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Abstract. Magnetic calorimeters employ the magnetization of a paramagnetic sen-
sor to detect temperature changes produced by the absorption of X-rays or other
energetic particles. For typical applications, the detector consists of a metallic ab-
sorber and a paramagnetic sensor, which are in strong thermal contact with each
other but have a rather weak coupling to a thermal reservoir. The absorption of
energy in the calorimeter leads to a rise in temperature and a decrease in mag-
netization of the magnetic sensor, which can be measured accurately using a low
noise, high bandwidth dc-SQUID magnetometer. Fast thermal response can be
achieved by using a dilute concentration of paramagnetic ions in a metallic host as
sensor material. The sensitivity of the calorimeter to the absorption of energy de-
pends upon size, heat capacity, temperature, magnetic field, concentration of mag-
netic ions and the interactions among them. Theoretical models, which describe
the thermodynamic properties of the calorimeter are discussed, and the conditions
that optimize the performance of the detector are derived. Noise sources, especially
magnetic Johnson noise and thermodynamic fluctuations of energy between the
sub-systems of the calorimeter are analyzed. We discuss the demands placed on the
SQUID magnetometer and present a theoretical analysis of the energy resolution.
The performance of detector prototypes, including count rate, linearity and energy
resolution are described. The measured resolution of devices which were designed
for the detection of soft X-rays is EFWHM = 3.4 eV at an X-ray energy of 6 keV.
Calculations indicate that fully optimized magnetic calorimeters will reach energy
resolutions of the order of 1 eV under realistic experimental conditions.

1 Introduction

Thermometry based on the magnetic properties of solids has a long tradition
in physics. The obvious reasons for this are that the magnetic properties of
many materials are strongly dependent on temperature and that there exist
very sensitive methods of measuring magnetization changes. In fact, the most
sensitive thermometers in use today are magnetic in nature having a resolu-
tion of 1 part in 1010 [1, 2, 3, 4]. Therefore, it is not surprising that magnetic
sensors are also used in micro-calorimetry. To our knowledge the idea of low-
temperature magnetic calorimetry for particle detection was first mentioned
in the diploma thesis of W. Seidel of the Technical University in Munich in
1986 [5]. Subsequently, a development effort of applying paramagnetism to
particle detection was started at the Walther-Meissner-Institute in Munich.
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Within a few years, Umlauf and coworkers demonstrated the power of using
the magnetization of 4f ions in a dielectric host material to measure small en-
ergy inputs to an absorber with a large heat capacity [6,7,8,9,10,11,12,13,14].
Despite this success, magnetic calorimeters based on dielectric host materials
were not attractive for many applications in particle detection, because of
their inherently slow response. This principal problem arises from the weak
coupling of the magnetic moments to phonons at low temperatures.

In 1993 it was suggested that this problem can be overcome by using mag-
netic ions in metallic host materials [15]. In a metal the interaction of the
magnetic moments with the conduction electrons leads to relaxation times
many orders of magnitude shorter than in insulating hosts. The penalty for
the faster response is that the presence of the conduction electrons increases
the heat capacity of the sensor and in addition leads to an enhanced interac-
tion among the magnetic moments. Nonetheless, metallic magnetic calorime-
ters (MMC) have exhibited excellent resolving power, comparable to that of
other leading micro-calorimeters [16]. In this chapter we will focus on the
discussion of metallic magnetic calorimeters.

A MMC employs a paramagnet placed in a small magnetic field as a
temperature sensor. An absorber suitable for stopping the particle being de-
tected is in strong thermal contact with the sensor. These two components
are weakly coupled to a thermal bath. An energy deposition in the absorber
produces a temperature change in the absorber/sensor system, which can be
monitored by measuring the change of magnetization of the paramagnetic
sensor using a sensitive dc SQUID magnetometer.

MMCs are different in several ways from other micro-calorimeters. Unlike
detectors with resistive sensors, the signal of an MMC is not based upon
a transport property but is determined by the equilibrium thermodynamic
properties of the sensor material. Hence, the performance of MMCs can be
predicted with some confidence. Two other differences are significant in cer-
tain uses. MMCs are non-dissipative devices, and no contact leads to the
micro-calorimeter itself are necessary to read out the sensor. As we shall
discuss, these differences are important in designing MMCs for particular
applications.

Currently, the application of MMCs lies mainly in high resolution X-ray
spectroscopy. Examples of uses are X-ray fluorescence spectroscopy for ma-
terial analysis and absolute activity measurements of X-ray sources. In addi-
tion, a development effort has been started to build large arrays of magnetic
micro-calorimeters for space based X-ray telescopes. There are many conceiv-
able applications of MMCs beyond X-ray detection ranging from rare event
searches in nuclear physics such as the neutrinoless double beta decay to the
mass spectroscopy of biological molecules.
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2 Theoretical and Experimental Background

In this section the physics of MMCs will be discussed that is necessary to
describe and optimize their performance. In addition, we outline different
techniques for readout and data analysis.

2.1 Detection Scheme

Similar to other micro-calorimeters, MMCs consist of an absorber, whose tem-
perature is monitored with a sensitive thermometer. In the case of MMCs the
temperature information is obtained from the change of magnetization of a
paramagnetic sensor, which is located in a small magnetic field. From equilib-
rium thermodynamics the change of magnetization caused by the absorption
of energy δE is given by the simple relation

δM =
∂M

∂T
δT =

∂M

∂T

δE

Ctot
, (1)

where Ctot denotes the total heat capacity of thermometer and absorber. To
measure the magnetization change the sensor is either placed in a pickup coil
coupled to the input coil of a sensitive dc SQUID or is placed directly into
the SQUID loop. The transfer function relating magnetization change to flux
change in the SQUID depends, obviously, on the details of the geometry of
the setup. This point will be discussed in Sect. 2.4.

2.2 Sensor Materials

The choice of sensor materials for a magnetic calorimeter is not trivial be-
cause the sensor needs to be optimized with respect to different and, in part,
conflicting demands. For applications in particle detection the sensitivity and
the thermalization time are of particular importance.

In terms of sensitivity cerium magnesium nitrate (CMN) is an obvious
choice in the temperature range down to a few millikelvin. The magnetic
dipole interaction between the Ce ions is particularly weak because of their
location in a trigonal crystal structure and because of the highly anisotropic
g-factor (g‖ = 0.25 and g⊥ = 1.84 [17]). As a consequence, magnetic ordering
into a ferromagnetic state occurs for CMN only at very low temperatures
(Tc ≈ 1.9mK). This material has the advantage that the contribution to the
heat capacity from interacting magnetic moments is very small despite the
large spin concentration. However, the main drawback in using CMN, and
other dielectric materials, as sensors in detectors arises from the extremely
slow energy exchange between magnetic moments and phonons at very low
temperatures. Spin-phonon relaxation times the order of seconds and longer
are typical at millikelvin temperatures.
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Notwithstanding the potential problem of long relaxation times, Umlauf
and coworkers investigated the use of paramagnetic dielectrics for particle
detection [6,7,8,9,10,11,12,13,14]. They used the compound Tm–Al–Garnet
doped with 0.5% 168Er attached to a 120 g Si absorber operated in a field of
3 mT at 30mK and achieved an energy sensitivity of 320 eV in experiments
with 5MeV α particles [9]. Under optimal conditions the rise time of their
signals was about 40ms and the thermalization time with the bath was the
order of 10 s. These values are unacceptably long for many applications in
particle detection.

The principal problem of long relaxations times can be overcome by em-
bedding the magnetic ions in metallic or semi-metallic host materials [15].
Here the strong coupling of the conduction electrons and the localized spins
leads to rapid thermalization. Time constants for establishing thermal equi-
librium within the sensor can be well below a microsecond.

The price one pays for this gain in detector speed is the additional heat
capacity of the sensor and enhanced interaction between the localized mag-
netic moments via the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
because of the conduction electrons. This indirect exchange interaction has
two undesirable consequences for the performance of magnetic calorimeters,
namely an additional heat capacity associated with the exchange system and
a reduction of the temperature dependence of the magnetization. Therefore,
the system of choice is one with the smallest possible RKKY exchange inter-
action. Without exception, ions in the 4f rare earth series are better in this
regard than those in the 3d and 4d transition metal series because of their
weaker interaction with conduction electrons. Among the rare earth ions,
those with a small de Gennes factor [18], (gJ − 1)2J(J + 1), are preferable
for the same reason. Here gJ denotes the Landé g-factor of the free ion and
J total angular momentum.

Another aspect that needs to be considered in selecting the best magnetic
ion for magnetic calorimeters is related with its nuclear properties. A nuclear
spin can lead to an unwanted hyperfine contribution to the heat capacity and
to a reduction of the magnetization at the magnetic fields in which the sensor
operates.

Based on the reasons given above, erbium appears to be a particularly
good candidate for the magnetic ion, with the exception of the isotope 167Er,
because of its nuclear spin (see Sect. 2.2.1).

In terms of metallic host system there are, in principle, a wide range of
choices spanning from semi-metals, for example Bi2Te3, to noble metals such
as gold. Semi-metals offer the advantage of having a much smaller conduction
electron density and therefore a reduced exchange interaction. However, at
this time very little is known about the properties of erbium in semi-metals,
especially in terms of relaxation times, heat capacity, and magnetization.
In addition, production and fabrication issues have to be studied before a
judgment of their suitability as magnetic calorimeters can be determined.
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For practical reasons most of the work to date has been done with gold
as a host material and erbium as the magnetic ion. In addition to this alloy,
LaB6 doped with erbium [19], gold doped with ytterbium [20] and silver
doped with erbium [21] have been investigated for use in metallic magnetic
calorimeters. Since none of these materials have shown properties that are
better than Au:Er we will concentrate in the following on this alloy.

2.2.1 Au:Er

Erbium in low concentrations forms a solid solution with gold. Erbium in
the 3+ state substitutes for Au at regular fcc lattice sites giving three of its
electrons to the conduction band. The Er3+ ion has the electron configuration
[Kr]4d104f115s25p6. The paramagnetic behavior results from the partially
filled 4f shell, having a radius of only about 0.3 Å and located deep inside
the outer 5s and 5p shells. For comparison, the ionic radius of Er3+ is about
1 Å. Because of this the influence of the crystal field is greatly reduced and the
magnetic moment can be calculated from the orbital angular momentum L
the spin angular momentum S and the total angular momentum J , which are
derived according to Hund’s rules. To a good approximation the admixture
of exited electronic states can be neglected and the magnetic moment µ can
be written as

µ = gJJ (2)

with the Landé factor

gJ = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
. (3)

For Er3+, L = 6, S = 3/2, J = 15/2 and gJ = 6/5. In dilute Au:Er samples
the magnetization can indeed be characterized by (2) at temperatures above
about 100K [22]. At lower temperatures it is necessary to include crystal field
effects in the description. The crystal field with fcc symmetry lifts the sixteen-
fold degeneracy of the Er3+ ground state, splitting it into a series of multiplets
(one Γ6 and one Γ7 doublet and three Γ8 quartets). The lowest lying multiplet
is a Γ7 Kramers doublet. At sufficiently low temperatures and low magnetic
fields the behavior of erbium in gold can be approximated as a two level
system with effective spin S̃ = 1/2 with an isotropic g factor of g̃ = 34/5.
This theoretical value has been confirmed by several ESR experiments (see,
for example [23]). The magnitude of energy splitting between the ground
state doublet and the first excited multiplet (Γ8 quartet) has been reported
in different experiments [22, 24, 25, 26] to be between 11K and 19K .

Figure 1 shows the magnetic susceptibility of Au doped with 600ppm Er
in the temperature range between 100µK and 300K. The data have been
obtained in three different experiments [27, 28]. While the data at high tem-
peratures (T > 100K) are in good agreement with the Curie law for J = 15/2
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Fig. 1. Paramagnetic contribution to the magnetic susceptibility of Au containing
600 ppm Er as a function of temperature. The two straight lines represent the Curie
susceptibility assuming Er+3 ions in the Γ7-groundstate doublet and Er+3 ions
without crystal field splitting. After [28]

and gJ = 6/5 there is an increasing deviation from the high temperature ap-
proximation below 100K. This is a result of the depopulation of the multiplets
with higher energies. At temperatures below about 1.5K the data follow a
Curie law once again, but with a reduced Curie constant in agreement with
the effective spin S̃ = 1/2 and g factor g̃ = 6.8 for the ground state doublet.
At temperatures below 50mK and in low magnetic fields such that saturation
is unimportant (g̃µBB < kBT ), the susceptibility becomes much less temper-
ature dependent. This is a result of the influence of the exchange interaction
between the magnetic moments. Finally, at a temperature of about 0.9mK a
maximum in the magnetic susceptibility of the 600 ppm sample is observed,
which is the result of a transition to a spin glass state.

Heat Capacity and Magnetization

The performance of a magnetic calorimeter based on Au:Er is determined by
the heat capacity and the magnetization. Since the calorimeter is operated
at very low temperature (10–100mK) we include in the calculations only the
ground state crystal-field doublet.

The heat capacity of a system of non-interacting spins is given by the
well-known Schottky expression

Cs = NkB

(
E

kBT

)2 eE/kBT(
eE/kBT + 1

)2 , (4)
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which exhibits a maximum when the thermal energy kBT is about half the
energy splitting E = g̃µBB. Here µB denotes the Bohr magneton. The mag-
netization of such a system is given by

M =
N

V
g̃S̃µBBs(h) (5)

with h = g̃S̃µB/(kBT ) and the Brillouin function

Bs(h) =
2S̃ + 1

2S̃
coth

(
(2S̃ + 1)h

2S̃

)
− 1

2S̃
coth

(
h

2S̃

)
(6)

In the high temperature limit, h � 1, the magnetization varies as 1/T as
expected for the Curie law.

While the assumption of non-interacting spins is sufficient for a qualitative
description of the response of MMCs, it is inadequate for a quantitative
analysis. To calculate the signal of a MMC both the magnetic dipole-dipole
interaction and the indirect exchange interacting between the spins must be
taken into account.

Because of the isotropy of the Γ7 ground state doublet, the dipole–dipole
interaction can be expressed in terms of the effective spins S̃i and S̃j

Hdipole
ij = Γdipole

1
(2kFrij)3

[
S̃i · S̃j − 3

(
S̃i · r̂ij

)(
S̃j · r̂ij

)]
(7)

with prefactor Γdipole = (µ0/4π) (g̃µB)2 (2kF)3. The quantity r̂ij represents
the unit vector in direction ri − rj and kF the Fermi wave vector of the gold
conduction electrons.1

The exchange interaction of the localized 4f electrons of the erbium ions
with the gold conduction electrons gives rise to an additional interaction
between the erbium ions, the indirect exchange or Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction. Expressed in terms of the effective spin, the
RKKY interaction between two erbium spins can be written as

HRKKY
ij = ΓRKKY (S̃i · S̃j)F (2kFrij) (8)

with the function F (2kFrij) being

F (2kFrij) =
1

(2kFrij)3

[
cos(2kFrij) −

1
2kFrij

sin(2kFrij)
]

(9)

and prefactor ΓRKKY given by

ΓRKKY = J 2 4V 2
0 m∗

ek
4
F

�2(2π)3
g̃2(gJ − 1)2

g2
j

. (10)

1 The Fermi wave vector has been introduced artificially here to simplify the quan-
titative comparison with the indirect exchange interaction discussed later
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Here J denotes the coupling energy between the localized spins and the
conduction electrons, V0 is the volume of the elementary cell and m∗

e is the
effective mass of the conduction electrons. The expression for the RKKY in-
teraction given above is derived under the assumption that the mean free
path of the electrons is larger than the mean distance between the localized
erbium ions. In principle, it is possible that the RKKY interaction is reduced
due to a finite coherence length λ of the spin polarization of the conduction
electrons. In this case an additional factor e−r/λ would appear in (8). How-
ever, for Au:Er with suitable erbium concentrations for a MMC, the mean
free path of the conduction electrons is always much larger than the mean
separation of the erbium ions2.

