In: Winkler J, Niranjan M (eds) Uncertainty in Geo-
metric Computations, pp. 131–141. Kluwer Academic Publishers, Boston 138

10. Schölkopf B, Smola AJ (2002) Lerning with Kernels. The MIT Press, Cambridge,
MA 133, 134, 136, 137, 142, 150, 151

11. Vapnik VN (1995) The Nature of Statistical Learning Theory. Springer-Verlag,
New York 133, 134, 136

12. Vishwanathan SVN, Smola AJ and Murty MN (2003) SimpleSVM. In: Proceed-
ings of the 20th International Conference on Machine Learning (ICML 2003),
pp. 760–767. Washington, DC 134

13. Vogt M, Kecman V (2004) An active-set algorithm for Support Vector Ma-
chines in nonlinear system identification. In: Proceedings of the 6th IFAC Sym-
posium on Nonlinear Control Systems (NOLCOS 2004), pp. 495–500. Stuttgart,
Germany 134, 154

14. Vogt M, Spreitzer K, Kecman V (2003) Identification of a high efficiency boiler
by Support Vector Machines without bias term. In: Proceedings of the 13th IFAC
Symposium on System Identification (SYSID 2003), pp. 485–490. Rotterdam,
The Netherlands 138, 154

A The Karush-Kuhn-Tucker Conditions

A general constrained optimization problem is given by

min
a

J(a) (46a)

s.t. F(a) ≥ 0 (46b)
G(a) = 0 . (46c)

The Lagrangian of this problem is defined as

L(a,λ,ν) = J(a)−
∑

i

λiFi(a)−
∑

i

νiGi(a) . (47)

In the constrained optimum (a∗,λ∗,ν∗) the following first-order necessary
conditions [7] are satisfied for all i:

∇aL(a∗,λ∗,ν∗) = 0 (48a)
Fi(a∗) ≥ 0 (48b)
Gi(a∗) = 0 (48c)

λ∗
i ≥ 0 (48d)

λ∗
i Fi(a∗) = 0 (48e)

ν∗
i Gi(a∗) = 0 (48f)

These are commonly referred to as Karush-Kuhn-Tucker conditions.

	Active-Set Methods for Support Vector Machines
	M. Vogt and V. Kecman
	1 Introduction
	2 Support Vector Machine Classification
	3 Support Vector Machine Regression
	4 Implementation Details
	5 Results
	6 Conclusions
	References
	A The Karush-Kuhn-Tucker Conditions