The fact that both the dipole-dipole interaction and the RKKY interac-
tion are proportional to 1/r3

ij allows us to compare their relative strength by
a dimensionless parameter which is defined as the ratio of the two pre-factors

α = ΓRKKY/Γdipole . (11)

Using this parameter α the coupling energy J can be expressed as3

J �
√

α 0.145 eV . (12)

A determination of the heat capacity and magnetization of a system of
randomly distributed, interacting erbium spins requires a numerical calcula-
tion. There is a number of ways to perform this kind of calculation in the
framework of a mean-field approximation. The method that requires the least
amount of CPU time assumes the specific form of the mean field distribution
that has been derived by Walker and Walstedt [29, 30] for magnetic moments
randomly distributed in a continuous medium. These authors showed that
this analytic representation of the mean field distribution agrees well with
numerically calculated mean field distributions.

An alternative approach is to write down the Hamiltonian for a clus-
ter of interacting, randomly distributed spins on the Au lattice and obtain
the eigenvalues of the cluster. This process is repeated for a large number
of configurations of randomly positioned spins with the heat capacity and
magnetization obtained by averaging. The number of spins that should be
included in a cluster and the number of different configurations of clusters
that must be employed in the calculation depends upon the Er concentra-
tion. For concentrations the order of 1000ppm at least 104 configurations of
2 In measurements of the residual resistivity of dilute Au1−xErx alloys � = x 6.7×

10−6 Ω m was found [31], and one can conclude that the mean free path of the
conduction electrons is about 4000 Å for an erbium concentration of 300 ppm

3 The value of J given by (12) refers to the definition of the exchange energy
between a localized spin S and a free electron s being H = J s · S. The definition
H = 2J s · S is often found in the literature, leading to values of the parameter
J being smaller by a factor of two
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Fig. 2. Specific heat of Au:Er with 300 ppm enriched 166Er as a function of temper-
ature at different applied magnetic fields. The solid lines are calculated numerically
with a interaction parameter α = 5 [32]

clusters containing up to six spins are required to obtain a meaningful re-
sult. Clearly this procedure requires a large amount of CPU time, but the
results are potentially more accurate than can be obtained from a mean field
calculation. The interaction among spins in this method can employ the full
Heisenberg Hamiltonian rather than the Ising approximation.

The appropriate averages over the results for different configurations have
to be calculated. In case of Au:Er with moderate Er concentration this
method provides a description the measured specific heat and magnetization
rather well.

As an example we show in Fig. 2 the specific heat of an Au:Er sample
having a concentration of 300ppm of 97.8% enriched 166Er. The temperature
of the maximum in the specific heat depends on the magnitude of the external
magnetic field as expected for a Schottky anomaly. However, the maximum is
about twice as wide as for a non-interacting spin system. Calculations based
on averaging over spin clusters provides a quantitative agreement assuming a
interaction parameter α of 5. Although the calculated curves depend rather
strongly on the choice of α, the value of α = 5 should be viewed as a upper
bound for the following two reasons. Firstly, the presence of 167Er in the
enriched sample leads to a slight additional broadening of the curve because
of the hyperfine contribution of this isotope. Secondly, additional broadening
results from a variation of the applied magnetic field, of about 10 to 15%,
over the sample due to the geometry of the field coil.

The magnetization is plotted as a function of 1/T in Fig. 3 at several dif-
ferent magnetic fields for the 300ppm sample. As in the case of the specific
heat, the magnetization deviates for the behavior of isolated spins. The devi-
ation is primarily due to the interaction between the magnetic moments, but
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Fig. 3. Magnetization of Au:Er with 300 ppm enriched 166Er as a function of 1/T
at different applied magnetic fields. The solid lines are calculated numerically with
a interaction parameter α = 5 [32]

a small contribution is also present due to the two reasons discussed above for
the heat capacity. Again the data can be described satisfactorily by assuming
an interaction parameter of α = 5.

The magnetic properties of a weakly interacting spin system is perhaps
most easily characterized in terms of the temperature dependence of the sus-
ceptibility given by the Curie-Weiss law, χ = λ/(T +θ). The Curie constant λ
is proportional to the concentration of the spins, as is the Weiss constant θ,
which is a measure of strength of the interactions. For the Au:Er system,
λ = x 5.3 K and θ = α x 1.1K.

Response Time

A fast response time can be very important for calorimeters used as particle
detectors. This is the main reason why metallic paramagnets such as Au:Er
are chosen over dielectric compounds. The strong conduction electron-spin
interaction in metallic paramagnets produces response times in the microsec-
ond range even below 50mK. Obviously, the response time of the calorimeter
is not only determined by the properties of the sensor material, but by the
choice of the absorber and the thermal connection between the two compo-
nents. The only way to insure the fast response of the sensor is to employ
a metal or semi-metal as absorber and to bond the absorber and sensor to-
gether in such a way that the conduction electrons carry the heat across the
interface.

The absorption of an X-ray occurs primarily via the photoelectric effect
resulting in the generation of an energetic electron. This electron loses its
energy rather quickly by electron-electron scattering. After about 10−13 s the
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mean energy of the athermal electrons is reduced to about 0.1 eV. At this
energy the athermal electrons lose their energy predominately by the genera-
tion of high-frequency phonons. Subsequently, these high-frequency phonons
thermalize via interaction with the conduction electrons. As the phonon and
electron systems further thermalize most of the energy is returned into the
electron system because of the larger heat capacity of conduction electrons
at low temperature. By the time the local electron temperature has reached
about 1 K the absorbed energy is distributed within a volume of a few cubic
micrometers. The further thermalization within the absorber can be described
by thermal diffusion. The time scale for this process is mainly determined
by the geometry of the absorber and the presence of defects such as grain
boundaries and dislocations. If we assume, for example, a pure gold absorber
with dimensions 250µm× 250µm× 5µm having a resistance ratio of only
R300 K/R4K ≈ 3, the thermalization time, using the Wiedemann–Franz law,
can be estimated to be 10−7 s.

The time for the heat to flow from the absorber into the sensor is diffi-
cult to estimate since this depends very much on the nature of the thermal
connection between the two components. By spot welding the gold absorber
and Au:Er sensor together the contact can be made sufficiently strong that
no degradation of the response time of the magnetic calorimeters due to the
presence of the interface is observable.

Finally, the energy is shared with the magnetic moments in the sensor
material giving rise of the signal. The response time of the spins is determined
by the electron-spin relaxation time τ , which is described by the Korringa
relation τ = κ/T , where κ denotes the Korringa constant. For Au:Er the
Korringa constant has been determined in ESR measurements at 1K to be
κ = 7 × 10−9 Ks [24]. This value of κ yields a spin-electron relaxation time
of less than 10−7 s at 50mK.

Influence of Nuclear Spins

In the design of a magnetic calorimeter the possible influence of nuclear spins
has to be considered. In the case of Au:Er there a two ways in which nuclei
can affect the performance of the calorimeter. Firstly, the isotope 167Er with
nuclear spin I = 7/2 influences the magnetization and the heat capacity
due to its hyperfine interaction with the 4f electrons. Secondly, and more
subtle, the 100% abundant 198Au nuclei with small magnetic moment but
large quadrupole moment may contribute to the specific heat if the nuclei
reside at positions where the electric field gradient is of non-cubic symmetry.

We consider first the hyperfine contribution of the erbium isotope 167Er
having a natural abundance of 23%. This isotope, embedded in gold, has
been investigated in ESR measurements [24]. From these measurements the
hyperfine coupling constant is determined to be A/kB = −0.0335 K, which
results in zero magnetic field in a splitting of the energy levels into a doublet
separated by 140mK. In addition, the apparent nuclear g factor is found to
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Fig. 4. Energy eigenvalues of the Γ7-Kramers doublet of 167Er in Au as a function
of the applied magnetic field

be strongly enhanced by internal fields to the value of gN = −29. Using these
results the level scheme of the Γ7 Kramers doublet can be calculated as a
function of applied magnetic field. At low fields, as shown in Fig. 4, there
are two groups of levels associated with the angular momentum quantum
numbers F = 3 and F = 4.

In the temperature and magnetic field range of interest for the operation
of MMCs, the magnetization and heat capacity of 167Er ions is considerably
different from that of Er isotopes with nuclear spin zero. The magnetization is
reduced and the heat capacity enhanced. The specific heat of Au:Er sample
with 480ppm erbium with natural isotopic abundance at different applied
magnetic fields is shown in Fig. 5. At low fields there are two distinct maxima
visible. The one at low temperatures is caused by transitions within the F = 4
multiplet and by the contributions of isotopes with zero nuclear spin. The
temperature at which this maximum occurs depends strongly on the magnetic
field. In contrast, the broad maximum at higher temperatures (T ≈ 55 mK)
is nearly independent of magnetic field. It is caused by a redistribution in the
population of spins between the two multiplets. At 10mT and 50mK this
contribution makes up about 50% of the total specific heat. For maximum
sensitivity it is necessary to eliminate this unwanted contribution by working
with erbium deleted in the isotope 167Er.

Nuclei of the host metal can also influence the performance of an MMC.
The 198Au nuclei have spin I = 3/2, a quadrupole moment of 0.547barn
and a magnetic moment sufficiently small to be neglected. In pure gold no
contribution of the nuclear spins to the specific heat is expected at low fields,
since the electric field of cubic symmetry does not lift the degeneracy of the
nuclear levels. However, for Au nuclei in the vicinity of an Er3+ ion the electric
field gradient can be substantial and can split the nuclear levels. This results
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Fig. 5. Specific heat of Au:Er with 480 ppm of erbium with natural isotope abun-
dance [33]

in an additional heat capacity. Fig. 6 shows the measured heat capacity of
the Au nuclei as a function of temperatures for samples with different erbium
concentrations. The data below 10mK for the sample with 600ppm is the
total specific heat since at such low temperatures the contribution of the
Au nuclei is substantially larger than that of all other degrees of freedom.
The figure also shows a theoretical curve calculated assuming a quadrupole
splitting of 70MHz for Au nuclei in the immediate vicinity of erbium ions,
the splitting decreasing for nuclei at larger distances in a manner similar
to that measured in other dilute alloys such as Cu:Pt [34], Cu:Pd [35], and
Gd:Au [36].

This unwanted contribution to the specific heat can only be eliminated
by using a host material which has a nuclear spin I ≤ 1/2. At first glance
it would appear desirable to use silver as a host material rather than gold
since the two isotopes of silver (107Ag and 109Ag) both have nuclear spin
I = 1/2. However, the exchange energy J is 1.6 larger in silver than in gold
as determined by ESR measurements[23]. Since the interaction parameter α
is quadratic in the exchange energy α ∝ J2, silver is not an attractive choice
as a host material for a magnetic sensor.

2.3 Scaling

The behavior of systems of dilute concentrations of magnetic ions in metals
interacting via the RKKY mechanism have been studied for many years. One
property possessed by such systems is that of scaling [37], of which we shall
make use in discussing the optimization of the design of MMCs in Sect. 2.4.
Scaling, in the context of magnetic ions in metals, is the property that the
dependence of thermodynamic quantities on magnetic field and temperature
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Fig. 6. Contribution of the Au nuclei to the specific heat of Au:Er samples with
different concentrations. The solid line represents a theoretical curve assuming a
quadrupole splitting of 70MHz for Au nuclei, that are nearest neighbors of Er. Here
ctot denotes the total specific heat and cn the contribution of just the Au nuclei to
the specific heat. After [32]

at different concentrations are related to one another in a very simple way.
The magnetization and heat capacity at a given B and T , for example, at one
concentration are the same as that at another concentration at a field and
temperature scaled by the ratio of the different concentrations. We outline
the well known argument briefly below.

The effective field on a magnetic ion resulting from interactions with all
surrounding ions through the RKKY coupling, given by (8), can be expressed
as

Bi = A
∑
j > i

cos(2kFrij) − sin(2kFrij)/(2kFrij)
(2kFrij)3

. (13)

The prefactor A depends on ΓRKKY as it is defined in (8) to (10). The proba-
bility distribution of fields, obtained by calculating Bi for all possible random
arrangements of magnetic ions, is the quantity of interest in computing the
thermodynamic properties of the system.

For dilute concentrations the separation between ions is much larger than
the inverse of the Fermi wavevector, the factor 2kFrij is large, and the term
containing the sine function in (13) can be neglected. Also for dilute con-
centrations, the cosine function oscillates in space with a wavelength that is
very short compared to the spacing of the magnetic ions. As a consequence,
the probability distribution of fields does not depend on the wavelength of
oscillation, or, to invert the argument, the concentration dependence of the
field distribution is independent of the cosine function. In considering the
dependence of Bi on concentration, therefore, the oscillatory terms in the
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numerator of (13) are irrelevant. But since the product, xr3, of concentration
and cube of inter-ion spacing, which appears in the denominator of (13), is
independent of concentration, then, Bi/x ∝

∑
1/(xr3

ij) is independent of x
as well. The fields B′

i at one concentration can be obtained from the fields
Bi at another concentration by the relation B′

i = nBi where n = x′/x. The
probability distribution of fields at a concentration x′ and applied field B is,
then, P (B + nBi) = nP (B/n + Bi). The distribution is a function of B/n.

In the mean field approximation, with the energy of an ion given by
E = gµB(B + nBi)mS , the partition function is

Z(B, T, n) =
∏

i

P (B + nBi)
∑
mS

exp
(
−gµB(B + nBi)mS

kBT

)
=

∏
i

n P (B/n + Bi)
∑
mS

exp
(
−gµB(B/n + Bi)mS

kBT/n

)
. (14)

Hence,

Z(B, T, n) = nZ
(B

n
,
T

n

)
. (15)

The dependence of thermodynamic functions on B and T all scale with con-
centration as B/n and T/n.

2.4 Optimization of Signal-to-SQUID-Noise Ratio

The magnitude of the output signal of a SQUID circuit measuring the re-
sponse of a magnetic calorimeter depends on a number of parameters that
are related to the calorimeter itself, to the measuring circuit, and to the cou-
pling of the calorimeter to the circuit. In general, one wants to optimize the
performance of a calorimeter, having a particular set of operating constraints,
by maximizing the signal-to-noise ratio. We discuss the considerations asso-
ciated with the process of optimization below.

The discussion in Sect. 2.2.1 of the thermodynamic properties of Au:Er
suggests that the magnetic response of an MMC can be calculated either by
computer simulations or analytically using mean field approximations. This
ability to calculate the response provides a means of designing calorimeters
that have the largest output signal per unit of energy input. Since the noise
performance of SQUIDs is often characterized in terms of magnetic flux noise,
we start our discussion of signal size in terms of flux that is generated in the
sensing inductance of the magnetometer for a given energy deposition. Later
we include the noise of the SQUID to optimize the overall performance by
maximizing the signal-to-noise ratio.

2.4.1 Basic Ideas

Up to now we have described the response of the calorimeter by (1), δm =
V (∂M/∂T )(δE/Ctot). This expression suggests that the temperature sensor
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should be made out of a magnetic material having a small heat capacity and
large dependence of magnetization on temperature. Let us, for the moment,
neglect any other contribution to the heat capacity of the calorimeter except
for that of the spins. For non-interacting spins the quantities ∂M/∂T and c,
the specific heat per unit volume of the spins, are related by the thermody-
namic expression ∂M/∂T = c/B. In this simple case

δm =
δE

B
. (16)

A picture of the physics described by this relation can be obtained by
noting the occupation numbers of the energy levels of the spins. For an en-
semble of non-interacting spins with S = 1/2, the Zeeman energy splitting
of the levels is EZ = gµBB. A deposition of energy δE induces a change
in the number of spins δN = δE/EZ from the lower to the upper energy
level. The resulting change in the magnetic moment of the ensemble is,
then, δm = δNgµB = δE/B, which is (16). For a typical magnetic field
of B = 10mT and g = 6.8, the Zeeman splitting is EZ � 4 µeV. In the en-
ergy regime MMCs are expected to be used the large number of excitations
precludes statistical fluctuations in their number being a factor limiting the
energy resolution.

If a sample of non-interacting spins were placed inside a circular loop of
wire of radius r, the flux change resulting from a change of magnetization
within it is given by

δΦ = µ0
G

r
δm , (17)

where µ0 is the magnetic permeability of free space and G is a dimensionless
factor that depends on the geometry of the spins within the loop. For spins
restricted to a small volume at the center of the loop G = 1/2. The com-
bination of (16) and (17) lead to strategies for maximizing the signal size,
which, in principle, are applicable to the discussion in the remainder of this
article. 1. Since the coupling of a magnetic moment to a wire decreases with
distance between them, the spins should be placed as close to the wire of
the magnetometer as possible. And 2. the external field should be as small
as possible so as to increase δm. However, as we now discuss, using a simple
model, there are other factors that limit how low the field can profitably be
made. The heat capacity of the calorimeter must include that of the absorber
as well as that of the spins. If Ca describes the heat capacity of the absorber
and non-spin degrees of freedom of the sensor (e.g. electrons, lattice), then
only the fraction β = Cs/(Cs + Ca) of the deposited energy reaches the spin
system, Cs. The flux change in a circular loop, again for non-interacting spins,
is

δΦ = µ0
G

r

Cs

Cs + Ca

δE

B
. (18)
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Fig. 7. Signal size of a magnetic calorimeter with an absorber heat capacity of
Ca = 1.1 pJ/K as a function of magnetic field in the case of interacting and non-
interacting spins. The detector parameters assumed for calculating these curves are
described in the text

At small fields such that EZ � kBT , Cs ∝ B2 for non-interacting spins,
and the signal size, δΦ, increases linearly with magnetic field in the low-field
limit. Provided there are a large enough number of spins4, the signal size has
a maximum where Cs(B) = Ca and decreases at higher field proportional to
B−1.

The calculated dependence of change in magnetic moment on magnetic
field assuming non-interacting spins is illustrated by the upper curve on the
left vertical axis in Fig. 7. The parameters for the calculated curve are δE =
5.9 keV, T = 50mK, and Ca = 1.1 pJ/K, which corresponds to the heat
capacity of a gold absorber 250×250×5 µm3 at this temperature. The sensor
is assumed to be a cylindrical disc having a diameter 52µm and height of
6.5µm, made of 900ppm Au:Er. The calculated change in magnetization has
a maximum at a field of about 7mT, which corresponds to the heat capacity
of the spins being approximately equal to that of the absorber, as expected
from the discussion above.

The right vertical axis shows the corresponding change in flux in a circular
loop where the loop is taken to be made of a thin film of superconducting
niobium having an inner radius equal to the radius r of the sensor and a
width w of the niobium w = 0.1r. The coupling factor, G, depends on both
the geometry of the sensor and that of the loop. In Fig. 10a the coupling
factor is plotted as a function of the ratio ξ = h/2r for both an infinitely thin
loop and for the value w = 0.1r used in calculating the flux plotted in Fig. 7.
4 In order to stay within the small field approximation, the heat capacity of the

spins at the maximum of the Schottky anomaly must be larger than the addi-
tional heat capacity Ca
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What has been left out of the discussion to this point are the interac-
tions among the spins, which can have a significant influence not only on the
magnitude of the response but also on the dependence of the response on
parameters such as temperature and field. The lower curve in Fig. 7 is the
calculated dependence of the change in magnetic moment including dipole-
dipole and RKKY interactions with α = 5. All other parameters are the
same as used for the non-interacting case. The effect of the interactions is
to reduce the response and to shift the maximum to somewhat higher fields.
The reduction can be understood in that the interactions increase the heat
capacity and decrease the temperature dependence of the magnetization.

We are now at a point where we need to consider the optimization of
the performance of a magnetic calorimeter, including the noise of the magne-
tometer used to read out the paramagnetic sensor. That discussion is outlined
in the following sections for the case of a cylindrical sensor in a circular loop,
being followed by an extension of the arguments to the case of planar sensors
with pickup coils of meander shape.

2.4.2 SQUID-based sensor readout

In this section we review several properties of dc-SQUIDs that will later be
used in discussing the signal-to-SQUID-noise ratio of magnetic calorimeters.
For a detailed discussion of the properties and the fabrication of SQUIDs we
refer to [38] and the references therein.

Dc-SQUIDs are the most sensitive devices for monitoring the magnetiza-
tion of the paramagnetic sensors of MMCs. For an MMC to have the highest
possible energy resolution it should be read out with a SQUID having low
noise and high dynamic range. A dc-SQUID can be operated with reasonably
small power dissipation (P < 1 nW) at very low temperatures (T ≤ 4.2 K),
thereby permitting the fabrication of integrated detectors working at tem-
peratures of a few tens of millikelvin.

A dc-SQUID can be used as a sensitive flux-to-voltage converter. Fig-
ure 8a shows a schematic drawing of a dc-SQUID, consisting of a supercon-
ducting loop of wire, which is interrupted by two Josephson contacts marked
by crosses. Each Josephson contact acts as a weak link between the adja-
cent superconductors. This region of suppressed superconductivity is small
enough that Cooper pairs can tunnel through it. The small distance between
the electrodes of each contact results in a parasitic capacitance denoted as
C. Each junction is shunted by a resistor R in order to suppress hysteretic
behavior of the device.

If small currents are driven though the device, the current can be carried
by tunneling Cooper pairs without dissipation. However, if the device is bi-
ased at a current close to two times the critical current of one junction, a
voltage drop develops across the device. Due to the Josephson effect, the dc-
voltage across the device depends periodically on the magnetic flux through
the inductance Ls of the SQUID, where the periodic flux range is given by
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Fig. 8. Schematic of a dc-SQUID, where the flux to be measured is (a) directly
coupled to the sensing inductance of the SQUID, (b) coupled to the SQUID via a
superconducting flux transformer

one flux quantum Φ0 = h/2e = 2.07 × 10−15 Vs. Operated at a steep point
of this flux-voltage characteristic, the device can be used as a sensitive flux-
to-voltage converter. A flux-locked-loop electronics, which applies negative
feedback to compensate the flux change resulting from a signal, is often used
in order to linearize the flux-voltage characteristic of the SQUID.

The shunt resistors R, which are needed for damping, cause current and
voltage noise, and limit the apparent flux sensitivity of the SQUID. The
spectral power density of flux noise SΦs as well as the energy sensitivity εs
are frequently used parameters to characterize the noise of a dc-SQUID, the
relation between the two being

εs =
SΦs

2Ls
. (19)

The knowledge of the dependence of these quantities, εs and SΦs, on the
inductance of the SQUID is important for optimizing the energy resolution
of MMCs, as we shall discuss in the next section.

As discussed in [38], it is difficult in practice to give a simple relation of
the dependence of SQUID noise on inductance. Many parameters, such as
the parasitic capacitance and the critical current, may be constrained by the
requirements of the fabrication process so as to provide for high yield and
reproducibility. Taking the junction capacity of the fabrication process to be
the limiting parameter, and assuming an optimal value for the resistive shunt
R, one can express the optimum energy sensitivity of a dc-SQUID as

εs � 16kBT
√

LsC . (20)

The relation suggests that the flux noise
√

SΦs increases with increasing
SQUID inductance as

√
SΦs ∝ L

3/4
s . However, in the low-temperature limit

the energy resolution of a SQUID should ultimately reach the quantum limit,
εs ≥ �, leading to

√
SΦs ∝

√
Ls. When optimizing the signal-to-SQUID-noise

ratio in the following sections, we shall use this dependence of the flux noise
in the pickup loop on its inductance, although we are not aware of any work
on magnetic sensors where the quantum limited operation of SQUIDs has
been encountered.
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The use of
√

SΦs ∝
√

Ls is also consistent with the following argument.
Assume the change in flux in a sensor is read out by a superconducting coil
with inductance L, which forms a completely superconducting circuit with
a second coil Li coupled by mutual inductance to a SQUID, as illustrated
in Fig. 8b. For clarity, capacitance and shunt resistor have been omitted in
Fig. 8b. The combination of a SQUID and a strongly coupled input coil Li

is usually called a current-sensor SQUID. The circuit formed by L and Li is
often called a flux transformer, because a change of magnetic flux δΦ in the
pickup coil L causes the flux in the SQUID to change by

δΦs =
k
√

LsLi

L + Li
δΦ ≤ 1

2

√
Ls

L
δΦ . (21)

Here k
√

LsLi = Mis denotes the mutual inductance between the input coil
and the SQUID. The dimensionless coupling constant k can have a value close
to unity for SQUIDs fabricated by a multi-layer niobium thin-film process.
Best coupling is achieved, corresponding to the equal sign in the relation on
the right, if the inductance Li of the input coil equals the inductance L of
the pickup coil.

Assuming best coupling, we can describe the flux noise referred to the
pickup coil by√

SΦ =
√

2Lε ≥ 2
√

2Lεs , (22)

where ε and εs represent the energy sensitivity referred to the pickup coil and
to the SQUID5, respectively. The equal sign in the last relation is achieved if
k = 1. Two points are worthy of note. 1. If a SQUID has a fixed energy sensi-
tivity with a well coupled input coil, whose inductance Li can be varied over a
reasonably large range, then the flux noise referred to a transformer-coupled
pickup coil is proportional to the square root of its inductance,

√
SΦ ∝

√
L.

Therefore, when optimizing the signal-to-SQUID-noise ratio of MMCs in the
next section we shall maximize the change of flux in a pickup up coil per
energy input in the detector and per square root of pickup coil inductance.
2. The energy sensitivity of a transformer-coupled pickup coil is about 4 times
worse than the energy sensitivity of the SQUID. However, there are situa-
tions where this loss in sensitivity may be compensated by other benefits
of transformer-coupled sensor readout. Firstly, the fabrication of SQUIDs
with good energy sensitivity becomes increasingly difficult with increasing
SQUID inductance. In cases where the inductance of the preferred pickup
5 In this configuration the energy sensitivity εs of the SQUID might be reduced

due to a reduction of self inductance of the SQUID, which is caused by the
screening current in the flux transformer. In the case of best coupling, L = Li,
this effect should in first order be independent of the input inductance Li and
therefore does not change the qualitative dependence of flux noise on inductance
discussed here
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coil is rather large, i.e., L � 100 pH, transformer coupling may even lead
to the smaller effective flux noise. Secondly, transformer coupling allows for
a spatial and thermal separation of sensor and SQUID. This may be very
helpful in the context of large detector arrays consisting of several thousand
pixels. Low noise readout of a dc-SQUID requires a power of 10 pW to 1 nW
to be dissipated in the SQUID. This power is in part transformed into heat
in the shunt resistors, and in part radiated at the Josephson frequency and
higher harmonics, leading to eddy-current heating in the sensor. The use of
unshunted SQUIDs [39] may help to reduce the heat from dissipation in the
shunt resistors, but handling the residual heat load on a silicon chip at mil-
likelvin temperatures becomes increasingly hard with an increasing number
of detectors. Having SQUIDs and sensors on separate chips with appropriate
filters in the interconnects appears to be a means of handling this problem,
as the power dissipation on the sensor chip can be made almost arbitrarily
small in this configuration.

In the remainder of this section we discuss a few of the possible sen-
sor/SQUID coupling schemes in more detail. Fig. 9a shows a cylindrical
paramagnetic sensor surrounded by a circular loop of wire, which forms the
inductance of a SQUID. An additional, non-magnetic absorber for particle
detection is assumed to be connected to the top surface of the sensor. The
sensor as well as the SQUID are exposed to a homogeneous magnetic field
oriented perpendicular to the surface of the substrate. The optimization of
signal size and signal-to-SQUID-noise of this configuration will be discussed
in detail in the next section.

Fig. 9b illustrates a configuration in which the SQUID-inductance is split
into two counterwound circular loops connected in series, forming a planar
gradiometer of first order. Each of the loops is filled with a cylindrical sen-
sor. Again, sensor and SQUID are exposed to a homogeneous external field.
Depositions of energy in the left and in the right sensor produce changes of
flux in the SQUID of opposite sign and can therefore be distinguished. The
advantages of this setup are a reduced sensitivity to fluctuations of exter-
nal fields and a reduced sensitivity to fluctuations of the temperature of the
substrate, which may be caused by energetic particles being stopped in adja-
cent sensors of an array or by a fluctuating power dissipation in the SQUID
readout. Moreover, in an array of detectors, the number of wires can be re-
duced by a factor of two. One disadvantage of this configuration is that the
intrinsic noise of two detectors is summed in one electronic channel. Also, the
inductance of the pickup loop, which is the SQUID in this case, is increased
by a factor of two, leading to a

√
2 times larger flux noise. Both penalties

together result in the ultimate energy resolution of this detector being larger
by a factor of

√
2 compared to the energy resolution of a single pixel detector.

Fig. 9c is a schematic diagram of a cylindrical sensor with wire-wound
pickup coil, which is transformer coupled to a dc-SQUID. As discussed above,
in this configuration one pays the penalty of increased energy noise referred to
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Fig. 9. Several examples of possible coupling schemes to measure the magneti-
zation of paramagnetic sensors with a dc-SQUID. (a)–(c) assume a homogeneous
external magnetic field B. In (d) and (e) a persistent current I0 in the meandering
superconducting wire of the pickup loop produces an inhomogeneous field in the
volume of the sensor. In (f) a persistent current I0 flowing in a closed supercon-
ducting loop (light grey) underneath the SQUID loop generates an inhomogeneous
magnetic field in the volume of the sensor

the pickup coil. On the other hand, the setup permits the spatial and thermal
separation of SQUID and sensor. This kind of setup can also be extended to
a pickup coil which is split into two counterwound coils connected in series
to readout two separate sensors. Benefits and costs of this configuration are
similar to those discussed in relation to that of Fig. 9b.

The setup depicted in Fig. 9d differs from the ones discussed so far, as it
does not make use of a homogeneous external magnetic field. Instead, a large
persistent current I0 is injected into the superconducting circuit of the flux
transformer, e.g., by using a superconducting persistent current switch. The
current I0 produces a strongly inhomogeneous field around the meandering
wire of the pickup loop within the volume of the sensor. Upon the deposi-
tion of energy δE in the sensor, its magnetic susceptibility decreases by δχ,
resulting in a change of inductance δL ∝ δχ of the pickup coil and a change
of flux δΦs = MisδI ∝ δχ ∝ δE in the SQUID. The setup shares all the
properties due to transformer coupling that configuration c) possesses. The
expected signal-to-noise-ratio of this configuration will be discussed in detail
in a subsequent section. It has several advantages. 1. As the bias field for the
sensor is produced by the pickup coil itself, even sensor material outside the
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area enclosed by the pickup loop can contribute positively to the flux signal
in the coil. This sensor/coil configuration has a large filling factor. 2. If very
thin sensor films and a very fine pitch of the meander structure are used,
one can fabricate sensors of rather large area without a reduction in signal-
to-noise ratio. This may be helpful in some applications. 3. The magnetic
response of the sensor can no longer be described by a dipolar field, as is the
case for in the first three examples. Rather, the field is a multipole of high
order, and the magnetic crosstalk in an array of detectors can be reduced
significantly. Meander coils are likely to find application in large detectors
with thin sensors formed by vapor deposition. In such a geometry it is possi-
ble to contemplate placing sensor material on both sides of the plane of the
meandering pickup coil, thereby doubling the filling factor. This improves the
signal-to-SQUID-noise ratio by

√
2.

Fig. 9e illustrates a setup based on meander-shaped pickup coils to read
out two sensors simultaneously. The two meanders together with the input
coil of a current-sensor SQUID are connected in parallel to form a flux trans-
former, where best coupling,

δΦs

δΦ

∣∣∣∣
max

=
k
√

LiLs

L + 2Li

∣∣∣∣
max

=
1

2
√

2

√
Ls

L
, (23)

is achieved if the inductance Li of the input coil equals half of the inductance
L of one meander. An advantage of this configuration is that the rather
large current I0, which is needed to produce the bias field for the sensor,
needs not to flow through the input coil of the SQUID. It can be injected
into the superconducting loop formed by the two meanders. The input coil
and the interconnects between the current-sensor SQUID and the pickup
coils only have to carry the small current change δI, which is caused by the
deposition of energy in one of the sensors. This configuration has several
advantages. 1. The fields are small in the vicinity of the SQUID. 2. There
are no special requirements for the critical current of the wires of the input
coil. 3. There should be reduced sensitivity to fluctuations of the inductance
of the interconnects resulting from vibrations of those wires.

Again, the sign of the flux change in the SQUID can be used to determine
which of the two sensors was hit, and the setup is insensitive to temperature
fluctuations of the substrate. In addition, note that each of the meanders
in configuration e) is enclosed in a square superconducting loop. This gra-
diometer structure helps to suppress the pickup of alternating external fields
and fields caused by Johnson-noise currents within the metallic sensors and
absorbers. The idea to use meander-shaped pickup coils being enclosed by a
superconducting loop has first been suggested by Zink et al. [40] and we shall
show some of their results in a later section of this chapter.

Figure 9f is a sketch of a two-pixel detector in which the wires of the
meander are the inductive loop of the SQUID. As it is non-trivial problem to
have persistent currents flowing in the SQUID inductance, a second super-
conducting circuit is added to provide the field, whose wiring (light grey) lies
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directly underneath the wiring of the SQUID (black). Note that the wires of
the SQUID are crossed in the center, in order to form a gradiometer with
respect to the field coil. Otherwise flux conservation within the field coil in
persistent mode would prohibit flux changes in the SQUID. For the sake of
clarity we have omitted enclosing the meanders within a superconducting
loop, as illustrated in Fig. 9e. Setup 9f in principle shares all advantages with
that of setup 9e. However, due to the absence of a flux transformer one has to
expect a stronger thermal coupling between SQUID and sensor, a condition
which might be disadvantageous in the context of large detector arrays, as
mentioned above. In the case of small detector arrays and meander induc-
tances below 100 pH, the elimination of the factor of 4 loss due to transformer
coupling may make this a desirable configuration.

2.4.3 Cylindrical Sensors

The first question to ask is: what best characterizes the performance of an
MMC and therefore should be optimized? In an earlier discussion[32], the flux
change per unit energy input δΦ/δE in the SQUID loop was the parameter
that was maximized. This quantity can be written as

δΦ

δE
= µ0

G

r

1
Cs + Ca

V
∂M

∂T
. (24)

However, what is ultimately of importance is not the size of the signal
but the ratio of the size of the signal to that of the noise. In the event that
the flux noise were independent of the input coil, then optimizing δΦ would
be appropriate. But if the flux noise,

√
SΦ, referred to the input coil depends

upon the input inductance, as is typically the case, it is the ratio of δΦ/δE
to

√
SΦ, which should be optimized.

To take a specific example, we assume a SQUID whose noise is quantum
limited, that is, the noise energy εs per Hz is some multiple of Planck’s con-
stant. Then the flux noise per

√
Hz is

√
SΦ =

√
2εsL, L being the inductance

of the loop. For a circular loop the inductance is proportional to the radius,
L = µ0λr, where the constant λ depends on the geometry of the loop. (For
w = 0.1r, λ = 3.72, where, as before, w is the width of the thin loop.)

A comparison of signal to noise involves the question of the time depen-
dence of the signal. Rather than enter into the details of that discussion here,
we leave such considerations to the next section and focus on the physical
properties of the sensor that lead to the best signal to noise, irrespective of
temporal response. Then, the quantity we wish to optimize is

S =
δΦ/δE√

L
= µ0

G

r

1
Cs + Ca

V
∂M

∂T

1√
µ0λr

, (25)

or
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Fig. 10. (a) Coupling factor G as a function of reduced sensor height ξ = h/2r.
(b) Product G

√
ξ to be maximized for optimal signal-to-SQUID-noise ratio

S =
δΦ/δE√

L
=

√
µ0

λ

G

r3/2

V

V c + Ca

∂M

∂T
. (26)

with c being the heat capacity of the spins per unit volume. The quantity S is
of little physical significance except insofar as its optimization is relevant for
maximizing the signal to noise when the noise is dependent on inductance.
It depends upon a number of parameters.

S = S(Ca, g, α, T, x, r, h, B) . (27)

Four parameters – the heat capacity of the absorber Ca, the g-factor of the
paramagnetic ions, the strength of the RKKY interaction α, and the operat-
ing temperature T – are generally fixed by the experimental conditions and
choice of materials. However, the other four – the concentration of ions x,
the radius r and height h of the cylindrically shaped sensor, and the applied
magnetic field B – are adjustable. The values of these latter four parameters
can be varied so as to maximize S.

First consider r and h, and replace h using ξ = h/2r and write G/r3/2 =√
2πξ/V G. Then

S =
√

µ0

λ

√
2πξ G

√
V

V c + Ca

∂M

∂T
. (28)

The coupling factor, G, is independent of volume and is a function of ξ only.
Figure 10 shows the coupling factor G as well as the product G

√
ξ as a

function of ξ for two different widths of the pickup loop. For w = 0.1r, the
product G

√
ξ has a maximum at ξ = 0.268 or h ≈ 0.54r, [G

√
ξ]max = 0.286.

The volume dependence of S is contained in the factor
√

V /(V c + Ca),
which leads to the condition V c = Ca, namely, the heat capacity of the sensor
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should equal the heat capacity of the absorber for maximum signal-to-noise.
When V is replaced by Ca/c, the optimized S becomes

Sopt =
√

µ0

λ
G

√
πξ

2
1√
Ca

1√
c

∂M

∂T

∣∣∣∣
opt

. (29)

The last factor, (1/
√

c)(∂M/∂T ), contains the information on how the
concentration and magnetic field should be adjusted to maximize Sopt given
the values of the fixed parameters, T , g, and α. Because of the spin interac-
tions, a calculation of the optimal conditions can only be performed numer-
ically. However, given the scaling laws obeyed by spins interacting through
the RKKY mechanism, as discussed earlier, the functional dependence of x
and B on T , g, and α for optimization can be deduced without numerical
evaluation. Since all thermodynamic parameters scale as T/x and B/x, the
concentration that optimizes S must be proportional to the operating tem-
perature, x ∝ T . For fixed g, and α, Bopt/xopt = constant so that Bopt ∝ T .
And since B is always multiplied by g, it follows that Bopt ∝ 1/g.

Within the mean field approximation the energy splitting of a spin with
S = 1/2 is

E = −gµB(B + xBi) = gµBB(1 + xBi/B) , (30)

where the dependence on the magnitude of the interactions arises through
Bi. Again, because of scaling xBi/B must be a constant under optimal con-
ditions. Since Bi ∝ g α it follows that

xopt ∝ T g−2α−1 . (31)

The heat capacity of the spins is copt ∝ xopt(E/kBT )2. Since E/(kBT ) is
independent of the variables, copt has the same dependence on the variables
as xopt.

There is one caveat that one has to append to this discussion. The heat
capacity c of the sensor is not simply that of the spins, as has been implic-
itly assumed to this point, but contains the heat capacity of the conduction
electrons6. But since the electronic heat capacity, ce, is proportional to tem-
perature, the dependence of copt on T is unchanged by the inclusion of ce.
The same holds true for the temperature dependence of xopt and Sopt, dis-
cussed below. However, because ce is unrelated to the spins, the functional
dependencies of the optimized parameters on g and α are not strictly valid.
Under typical conditions the electronic heat capacity is only a few percent
of the spin heat capacity, and there is little error in maintaining the func-
tional form obtained from scaling. In deriving the numerical results below for
Au:Er, we have included the electronic heat capacity.

The temperature derivative of the magnetization has the form ∂M/∂T ∝
x g2 B T−2. Hence (∂M/∂T )opt ∝ g−1α−1, and therefore Sopt has the form
6 The heat capacity of the lattice is very small and not considered



Metallic Magnetic Calorimeters 177

Sopt ∝ (Ca α T )−1/2. (32)

The quantities
√

c and (∂M/∂T ) have the same dependence on g-value. Hence
Sopt is independent of g.

Table 1. The dependence of the variable parameters B, x, r, h, upon the opera-
tional parameters Ca, T , g, and α such that the sensitivity S = (δΦ/δE)/

√
L is opti-

mized. The last column contains explicit values for an Au:Er sensor (g = 6.8, α = 5)
at 50 mK connected to an absorber that has a heat capacity of Ca = 1× 10−12 J/K

Parameters, that maximize S = (δΦ/δE)/
√

L Example: Au:Er, T = 0.05 K
for cylindrical sensors Ca = 1 × 10−12J/K

Bopt = 2.1 TK−1 × Tg−1 15 mT
xopt = 10.3 K−1 × Tg−2α−1 2200 ppm

ropt = 0.64 cmK2/3

J1/3 × (Cag
2αT−1)1/3 10.7 µm

hopt = 0.53 × ropt 5.7 µm

Sopt = 0.093 × (CaαT )−1/2

The results of a numerical calculation of (1/
√

c)(∂M/∂T ) to obtain the
numerical coefficients in the expressions for xopt and Bopt are given in Table 1.
The dependence on the fixed parameters of ropt and hopt, which follow from
equating heat capacities, are also given in the table. And finally the optimum
signal-to-noise is obtained when

Sopt = 0.093 (CaαT )−1/2 . (33)

The right column of Table 1 contains explicit values for Bopt, xopt, ropt

and hopt for a specific example. At first glance, the value for the optimal
concentration of 2200ppm may seem somewhat high considering that the
calculation assumes the small concentration limit. However, the spin glass
transition temperature at this concentrations is still about one order of mag-
nitude lower than the operational temperature T = 0.05 K assumed in this
example.

In [28] and [32] the quantity that was maximized was the change in flux
through a circular loop. In the event that the noise limiting the resolution
of the calorimeter is independent of the inductance of the input coil, this is
the appropriate quantity to consider. The expression for flux change per unit
energy input to the calorimeter is given by (24). The condition that δΦ is
a maximum leads to the condition Cs = V c = 2 Ca. Again using ξ = h/2r,
δΦmax/δE can be expressed as7(

δΦ

δE

)
max

= µ0G(2πξ)1/3 22/3

3
1

C
1/3
a

(
1

c2/3

∂M

∂T

)
max

. (34)

7 In this case we use the subscript max rather than opt for ease in distinguishing
the two different optimizations
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The results of analyzing the factor containing c and ∂M/∂T numerically
are given in Table 2. The dependences of the optimal values of B, x, and r on
the fixed parameters Ca, g, α, and T are the same for Sopt and [Φ/δE]max but
the numerical coefficients are different. The coefficients for rmax and hmax in
Table 2 are somewhat different than given in [32] so as to correspond to the
configuration of the pickup loop used here of w = 0.1r. Also, the numerical
factor in (δΦ/δE)max differs slightly because of a more detailed analysis. We
find(

δΦ

δE

)
max

= 1.3 × 10−9

(
g

CaαT 2

)1/3

Φ0/eV, (35)

where Φ0 = 2.07 × 10−15 Vs is the flux quantum.

Table 2. The dependence of the variable parameters B, x, r, h, upon the opera-
tional parameters Ca, T , g, and α such that the sensitivity [δΦ/δE]max is maximized.
The last column contains explicit values for an Au:Er sensor (g = 6.8, α = 5) at
50 mK connected to an absorber that has a heat capacity of Ca = 1 × 10−12 J/K

Parameters, that maximize δΦ/δE Example: Au:Er, T = 0.05 K
for cylindrical sensors Ca = 1 × 10−12J/K

Bmax = 1.5 T K−1 × Tg−1 11mT
xmax = 4.2 K−1 × Tg−2α−1 900 ppm

rmax = 1.6 cmK2/3

J1/3 × (Cag
2αT−1)1/3 26 µm

hmax = 0.25 × rmax 6.5 µm

[δΦ/δE]max = 1.3 × 10−9 Φ0
eV

J1/3

K
× (g C−1

a α−1T−2)1/3 1.0 × 10−4 Φ0
eV

Note that (δΦ/δE)max in (35) has a different dependence on Ca, g, α,
and T than does Sopt = [(δΦ/δE)/

√
L]opt in (33). In particular, (δΦ/δE)max

depends on the g-value of the spins, whereas Sopt does not. The difference
in functional dependence of these two optimized quantities on the fixed pa-
rameters does not carry over to magnetic field, concentration and radius. In
both cases the optimal value of field is proportional to T/g, but the con-
stant of proportionality is somewhat larger for the case of Sopt than it is for
(δΦ/δE)max. The situation is similar for the concentration. This is related
to the fact that S is less sensitive to the heat capacity of the spins than is
δΦ/δE.

The fact that Sopt does not depend upon the g-value of the spins does
not mean that g is an irrelevant parameter when (δΦ/δE)/

√
L is a measure

of the signal to noise8. For technical reasons it may be desirable to work
8 The fact that Sopt is independent of g, while δΦ/δE is not, is a consequence of

the manner in which we chose to describe the exchange interaction in terms of
the parameter α so that Bi ∝ x g α
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Fig. 11. (a) Contours of constant S = (δΦ/δE)/
√

L in the field/concentration
plane for values of S that are 5% and 10% less than Sopt at T = 0.05 K, g = 6.8
and α = 5. The dotted line indicates the fields for which S is a maximum at a given
concentration. (b) Contours in the radius/concentration plane for the same condi-
tions and Ca = 10−12 J/K. The dotted line indicates the radius of the cylindrical
sensor for which S is a maximum at a given concentration

with as low an applied magnetic field and concentration of spins as possible,
conditions which favor a system with high g-value. In this regard, note that
S is not a particularly strong function of the values of the magnetic field and
concentration in the vicinity of its maximum. In Fig. 11a we have plotted
contours of constant S at 90% and 95% of Sopt in the field/concentration
plane for the conditions T = 0.05K, g = 6.8 and α = 5. The magnetic field
can be decreased by a third and concentration by more than a factor of 2
without decreasing the signal to noise by more than 10%. If one adopts a
strategy of reducing B and x, then the dimensions of the sensor must be
increased to maintain the equality of the heat capacity of the sensor to that
of the absorber, as shown in Fig. 11b. In order to achieve a signal to noise of
90% of Sopt with the field and concentration reduced to their lowest levels,
the radius of the sensor must be increased by about 40%.

2.4.4 Meander Geometry

For many applications, a magnetic calorimeter with a sensor in the form of a
small circular cylinder may have technical disadvantages. A large-area pickup
loop of meander geometry with a thin sensor and an absorber vapor-deposited
on top of it may provide significant improvements in both sensitivity and ease
of fabrication. The reason why a meander loop can be made, in principle,
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more sensitive than a circular loop is that the spins of the magnetic sensor
are on average closer to the pickup loop with the meander geometry. The
coupling between spins and pickup loop is larger. Given the fact that the
meander-shaped pickup coil is likely to be transformer coupled to a SQUID,
the quantity (δΦ/δE)/

√
L is in most cases probably the relevant quantity to

optimize. This issue is the topic of the present section.
The discussion here is restricted to a design in which the magnetic field is

produced not by an external coil but rather by passing a current though the
same meander pattern that is used to measure the change in magnetization
of the sensor. Using the same loop for field generation and pickup is a much
more important option to consider for a meander with the sensor uniformly
distributed above it than for a circular loop enclosing a cylindrical sample
within it. The field generated by a current in the meander is highly non-
uniform both in magnitude and direction. Directly between two stripes the
field is perpendicular to the plane of the meander varying in sign between
successive gaps between stripes. Directly above a stripe the field is parallel
to the meander plane. But because of reciprocity, a change in magnetization
of the spins, aligned locally with the magnetic field, produces a flux change
in the meander in proportion to the magnitude of the local field with sign
independent of position.

If finite size effects can be neglected, the inductance of a meander-shaped
pickup loop can be written as

L = �µ0
A

p
, (36)

where p is the pitch of the meander structure (center-to-center distance of
two neighboring conductors) and A is the area covered by the meander. The
constant � depends on the relative width of the stripes, w/p, which are as-
sumed to be made of niobium. A plot of � versus the ratio w/p is given in
Fig. 12a. These results are obtained from a finite element calculation where
the niobium is assumed to be a perfect diamagnet. With w/p = 0.425, the
value of � is 0.246.

In all following calculations we assume the thickness of the niobium struc-
tures to be 0.05 times the pitch (e.g. 500nm thick for a pitch of p = 10 µm).
Also, the meander is covered with an insulating layer having a thickness
of 0.025 p. This is of relevance in the calculation of field distributions.
A schematic cross section of the meander with sensor is illustrated in Fig. 12b.

The magnetic field produced by a current passing through the meander
depends strongly on position. The average of the magnitude of the field in
a plane parallel to that of the meander drops exponentially with increasing
distance between the two planes as illustrated in Fig. 13a. The distribution
of fields over a sensor of reduced thickness ξ defined in reference to the pitch
by the expression ξ = h/p can be calculated by standard finite-element tech-
niques. With superconducting stripes, the distribution P (B, ξ, w/p) of the
magnitude of the field for the particular case ξ = 0.36, w/p = 0.425 and an
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Fig. 12. (a) Normalized inductance of a meander shaped coil as a function of the
ratio of the width of the superconducting niobium structures w and the pitch p
(center-to-center distance of two neighboring niobium stripes). (b) Schematic of
the cross section of the sensor and the meandering pickup coil wires perpendicular
to the current flow. The pitch p, width of the stripes w and height of the sensor h
are indicated

average field of B = 12.8 mT is shown in Fig. 13b. We shall see later that
this is the optimal configuration for g = 6.8 and T = 50 mK. The optimal
thickness of the sensor, ξopt = 0.36, turns out to be independent of all other
parameters, at least to within 1% of the numerical results.

The quantity G, which is displayed on the top axis of Fig. 13b, has the
same meaning as the dimensionless geometrical coupling factor of Sect. 2.4.1.
However as used previously, G was an average over the volume of the magnetic
sensor whereas here G is a local coupling factor and is a function of the
position within the sensor. The equivalent of (17) is, then,

d(δΦ) = µ0
G(r/p)

p
δM(r) dV , (37)

where d(δΦ) is the change of flux in the pickup coil caused by a change of
magnetic moment δM(r) dV in the volume element dV at position r.

As indicated by the use of G in Fig. 13b, this parameter by reciprocity
also characterizes the relationship between the magnetic field at a position r
and the current I0 in the meander. The relationship is

B(r) = µ0G(r/p)
I0

p
. (38)

Because G depends on the reduced position vector r/p, it is independent of
the overall dimensions of the meander, but it does depend on the width to
pitch ratio w/p of the stripes.

The change of flux δΦ in a meander-shaped pickup coil caused by the
deposition of energy δE in the calorimeter can be obtained by placing d(δΦ)
of (37) into (24) and integrating. Since the calorimeter is measured on time
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Fig. 13. (a) Average magnetic field in a thin layer of sensor material as a function
of the distance z between this layer and the surface of the insulating layer, which
covers the pickup coil and the meander. The meander has a pitch p and carries a
current I0. (b) Distribution of the magnitude of the magnetic field in the volume of a
sensor with ξ = 0.36. The average field of B = 12.8 mT corresponds to the optimum
field for the operation of a sensor with g = 6.8 at a temperature of T = 50 mK

scales such that it is in thermal equilibrium internally, the temperature rise
due to the energy input δT = δE/Ctot is a constant and can be taken out of
the integral. The resulting expression is

δΦ =
δE

Cabs +
∫

V c(r) d3r

∫
V

µ0
G(r/p)

p

∂M [B(r), T ]
∂T

d3r , (39)

where c is the specific heat per unit volume of the sensor material. The inte-
gration of the position-dependent heat capacity of the spins and of ∂M/∂T
can be performed separately.

Since the thermodynamic parameters are functions of field and the dis-
tribution P (B, ξ, w/p)9 of magnetic fields within the sensor has already been
determined, it is more convenient to integrate over magnetic fields, or rather
G, instead of volume. Defining the average value of X as

〈X 〉 =
∫

P (G, ξ, w/p)X dG , (40)

the expression for δΦ/δE becomes

δΦ

δE
=

V

Ca + V 〈c〉

〈
µ0

G

p

∂M

∂T

〉
. (41)

9 We explicitly note the dependence on w as well as ξ
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As with the cylindrical sensor, the quantity we wish to maximize is S =
(δΦ/δE)/

√
L. With L given by (36) and the volume of the sensor expressed

as V = Ah, S is

S =
√

µ0

�

h
√

A/p

Ca + Ah 〈c〉

〈
G

∂M

∂T

〉
. (42)

The quantity S for a calorimeter employing a meander geometry is a
function, with some modifications, of the same parameters as for the case of
a cylindrical calorimeter. The parameters Ca, g, α, T , and x are obviously the
same in the two cases. The field is changed from B to B, which is replaced
in the equations by the experimentally measurable I0. In place of r we now
have the area A of the meander, and h, characterized by the reduced height
ξ is now h/p. What is different in the present discussion is the addition of
the parameter w/p. The response of a meander is more sensitive to the width
of the niobium stripes than is the response in the case of a circular loop, in
the optimizing the response of which w was taken as a constant. Altogether
S depends on nine parameters

S = S(Ca, g, α, T, x,B, A, ξ, w/p) . (43)

As before, we consider the first four of these parameters fixed by the
material and operating conditions and discuss the values of the remaining
parameters that produce the maximum value of S.

Equation (42) has a form similar to that of (28). The condition on the
volume (or heat capacity) of the spins, which maximizes S, is that V 〈c〉 = Ca.
As a condition on A this is

Aopt =
Ca

h 〈c〉 . (44)

With this result, the optimized value of S can be written as

Sopt =
1
2

√
µ0

�

1√
Ca

√
ξ

〈c〉

〈
G

∂M

∂T

〉
. (45)

The optimal values of the geometrical factors – the ratio w/p and the
thickness of the sensor, characterized by ξ = h/p – are independent of the
materials parameters and operating temperature. We find that the maximum
value of S is obtained for ξopt = 0.36 and (w/p)opt = 0.425. These quanti-
ties are principally defined by the current distribution around the meander
stripes. It is interesting to note that the filling factor defined as the ratio of
the integral of B2 over the volume of the sensor to the integral of B2 over all
space,

F (ξ, w/p) =

∫
V

B2 d3r∫
B2 d3r

, (46)
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Table 3. The dependence of the variable parameters B, x, A, h for a meander
geometry upon the operational parameters Ca, T , g, and α such that the sensitivity
S is optimized. Values for Iopt, 〈c〉opt and 〈G(∂M/∂T )〉opt are also included to
facilitate computations. The last column contains explicit values for an Au:Er sensor
(g = 6.8, α = 5) at 50 mK and p = 10 µm connected to an absorber that has a heat
capacity of Ca = 1 × 10−12 J/K

Parameters that maximize S = (δΦ/δE)/
√

L for Example: Au:Er, T = 0.05 K
planar sensors with meander shaped pickup coil p = 10 µm, Ca = 1pJ/K

Bopt = 1.8 T K−1 × Tg−1 13 mT
Iopt = 2.9 × 106 Am−1K−1 × Tg−1p 0.21 A
xopt = 9.2 K−1 × Tg−2α−1 2000 ppm

〈c〉opt = 1.8 × 106 Jm−3K−2 × Tg−2α−1 390 Jm−3K−1

〈G ∂M
∂T

〉opt = 2.8 × 105 Am−1K−1 × g−1α−1 8.1 × 103 Am−1K−1

Aopt = 1.5 × 10−6 m3K2J−1 × Cag
2αT−1p−1 700 µm2

hopt = 0.36 × p 3.6 µm
Lopt = 4.7 × 10−13 Hm2K2J−1 × Cag

2αT−1p−2 22 pH

Sopt = 0.14 × (CaαT )−1/2 0.1 Φ0 keV−1L
−1/2
opt

has the value of F � 0.39. This is close to the maximum achievable value of
0.50 for a sensor on only one side of the meander.

Because of scaling, the functional dependence of xopt, Bopt, and Sopt on
Ca, g, α, and T must be the same for the meander geometry as for the cylin-
drically shaped sensor, i.e., xopt ∝ Tg−2α−1 etc. The results of numerical
calculations using the mean field approximation as well as using the diago-
nalization of the Hamiltonian for clusters of interacting spins, as discussed in
Sect. 2.2.1, confirm this result. The coefficients expressing the dependence of
the independent parameters that maximize S on those that are considered
fixed are shown in Table 3. The numerical results for the different methods
of accounting for the exchange interaction among spins – mean field approxi-
mation and the diagonalization of the Hamiltonian of spin clusters – differ for
most parameters by less than 5% except in the case of Bopt where the spread
is close to 20%. The relations in Table 3 represent a reasonable average of the
results of the different numerical methods. In addition, we list in the table
several other quantities that are of interest for calculations.

As was the case for a cylindrical sensor, the dependence of S near its
maximum is not a strong function of concentration and field. We have plot-
ted in Fig. 14a contours of constant S at 95% and 90% of Sopt in the
field/concentration plane for the conditions indicated in the caption. Also
plotted is the field for which the S is a maximum as a function of concen-
tration. Even at a concentration of 550ppm, approximately one fourth of
the optimal concentration of 2000ppm, it is possible to achieve a signal that
is 80% of the maximum. The penalty of employing a concentration of less
than the optimal value is small provided, of course, the field and area of the
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Fig. 14. (a) Contours of constant S at 95% and 90% of Sopt in the field/con-
centration plane. The line indicates the fields for which S is a maximum at a
given concentration. Also indicated is the concentration at which S = 0.80Sopt.
The parameters associated with the graph are Ca = 1pJK−1, g = 6.8, α = 5,
T = 0.05 mK and p = 10 µm. (b) A plot of the maximum value of S achievable and
the area of the meander required to obtain that value as a function a concentration
for the conditions in (a). The height of the sensor is 3.6 µm

meander can be adjusted accordingly. The maximum value of S that can be
obtained for a particular value of concentration less than the xopt is plotted
in Fig. 14b. An empirical equation that fits this curve is

S = Sopt[1 − (240δx)2 − (430δx)6] , (47)

where δx = (xopt − x). This equation fits the calculated values of S to a few
percent for the range 0.2 > δx/xopt > 0. The plot for S in Fig. 14b and (47)
is for the specific values of the parameters Ca, g, α, and T listed in the cap-
tion. The plot and empirical fit is valid for different sets of parameters Ca

and T , with the replacement of Sopt and xopt by the appropriate scaled val-
ues. However, because of the inclusion of the heat capacity of the conduction
electrons, the plot and empirical expression are not valid except in the im-
mediate vicinity of Sopt, (S > 0.95Sopt). As the concentration decreases and
the area of the meander increases, as indicated in Fig. 14b, the contribution
of the electronic heat capacity becomes an ever larger factor.

The area of the meander required to maximize the signal for a given
concentration increases substantially as the concentration decreases, as il-
lustrated by the plot in Fig. 14b. This curve for the area is fit well by the
empirical expression

A = Aopt[1 − (400δx) + (800δx)2 − (640δx)8] . (48)
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Again, this equation obeys scaling in T but not in g and α except in the
immediate vicinity of the optimal conditions. Also, it should be remembered
that all these expressions are derived assuming that finite-size effects are
unimportant in computing the fields and inductance. This is certainly not
a good approximation, for example, for the optimal conditions in the case
illustrated in Fig. 14, where p = 10 µm and the area covered by the meander-
shaped coil is only Aopt = 700 µm2. But the numbers given in Table 3 and
Fig. 14 still provide a useful starting point to derive optimal parameters for
meander-shaped pickup coils with smaller pitch or sensors with larger heat
capacity and area, where finite size corrections are less important.

The optimization performed above includes many assumptions, such as
the volume of the sensor is a variable. There may be situations where this is
not the case, for example, the area and thickness of the sensor along the heat
capacity of the absorber may be dictated by conditions of the experiment. In
such cases the optimal concentration and field could be very different from
what is calculated above.

Detectors using a meander pickup may be transformer coupled to a
SQUID for best performance. In order to match the meander to the trans-
former it is essential to have a reasonable estimate of its inductance. In this
regard we note that the susceptibility of the sensor under the conditions of
optimal signal to noise may be sufficient to warrant its inclusion in the cal-
culation of inductance. For Au:Er at T = 0.05K the optimal concentration is
xopt = 0.002, and the susceptibility, using the expressions given in Sect. 2.2.1,
is χ = 0.18.

The calculated signal-to-SQUID-noise ratio of MMCs with meander-
shaped pickup coil is about 1.5 times better than the result for MMCs with
cylindrical sensors in an homogeneous external field. This difference is essen-
tially due to the different filling factors of the two geometries. The fact that
we used the meandering wire of the pickup coil to generate the bias field for
the sensor allowed for placing sensor material inside as well as outside the
area enclosed by the wire of the pickup loop. There might be numerous other
sensor/pickup coil geometries with slightly better filling factor and possibly
other advantages for certain applications that make use of the same idea.

2.5 Magnetic Johnson Noise

A source of noise, inherent to metallic magnetic calorimeters because of their
very nature, is magnetic Johnson noise – noise in the magnetic field or flux,
which is generated by thermally induced currents in a conductor. An MMC,
consisting of a metallic sensor in close proximity to a pickup loop designed
to measure flux changes produced by the sensor, is a system particularly
susceptible to the effects of this noise source. Noise can be generated, as well,
by a metallic absorber, and other materials in the vicinity of the pickup loop.
And while it is noise that must be considered in developing high resolution
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MMCs, there are standard means of ameliorating its influence to a degree
that it is unlikely to be an important factor in setting limits on performance.

Magnetic Johnson noise has been observed and studied since the devel-
opment of sensitive SQUIDs. A number of authors [41, 42] have calculated
the fluctuations in the magnetic field arising from the thermal currents in a
conductor starting from the random motion of the charges. Alternatively, as
pointed out by Harding and Zimmerman [43], the flux noise generated in a
coil or loop as a consequence of fluctuating currents in a conductor can be
calculated using the reciprocity theorem. A time-varying current at frequency
ω in a coil produces eddy currents in nearby conductors, and the resulting
losses can be described by an apparent resistive impedance R(ω) of the coil.
The impedance can then be used to deduce the flux noise in the coil or loop.
This approach was followed in [32] to compute the flux noise in a circular
SQUID loop of internal radius r enclosing a cylindrical metallic sensor of the
same radius and height h. For this geometry the rms flux noise per

√
Hz is

√
Sφ = µ0

√
π

8
CcσkBThr2 , (49)

where σ is the conductivity of the sensor and Cc is a numerical constant that
depends on the pickup loop. For the case considered in Sect. 2.4.3 where the
width of the loop is w = 0.1r, the constant is Cc ≈ 2.

Equation 49 is valid for frequencies such that the dimensions of the sensor
are small compared to the skin depth, δ =

√
2/(µ0σω). It is not possible to

write simple analytic expressions for the noise when this condition is not
satisfied [41]. The noise drops off rapidly with increasing frequency when the
finite skin depth limits the fluctuations from coupling to the loop. In any
event, one is unlikely to be concerned about noise in this frequency range,
since any change in magnetization of the sensor at these frequencies would
be attenuated as well.

The conductivity of Au1−xErx can be obtained from the work of Arajs
and Dunmyre [31], who found the residual resistivity of this alloy to vary
linearly with concentration as � = x 6.7 × 10−6 Ω m. For a cylindrical
Au:Er sensor optimized for the conditions discussed in Sect. 2.4.3, namely,
T = 0.05K, Ca = 1 × 10−12 JK−1 for which ropt = 10.7 µm, hopt = 0.53 r
and xopt = 2200ppm, the magnitude of the magnetic Johnson noise is√

Sφ ≈ 1 × 10−7 Φ0/
√

Hz.
A metallic absorber attached to the sensor is also a potential source of

magnetic Johnson noise. A large conducting sheet of thickness t, parallel to
the plane of a circular loop of wire and separated from it by a distance z,
produces a spectral flux noise density in the loop of

√
Sφ = µ0πr2

√
σkBT t

8πz(z + t)
. (50)
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A 5µm thick absorber with a conductivity of 2 × 108 Ω−1m−1 (roughly that
of vapor-deposited Au) placed 5.7 µm above a 10.7 µm radius loop generates
a flux noise of

√
Sφ ≈ 2 × 10−7 Φ0/

√
Hz.

The magnetic Johnson noise can always be reduced by decreasing the
conductivity of the metal with non magnetic impurities.

The magnetic Johnson noise for a meander has not been worked out in
detail. One can, using numerical methods, calculate the eddy currents losses
in the sensor induced by an ac current flowing in the meander strips. This,
in turn, can be used to compute the flux noise in the meander generated
by fluctuating currents in the sensor. The fluctuating currents principally
responsible for producing noise are those that flow parallel to the stripes of
the meander. A rough estimate of the contribution of these fluctuations is
given by the expression√

Sφ = µ0

√
CmσkBTV , (51)

where V is the volume of the sensor and Cm is a parameter that depends on
details of the geometry of the meander. This equation, by itself, is helpful
only in showing the obvious dependence on conductivity and temperature.
The parameter Cm depends on thickness of the sensor. An optimally designed
sensor, for which the ratio of thickness to pitch is ξ = h/p = 0.36, has a vol-
ume which is V ∝ Ap, where A is the area of the total meander. A rough
calculation of Cm for an optimal sensor yields Cm ≈ 0.02. Hence, for a me-
ander with a pitch of 10µm and A = 1mm2 used at 50mK with a Au:Er
sensor having a conductivity of 1.3× 10−8 mho m−1 (corresponding to an Er
concentration of 1000ppm), the rms flux noise is

√
Sφ ≈ 3 × 10−6 Φ0/

√
Hz.

This is an order of magnitude larger than the noise estimated above for a
cylindrical sensor and loop, but this is not surprising. The Johnson noise from
the sensor in both the cylindrical and meander geometry is proportional to
the volume, albeit with a proportionality constant that is different for the
two geometries. The volume of the meander sensor chosen in this example is
103 times larger than that taken above for the cylinder.

While the fluctuating currents in the sensor flowing parallel to the stripes
of the meander are a significant source of magnetic Johnson noise, they are
not the only source or even the largest noise source, depending on how the
circuit containing the meander is constructed. Consider the three circuits di-
agrammed in Fig. 15 with the same meander but different configurations of
the leads10. In the first configuration fluctuating currents in the sensor cover-
ing the meander do not couple to the leads. In the latter two configurations
where the leads lie very near the sensor there is obvious coupling, but with
very different results in the two cases.
10 Configuration a) is not one that is likely to be used in practice because of the

inductance associated with the large area enclosed in bringing the leads together
away from the metallic sensor
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Fig. 15. A meander with three different configurations of the leads connecting it
to the remainder of the measuring circuit

In calculating the eddy currents flowing in the sensor to estimate Johnson
noise by reciprocity, we need to consider the net current at the boundaries
of the meander and not just the current in the stripes. In configuration a)
one can approximate the effective current on each side of the meander as
I/2, I being the total current flowing in the meander. The currents in the
upper and lower boundaries flow in the same direction with the result that
eddy currents induced in the sensor tend to cancel except in the vicinity of
the edges. There is, nonetheless, a contribution to the Johnson noise from
fluctuating currents near the edges, but it is not large. The leads play no role
in determining the Johnson noise in configuration a).

The same is not true in configuration b), where the return current of I
in the lead running along the upper boundary flows in the opposite direction
to the effective current of I/2 in the meander edge. As a result there is an
apparent circumferential current flowing around the meander. A current of
I/2 flows along the upper and lower boundaries in circular fashion. Time-
varying currents in the meander produce large circular eddy currents in the
sensor, similar to those in a cylindrical sensor enclosed by a circular loop.
The Johnson noise from fluctuating thermal currents is therefore much larger
in configuration b) than in a). The noise from fluctuating currents running
parallel to the boundaries is estimated to be comparable in magnitude to
that produced by currents flowing parallel to the stripes.

The large enhancement of Johnson noise resulting from dressing the lead
to lie along the one-half of the meander boundary as in configuration b) can
be eliminated by doubling the lead, running one part along the boundary
of the upper half of the meander and the other part along the lower half.
This is illustrated in configuration c) of Fig. 15. Provided the two halves are
symmetric and the current flow is the same in the two parts of the split lead,
there is no net current flow around the boundary of the meander. Time-
varying currents in the meander produce no circulating eddy currents, or,
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to turn the argument around, circular fluctuating thermal currents do not
induce voltage or flux noise in the circuit.

As this discussion illustrates, the magnetic Johnson noise in a meander
depends on the details of the layout of the circuit and its coupling to the
sensor. If necessary, the noise in a meander can be reduced by introducing
discontinuities (laminations) in the metallic sensor so as to inhibit thermal
currents from flowing in directions that couple either to the stripes or to the
edges. This can presumably be accomplished without appreciably changing
the area of the sensor and hence the signal response.

The flux noise of MMCs with both, cylindrical sensors with circular pickup
loop and planar sensors with meander shaped pickup loop, scale as the volume
of the sensor. However, as the change of flux in a meander-shaped pickup coil
per unit of deposited energy increases with decreasing pitch of the meander
(and decreasing thickness of the planar senor), the signal-to-Johnson-noise
ratio can be made significantly larger in this geometry.

2.6 Energy Resolution

Generally speaking, the energy resolution of metallic magnetic calorimeters
and other near-equilibrium calorimetric low-temperature particle detectors
depends on two properties: the time-dependent signal-to-noise ratio and the
time-structure of the signal. If we assume the total noise of the detector signal
to be stationary, the discussion of energy resolution is most conveniently
carried out in the frequency domain, as discussed in detail by D. McCammon
in the introductory chapter of this book.

The energy resolution of MMCs can generally be degraded by numerous
effects, such as fluctuations of the detector temperature, electromagnetic in-
terference caused by nearby instruments, magnetic cross-talk between the
detectors of a detector-array, infra-red photons due to insufficient screening,
and so on. When discussing the ultimate energy resolution of MMCs in the
remainder of this section we assume that all these external contributions to
noise can be suppressed sufficiently by a proper design of the detector and
the refrigerator. In this case we are left with the more intrinsic sources of
noise of magnetic calorimeters, being the magnetic Johnson noise caused by
the thermal motion of electrons in the metallic sensor, the flux noise (or en-
ergy sensitivity) of the SQUID-magnetometer and thermal fluctuations of the
magnetic moment of the sensor.

In anticipating the results of the following discussion, we make the follow-
ing points: 1. magnetic Johnson noise is one of potentially limiting sources of
noise. Assuming the sensor to be made of Au:Er, we shall see that its contri-
bution is noticeable in the case of cylindrical sensors. In the case of sensors
with meander-shaped pickup coils or materials with smaller conductivity the
contribution is marginal. 2. In the preceding section we optimized the signal
of MMCs with respect to the flux noise referred to the pickup coil. We shall
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see later that the flux-noise of the SQUID magnetometer is a small contribu-
tion to the energy resolution of a fully optimized MMC. It is worth keeping
in mind that the signal-to-SQUID-noise ratio was found to be best if the heat
capacity of the absorber equals the heat capacity of the sensor. We shall see
that the optimization of energy resolution, limited by thermodynamic fluc-
tuations of energy, will essentially lead to the same optimal relation between
heat capacities, justifying the separation of the two optimizations. 3. The
following discussion will show that the most fundamental limitation to the
energy resolution of MMCs is set by thermodynamic fluctuations of energy
between the thermal subsystems of the calorimeter and fluctuations between
the calorimeter and the thermal reservoir.

We discuss the influence of thermodynamic energy fluctuations on the
energy resolution in two steps, using two simplified thermodynamic models
of the detector. The contribution of the other sources of noise to energy
resolution will be discussed in a later section of this chapter.

2.6.1 First Approach – A Canonical Ensemble

In our first approach the calorimeter is described by a simple canonical ensem-
ble. We assume that the detector has a heat capacity C, which is coupled to
a thermal reservoir of temperature T0 by a thermal link with conductance G.
In addition, we assume that absorbed energy from energetic particles ther-
malizes instantly and that we are able to measure the energy content of the
calorimeter infinitely fast and with infinite precision.

In the absence of incident particles, the energy content of the calorimeter
fluctuates around its mean value with a standard deviation of

δerms =
√

kBCT 2 . (52)

Due to the finite values of heat capacity and thermal conductance, the
spectral power density of energy fluctuations is restricted to frequencies below
f0 = (2πτ)−1,

Se = kBCT 2 4τ

1 + (2πfτ)2
, (53)

where τ = C/G is the characteristic relaxation time of this configuration.
The deposition of an energy E in the calorimeter causes the energy content

to increase instantly and relax back to its mean value following

δe(t > 0) = Ee−t/τ . (54)

The Fourier spectrum of the signal is described by

|ẽ|(f) = E
τ√

1 + (2πfτ)2
, (55)
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Fig. 16. Thermal model of a magnetic
calorimeter consisting of two subsystems,
the spins with heat capacity Cz and the con-
duction electrons of the absorber and the
sensor having heat capacity Ce

where f ∈ [−∞,∞]. Note that the spectrum of noise and signal have the
same dependence on frequency, thus the signal-to-noise ratio is independent
of frequency.

When analyzing the data, the information contained in any frequency bin
δf can be used to obtain a value for the deposited energy. The uncertainty of
the signal in any bin is independent of the center frequency of the frequency
interval δf , as long as the width δf is fixed. If the results of N frequency in-
tervals are averaged, the total uncertainty decreases proportionally to N−1/2.
As the signal-to-noise ratio is independent of frequency, the result of averag-
ing over an infinite number of frequency bins leads to a vanishing uncertainty
of the estimated energy.

Of course this result does not reflect the behavior of a real detector.
Nonetheless, we learn from this result that the instrumental line width of the
detector decreases both by increasing the signal-to-noise ratio in frequency
domain and by increasing the usable bandwidth. In a real detector the usable
bandwidth can be limited by any of the noise contributions mentioned above.
In the following section we show that the thermal fluctuations of energy
between the subsystems of the detector already lead to a significant limitation
of achievable energy resolution.

2.6.2 Canonical Ensemble Consisting of Two Subsystems

Figure 16 shows a model of a metallic magnetic calorimeter, which consists
of two thermal systems, the conduction electrons of the absorber (and the
sensor) and the magnetic moments, having heat capacities Ce and Cz, respec-
tively. In order to keep the model as simple as possible, the small contribution
of phonons to the total heat capacity is neglected. Moreover, we assume that
any deposition of energy E in the detector thermalizes instantly within the
system of the conduction electrons. The two systems are connected by a
thermal link of conductance Gze. The conduction electrons are connected to
a thermal bath of temperature T0 by a conductance Geb.
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In addition, the magnetic moments are assumed to be non-interacting, in
the sense that the interaction energy between moments is much smaller than
the Zeeman-splitting in the external field. In this case, the total magnetic
moment m of the paramagnetic sensor is a measure of the energy content ez

of the spins, being related by ez = −mB. The magnetic moment, in turn, is
proportional to the magnetic flux in the pickup loop, δΦ ∝ δm. Therefore,
the flux in the SQUID represents a direct measure of the energy content of
the spin system, provided the intrinsic flux noise of the SQUID is neglected.

The time evolution of the energy content of the two systems can be de-
scribed by the following two differential equations:

ėz = CzṪz = −(Tz − Te)Gze + Pze , (56)
ėe = CeṪe = −(Te − Tz)Gze − (Te − T0)Geb − Pze + Peb + P (t) , (57)

where the quantities Pze and Pzb represent randomly fluctuating fluxes of
heat through the thermal links with a white power spectrum of SPze/Peb =
4kBT 2Gze/eb. The deposition of an energy E at time t0 in the detector appears
in this set of equation as an external power input P (t) = Eδ(t − t0) in (57).

Energy Fluctuations.

To derive the power spectrum Sez of the energy fluctuations of the spins
(Zeeman-system), we set P (t) = 0 in (57) and transform both equations
into the frequency domain. Since both noise sources, Pze and Peb, contribute
incoherently, the power spectrum is

Sez(f) = kBCzT
2

(
α0

4τ0

1 + (2πfτ0)2
+ α1

4τ1

1 + (2πfτ1)2

)
, (58)

where τ0/1 represent the characteristic time constants of the system,

τ0/1 =
CeGze + Cz(Gze + Geb)

2GzeGeb
∓

√
[CeGze + Cz(Gze + Geb)]2

4G2
zeG

2
eb

− CzCe

GzeGeb
.

(59)

The dimensionless factors α0/1 are similarly cumbersome functions of Ce,
Cz, Gze and Geb, which fulfill the simple relation α0 + α1 = 1. In situations
relevant for the following discussion, we take 0.1 < Cz/Ce < 10, τ0 � τ1 and
approximate α0/1 by

α0 = 1 − β , (60)
α1 = β , (61)

where

β =
Cz

Ce + Cz
(62)



194 A. Fleischmann, C. Enss and G.M. Seidel

101 102 103 104 105 106 107

Frequency f [Hz]

10-7

10-6

10-5

10-4

10-3

R
es

po
ns

e
|p

|[
H

z-1
]

10-6

10-5

10-4

10-3

10-2

10-1

N
oi

se
√S

e z
[e

V
/√

H
z]

Ce = Cz = 1 pJ/K
τ1 = 1 ms
τ0 = 1 µs

Fig. 17. Frequency spectrum of the response of a MMC (left axis) and spectral
power density of the energy fluctuations of a MMC. The values correspond to
a detector with Ce = Cz = 1pJ/K, τ0 = 1µs, τ1 = 1ms at a temperature of
T = 50 mK

is the relative contribution of the heat capacity of the spins to the total heat
capacity of the calorimeter.

Figure 17 shows the frequency spectrum of energy fluctuations of the
spin system for a detector having heat capacities Ce = Cz = 1 pJ/K and time
constants τ0 = 1 µs, τ1 = 1 ms at a temperature of T = 50 mK.

The spectrum is the incoherent sum of two step-like contributions. Fluc-
tuations between the spins and the absorber cause a plateau of amplitude√

Sez =
√

4kBCzT 2τ0(1 − β) at high frequencies. Energy fluctuations be-
tween the spins and the thermal bath contribute

√
Sez =

√
4kBCzT 2τ1β to

the spectrum at frequencies below (2πτ1)−1. As expected, the integral of Sez

gives∫ ∞

0

Sez df = kBCzT
2 , (63)

which corresponds to the energy fluctuations of a canonical ensemble of heat
capacity Cz at temperature T .

Response.

In order to calculate the response ez(t) of the detector upon the deposition of
energy E, we neglect the random noise sources Pze and Peb in (56) and (57)
and obtain

ez(t > 0)
E

= p (t > 0) � β(e−t/τ1 − e−t/τ0) . (64)
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The energy content of the spins rises, approaches a maximum value with
a time constant τ0 and relaxes back to its equilibrium value with a time
constant τ1. The responsivity p of the detector is best described in frequency
domain by

|p̃|(f) � βτ1√
1 + (2πfτ0)2

√
1 + (2πfτ1)2

, (65)

where f ∈ [−∞,∞]. Again, we assumed τ0 � τ1. Figure 17 shows the
frequency spectrum of the detector response (left axis). The response is a
maximum at low frequencies, decreases proportional to f−1 at frequencies
above f1 = (2πτ1)−1 and twice as fast, p̃ ∝ f−2, at frequencies beyond
f0 = (2πτ0)−1. From Fig. 17 it is apparent that the signal-to-noise ratio can-
not be improved by summing over an ever increasing frequency range. Hence,
the energy resolution is limited to finite values within this model.

The responsivity p̃ as defined in (65) can also be interpreted as the ratio
between the amplitude of oscillations of energy content ez of the spin system
and the amplitude of a harmonic power input P into the electron system of
the detector. It is therefore straight forward to define the noise-equivalent
power NEP by NEP2 = Sez/(p̃∗p̃). Using the results from above

NEP2(f) = NEP2
0

[
1 + (f/feff)2

]
(66)

with a constant minimum value of

NEP2
0 = 4kBT 2Geb

(
1 +

Geb

Gze

)
� 4kBCzT

2

βτ1
(67)

up to a frequency of

feff =
1

2πCe

√
GzeGeb

(
1 +

Geb

Gze

)
�

√
f0f1

√
β

1 − β
. (68)

Again, the approximations are applicable in the case of τ0 � τ1. The effec-
tively usable bandwidth of the detector signal is limited to frequencies below
feff , because the noise-equivalent-power increases as NEP ∝ f at frequencies
beyond this.

Energy Resolution.

The energy resolution of thermal detectors with frequency-dependent noise-
equivalent power was discussed in detail by D. McCammon in the introduc-
tory chapter of this book. Within the framework of optimal filtering it was
shown that the energy resolution of a detector is related to NEP(f) by

∆Erms =
(∫ ∞

0

4 df

NEP2

)−1/2

. (69)
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When applied to the present model of thermal fluctuations between the sub-
systems of the detector and to the thermal bath the result is

∆Erms =
√

4kBCeT 2

[
Geb

Gze
+

(
Geb

Gze

)2
]1/4

. (70)

Note that ∆E increases linearly with temperature and square root of ab-
sorber heat capacity. However, this expression implies that the energy resolu-
tion can be improved without limit if there is a perfect thermal conductance
Gze between the absorber (electrons) and the thermometer (spins). But for
a given sensor material, e.g. Au:Er, the thermal conductance between elec-
trons and spins is not a freely adjustable parameter. The limiting material
parameter is the electron-spin relaxation time, which obeys the Korringa re-
lation τKT = κ in the limit of small spin concentrations. For this reason we
rewrite (70) in terms of relaxation times and obtain

∆Erms =
√

4kBCeT 2

(
1

β(1 − β)
τ0

τ1

)1/4

. (71)

Given that the signal rise time τ0 is fixed by the sensor material and the
recovery time τ1, Ce and T are determined by the requirements of a given
application, there is only one free parameter, β, that can be used to opti-
mize the energy resolution of the detector. The energy resolution ∆Erms is
a minimum for β = 1/2, meaning that the heat capacity of the spins should
match the heat capacity of the absorber. This is consistent with the result of
the optimized signal-to-SQUID-noise. Within these assumptions, the intrinsic
energy resolution of a magnetic calorimeter can be expressed as [44]

∆Erms =
√

4kBCeT 2
√

2
(

τ0

τ1

)1/4

. (72)

There are a number of comments that may help putting this result into
perspective.

1. Due to its very nature, an MMC, being a thermal detector with finite
relaxation time for internal equilibration, has an energy resolution that is
intrinsically limited. This is true even though, in the model discussed here,
the amplifier is assumed to be infinitely fast and noiseless.

2. As the power dissipation to read out the sensors can be made almost
arbitrarily small – at least in comparison to resistive temperature sensors – in
some applications it may be possible to improve the energy resolution in the
limit of long recovery times τ1, albeit at the expense of a significant limitation
to count rate. If an MMC could be used together with a fast heat switch it
might be possible to combine the benefits of a long thermal relaxation time
τ1 with high count rates. The transient signal upon the deposition of energy
could be analyzed at high signal-to-noise and then afterwards the detector
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could be returned rapidly to thermal equilibrium. A similar reduction of the
effective thermal recovery time could be achieved by electro-thermal feedback,
where the temperature of the calorimeter is elevated above bath temperature
by a heater current through the sensor, which is reduced upon the deposition
of energy in the detector.

3. The simplified model discussed here does not include the RKKY inter-
action between the localized magnetic moments. An accurate treatment of
the influence of this interaction on energy resolution appears rather complex.
A simple argument, which can be used to estimate the order of magnitude of
the degradation of resolution, is the following. As discussed above, the mag-
netic susceptibility of the sensor material can be described by a Curie-Weiss
relation χ = λ/(T + θ). For the material Au:Er λ = x 5.35 K and the inter-
action between the spins is described by θ = xα 1.1 K. Sensors with the best
signal-to-SQUID-noise have an erbium concentration of xopt � 0.040 T/K.
From the Curie-Weiss relation we see that the interaction between the spins
reduces the susceptibility of free magnetic ions by about θ/T , which has a
value of θopt/T = 0.22. Only about 3/4 of the magnetic moments appear to
act as non-interacting spins, as assumed in the simplified model. The other
1/4 contribute to the heat capacity of the spin system without contributing
to the signal. If we further assume that the relaxation time of this latter
system is the order of τ0, we can conclude that the high frequency plateau
of the noise spectrum raised, resulting in a reduction of the effectively usable
bandwidth. Within this picture, the effect on energy resolution can be esti-
mated via (71), with the increase of ∆Erms being less than 15%. However,
this simple argument does not hold in the limit of high concentrations and
low temperatures, where paramagnetic alloys enter the spin glass state and
strong spin-spin correlations lead to an increased amplitude of the fluctu-
ations of the magnetic moment. The frequency dependence of the spectral
density, Sm ∝ f−1, is due to a broad distribution of relaxation times. In
the examples given above, the sensors are operated at a temperature which
is about one order of magnitude higher than the spin-glass temperature of
the sensor material, and spin-spin correlations are expected to have a minor
effect in this regime.

4. It seems attractive to improve the intrinsic energy resolution of the
detectors by choosing a sensor material with a short electron-spin relaxation
time. However, due to the underlying physics it is likely that this strategy
will also lead to a stronger indirect exchange interaction between the localized
magnetic moments, leading to a degradation of energy resolution as discussed
above in comment (3.).

5. In our discussion above, we assumed that the signal rise time is deter-
mined by the Korringa time τK. A more detailed discussion should include
the fact that electron-spin relaxation time also depends on the ratio of Zee-
man splitting gµBB to thermal energy kBT . This leads to an increase of
τK in large magnetic fields. In addition, if the heat capacities of the elec-
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tron system and the spins are of similar size, the effective relaxation time is
reduced to τ0 = (1 − β)τK. If this relation is inserted into (71) the factor
[β−1(1 − β)−1τ0τ

−1
1 ]1/4 is replaced by (β−1τKτ−1

1 )1/4. Now ∆E has a mini-
mum at β = 1, which is smaller by a factor of 21/4 than the value at β = 1/2.
However, this limit is unlikely to be reached in experiments. For fixed Ce the
limit β → 1 is equivalent to Cz → ∞, and there is a corresponding increase
of energy fluctuations at low frequencies. Theoretically, this increase in noise
is compensated by a larger usable bandwidth, since the height of the high
frequency plateau of the noise decreases. In practice, there are other effects
such as the thermal diffusion time within the absorber that will limit the
relaxation time between the absorber and the spins and make considerations
of corrections to τK mute.

6. The intrinsic limitation of energy resolution, which is discussed in this
section, is caused by thermal fluctuations of energy between the absorber
and the spins, resulting in a second plateau in the noise spectrum at high
frequencies, having an amplitude of

√
Sez =

√
4kBCzT 2τ0(1 − β). The spec-

tral power density of flux noise SΦ in the pickup coil caused by these fluc-
tuations of energy can be estimated from this value by the factors δΦ/δE
and (δΦ/δE)/

√
L, which were derived in the previous sections, resulting in√

SΦ � β−1
√

SezδΦ/δE. We shall use this relation to discuss the contribu-
tion of magnetic Johnson noise and SQUID noise to the energy resolution of
the detector in the following example.

Example.

A microcalorimeter working at a temperature of 50 mK, having an X-ray
absorber made of gold with an active area of 240 µm×240 µm and a thickness
of 5 µm might be regarded as a useful detector for high resolution X-ray
spectroscopy. The heat capacity of the absorber at this temperature Ca =
1.0 pJ/K. In order to obtain an estimate of the intrinsic energy resolution
of the calorimeter, we assume relaxation times of τ0 = 1 µs and τ1 = 1 ms.
From (72) the energy resolution is ∆EFWHM = 1.4 eV.

In this example we take the sensor to have cylindrical geometry and to
be made of Au:Er with parameters listed in Table 1, which on the one hand
correspond to optimum signal-to-SQUID-noise and on the other hand fulfill
Csensor = Ca, in agreement with the condition β = 1/2 for optimal intrinsic
energy resolution. The sensor has a radius of 10.7 µm, a thickness of 5.7 µm
and an erbium concentration of 2200 ppm. It is placed in a field of 15 mT
and the circular pickup loop, which is used to read out the sensor, has an
inductance of L = 50 pH. As discussed above, the interaction between the
magnetic moments at this concentration will cause the energy resolution of
the detector to be degraded by about 15%, leading to ∆EFWHM � 1.6 eV.

From the values listed in Table 1 and L = 50 pH we can derive δΦ/δE =
1.0 × 10−4Φ0/eV. Hence, the high frequency plateau of energy fluctuations,
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Sez = 1.65 × 10−3eV/

√
Hz, corresponds to a flux noise in the pickup coil

of
√

SΦ = 0.33 µΦ0/
√

Hz.
This value can now be compared to the flux noise of the SQUID and

to flux noise generated by magnetic Johnson noise. Assuming the energy
sensitivity of the SQUID to be εs = 25�, its contribution to flux noise is√

SΦ = 0.25 µΦ0/
√

Hz. This reduces the usable bandwidth of the detector
signal by 25 % and causes a degradation of energy resolution of 12%, resulting
in ∆EFWHM � 1.8 eV.

The contribution of magnetic Johnson noise of the sensor to the total flux
noise was calculated in the preceding section to be

√
SΦ � 0.1 µΦ0/

√
Hz. It

also adds incoherently to the magnitude of the high frequency plateau, but
its effect on the energy resolution is only the level of 2% and can be neglected.

Since the intrinsic energy resolution for an optimized detector is indepen-
dent of geometry, a planar sensor with a meander shaped pickup coil would
have an almost identical intrinsic energy resolution as a sensor with cylin-
drical geometry. However, the degradation of the energy resolution by both
SQUID noise and magnetic Johnson noise would be somewhat less.

At a given temperature the relative contributions of the three sources of
noise to the energy resolution should also hold for detectors that have an
absorber heat capacity differing from the example discussed here, because all
these contributions scale as

√
Ca. However, if the detector is operated at lower

temperatures, the flux noise of the SQUID becomes increasingly important.

3 Status of Development

Based on the results of a theoretical analysis of signal optimization and of
fundamental noise contributions, several prototype detectors have been con-
structed and tested. Since optimized SQUIDs for MMCs have not yet been
fabricated, these prototypes are not fully optimized detectors. They are pri-
marily devices for demonstrating the potential of MMCs for particle detec-
tion. In this section we present selected results that have been achieved with
these prototype detectors. We focus our discussion mostly on X-ray spec-
troscopy, one of the main applications for this type of device. In addition, we
discuss applications in metrology and gamma-ray detection. At the beginning
of this section we briefly mention a few details of the experimental setup for
operating magnetic calorimeters.

3.1 Experimental Setup

In the first part of this section we shall describe a cryogenic system that has
been used to operate magnetic calorimeters. This should be seen just as an
example for a typical cryogenic environment for MMC detectors and serves
to illustrate some noteworthy details. In the second part of this section a few
important aspects of a suitable SQUID magnetometer setup are discussed.
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Fig. 18. Schematic of an adiabatic
demagnetization refrigerator (ADR)

3.1.1 Cryogenics

The prototypes discussed in the remainder of this chapter were operated
in a variety of different cryostats, 3He/4He-dilution refrigerators as well as
adiabatic demagnetization refrigerators (ADR). In order provide an idea of
the typical cryogenic environment of magnetic calorimeters, we provide a
brief description of the cryostat that was used in the experiments on high
resolution X-ray spectroscopy discussed in Sect. 3.2.

A sketch of the cryostat is shown in Fig. 18. The commercial 2-stage
ADR11 has a common isolation vacuum, a liquid nitrogen bath and a liquid
helium bath. The helium bath provides a platform at a temperature of 4.2 K,
which can be lowered to T = 1.5 K by pumping. A paramagnetic salt pill
(GGG12) is suspended from this platform by kevlar strings (K). A second
paramagnetic pill (FAA13) with lower spin concentration is suspended from
the GGG pill also by kevlar strings. Each salt pill has good thermal contact to
a separate experimental platform. Both platforms can be thermally connected
to the cold platform of the helium bath via mechanical heat switches (S).
The salt pills are located in the common vacuum space of the cryostat and
surrounded by a superconducting magnet, which is located in the helium
bath. Starting the adiabatic demagnetization process of the paramagnetic
salt pills at a temperature of T � 1.5 K and a field of B = 6 T results
in base temperatures of TGGG � 200 mK and TFAA � 21 mK. After full
11 VeriCold Technologies GmbH, Ismaning, Germany, www.vericold.com
12 GGG: Gadolinium-Gallium-Garnet
13 FAA: Ferric-Ammonium-Alum
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demagnetization, the time for the FAA pill to warm up to temperatures above
30 mK is approximately 3 days, providing enough time for long continuous
measurements.

The magnetic calorimeters are mounted on the cold platform of the FAA
salt pill. All wires running from He-temperature to the detectors are made of
material with low thermal conductivity (e.g. NbTi, CuNi) and heat sunk at
the GGG-platform. The temperature of the FAA platform is measured using
a RuO2 resistance thermometer with d log R/d logT � 1.5 at T � 35 mK
and a AVS-47 resistance bridge14. A fully analog as well as a digital PID
controller were used for regulating the current through the magnetizing coil
of the ADR, in order to stabilize the temperature of the FAA platform to
within δTrms � 2 µK in the temperature range between 30 mK and 35 mK.

For MMCs to be used as high resolution X-ray detectors a temperature
stability on this level or better is indeed required. The dependence of the
detector sensitivity δΦ/δE on the operating temperature can be characterized
by d log(δΦ/δE)/d log T � −1 for MMCs with sensor parameters close to
optimum. Therefore, the variations of operating temperature quoted above
already contribute ∆EFWHM/E � 1.5× 10−4 to the energy resolution of the
detector.

3.1.2 SQUID Magnetometer

Low noise, high bandwidth readout of the SQUID magnetometer of an MMC
can be achieved by 2-stage SQUID electronics, as illustrated in Fig. 19. The
signal of the primary SQUID (detector SQUID) is amplified by a secondary
SQUID (amplifier SQUID) before it is read out by an amplifier operating at
room temperature. In order to achieve a high transfer coefficient δU2/δΦ1 of
flux Φ1 in the primary SQUID to voltage U2 across the secondary SQUID,
a dc flux is applied to the secondary SQUID to make the steepest points of
the U -Φ-characteristics of the two single SQUIDs fall on top of each other.

Figure 20 shows the U2-Φ1-characteristics of the 2-stage SQUID config-
uration, which was used for the high resolution X-ray detector discussed in
Sect. 3.2. The steepest point of the common characteristics is marked with
a dot. Linearization of the flux-voltage characteristics is achieved by apply-
ing negative feedback to the flux in the primary SQUID and stabilizing the
system at the steepest point (working point) of the common characteristics.

The flux-to-flux gain GΦ between the two SQUIDs at the working point
can be adjusted by the resistor Rg. To allow for stable operation and to avoid
multiple working points, the maximum flux swing in the secondary SQUID
caused by the voltage swing of the primary SQUID should not exceed one
flux quantum Φ0. This limits the flux gain to values of about GΦ < 3.

One major benefit of the 2-stage configuration is the fact that a SQUID
with a high critical current and large voltage swing (or even a series-SQUID-

14 Pico-Watt Electronica, Finland



202 A. Fleischmann, C. Enss and G.M. Seidel

Fig. 19. Schematic circuit diagram of a two-stage SQUID-magnetometer

Fig. 20. Flux–voltage characteristics of a 2-stage SQUID configuration. The flux
gain at the working point is GΦ � 2.7

array impedance matched to the room temperature electronics) can be used as
the amplifier. On the other hand, the critical current and voltage swing of the
detector SQUID can be small without degradation of the noise performance.
A dissipated power in the detector SQUID in the range of (10 pW to 100 pW)
is desirable in many setups since the thermal bath of the calorimeter is often
provided by the SQUID chip itself.

3.2 High Resolution X-ray Spectroscopy

The prototype X-ray detectors discussed in this section are based on com-
mercially available SQUID chips [45], which are designed as first-order gra-
diometers having two planar loops of 50 µm diameter wound in opposition. To
turn these SQUID susceptometers into magnetic calorimeters small discs of
Au:Er (diameter 50 µm, thickness 25 µm, containing 300 ppm of isotopically
enriched 166Er) are placed by hand into each loop of the gradiometer. The
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Fig. 21. Response of a two-pixel magnetic calorimeter with single stage SQUID
readout. The insert is a schematic of the setup of the SQUID gradiometer with
an Au:Er sensor in both loops. In addition, a single pulse from each detector pixel
is shown. Also, a pulse height distribution is shown that was obtained with the
two-pixel detector using a 55Fe source [46]

Au:Er discs are attached with a thin layer of vacuum grease to the substrate
and serve in the following experiment as both paramagnetic sensor and X-ray
absorber, having a quantum efficiency of effectively 100% at 6 keV.

In this gradiometer configuration fluctuations in the magnetization due
to variations of the temperature of the SQUID chip are canceled. In addition,
the sensor, or in other experiments the sensor/absorber combination, in each
loop is a separate pixel that is read out by the same SQUID. Depending on
which pixel is hit by a X-ray, a negative or a positive flux change is registered.
Fig. 21 shows the resulting flux change of single 5.9 keV events into each of
the two pixels along with a sketch of the gradiometer. The signal size and
the thermalization time were the same for both pixels to within 10%. The
detector was operated at 25mK in a field of 2mT. The thermalization time
was roughly 10ms due to the very weak thermal link between the sensor and
the substrate via the vacuum grease. The pulse height spectrum obtained
with this device using a 55Fe source is shown in the lower part of Fig. 21.
The Kα and Kβ lines of 55Mn are clearly seen by both pixels. The pulse
heights are plotted on a relative scale normalized to the Kα line measured
with positive flux change. The count rates of the two pixels were slightly
different, because of a small difference in the collimator masks. The energy
resolution at 6 keV is almost identical for the two pixels, being about 9 eV.
The slight difference in resolution observed in this experiment originated from
the small difference in the signal size of the two pixels.
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a single 5.9 keV X-ray [16]

In this experiment the magnetic field for the sensor was produced by a
superconducting wire wound coil, which was surrounding the SQUID chip.
Therefore the entire SQUID chip, with Josephson junctions, was located in a
field of about 2mT. In such a field the critical current of the detector SQUID
is reduced from 8 µA to about 2 µA, which results in a voltage swing ∆V of
only 7 µV. This, in turn, translates into a slope of the characteristic curve of
20 µV/Φ0. This low value results in a high noise level of the flux modulated
SQUID used in this experiment, which in part explains the instrumental
resolution of only 9 eV obtained with this detector.

The situation can be considerably improved by using a 2-stage SQUID
with direct readout. In such a configuration the white-noise level of the read-
out can be reduced while maintaining the lower bias current of the detector
SQUID by employing a second SQUID in a current-sensor configuration as a
low noise amplifier, as discussed in Sect. 3.1.2. Using an amplifier SQUID from
the IPHT in Jena [47], the effective white-noise level of the two-stage SQUID
system was lowered to 1.1 µΦ0/

√
Hz. As mentioned previously, this level still

effects the resolution, but it is sufficiently low that the potential of MMCs
for high resolution measurements can be demonstrated. The 55Mn spectrum
shown in Fig. 22 has been obtained with a two-stage SQUID configuration.
In this experiment the X-rays were not absorbed by the magnetic sensor itself
but in separate absorbers made of gold foils (each 150 µm× 150 µm× 5 µm).
The quantum efficiency for 6 keV X-rays of this thickness of Au is higher
than 98%. These absorber foils were joined with the Au:Er sensors using a
wedge bonder. The detector was cooled to a temperature of about 35 mK and
its performance tested using a 55Fe source. The spectrum shown in Fig. 22
contains the Kα and Kβ lines of 55Mn. Due to the high quantum efficiency of
the gold absorber the spectrum is very clean indicating that very few events
are not associated with the expected lines. The trigger level was set at about
100 eV in this experiment.
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Fig. 23. (a) Kα line of 55Mn [16]. The solid line represents a fit of the data taking
into account the natural linewidth as determined with a crystal spectrometer [48].
(b) Baseline distribution determined from random noise traces without pulses, ac-
quired simultaneously with the spectrum [16]

The insert of Fig. 22 shows an unfiltered single pulse. In the actual exper-
iment a 10Hz high pass and a 3 kHz low pass were used. The rise time of the
signal is about 2 µs and, as stated before, is determined by the slew rate of
the SQUID system. The thermalization time is about 60ms due to the weak
coupling to the thermal bath via vacuum grease.

To determine the instrumental resolution of the detector the Kα line was
fitted with the natural line-shape as determined with a crystal spectrome-
ter [48]. The experimental spectrum is best described with an instrumental
resolution of 3.4 eV. Fig. 23a shows a blow-up of the data for the Kα line
together with the theoretical spectrum taking into account the natural and
instrumental linewidths. The baseline noise in this experiment was deter-
mined to be 3.26 eV by constructing a histogram from baselines (Fig. 23b)
recorded at the same time as the actual spectrum. Hence, random noise dom-
inated the instrumental resolution of the detector.

Surprisingly, the expected noise from thermodynamic fluctuations, mag-
netic Johnson noise and SQUID noise can only explain this baseline width
in part. About half of this width is caused by the presences of an additional
noise component. The spectral function of this excess noise is proportional to
1/f . Figure 24 shows the noise spectra taken at different temperatures. It is
only observed with the Au:Er sensor placed in the SQUID loop. At first glace
a thermally driven 1/f component in a system of interacting spins might not
be surprising. However, as depicted in Fig. 24, the experimentally observed
1/f noise is independent of temperature over almost two orders of magni-
tude. This puzzling feature seems to rule out most of the straight forward
explanations and further experimental studies are necessary to gain more in-
sight into the physical origin of this phenomenon. At this point is remains
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unclear, whether the excess 1/f is a fundamental property of paramagnetic
alloys, or just a characteristic of Au:Er, or whether it is not caused by the
material itself, but a result of the complex interplay of the electronic and
thermal properties of the specific readout circuit of this experiment.

The shape of the Kβ line of 55Mn has been shown to depend strongly on
the chemical environment in which the manganese is located [49, 50]. Using
the instrumental resolution of 3.4 eV, the measured Kβ line can be described
satisfactorily. Fig. 25 shows the Kβ line together with the theoretical spec-
trum of metallic manganese (red line) and of manganese oxide (blue line).
The shape of the Kβ line measured in this experiment is consistent with the
fact that the source was metallic 55Fe.

The spectrum shown in Fig. 22 can be used to determine the non-linearity
of the detector. A second order polynomial fit of the peak energies reveals
that the non-linearity at 6.5 keV is ∆E/E ≈ 0.016. The non-linearity results
from the temperature dependence of the heat capacity and magnetization.
The observed non-linearity agrees with calculations based on the theoretical
description in Sect. 2.1.

As discussed above, the thermalization time for this prototype detector
was rather slow due to the weak thermal coupling via vacuum grease between
the Au:Er sensor and the SQUID chip. This thermal link can be improved
dramatically by attaching the sensor to a gold pad on the SQUID chip by
ultrasonic bonding or by gluing it with a small amount epoxy. In this manner
thermalization times as fast as 70 µs at 50mK have been achieved [51]. Fig. 26
shows the flux change resulting from the absorption of a 5.9 keV X-ray in a
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tion of a 5.9 keV X-ray photon at 50mK
in the absorber of a prototype detector in
which the Au:Er sensor was glued with
epoxy to the SQUID chip [51]

prototype detector in which the Au:Er sensor was glued with epoxy to the
SQUID chip. In this case the thermalization time at 50mK is approximately
1 ms. This is sufficiently fast for many applications.

3.3 Self-Inductance Magnetic Calorimeter

Recently, a MMC with planar sensor and meander-shaped pickup coil has
been developed by Zink et al. [40]. Rather than measuring a flux change
within a superconducting loop, the change in inductance of a superconducting
circuit resulting from the variation of the magnetic susceptibility χ within it
is used to determine the absorption of energy, as it is discussed in Sect. 2.4.4.
A paramagnetic film (Au:Er) is deposited on top of a Nb meander strip which
carries a moderately large current. When a particle is absorbed, the change
in permeability of the paramagnetic material modifies the self-inductance of
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Fig. 27. Schematic of the circuit of a self-inductance MMC. After [40]

the meander line, leading to a change of the current through the SQUID that
is inductively coupled to the pick-up circuit. A schematic of the circuit is
shown in Fig. 27.

The dc current through the SQUID can be nulled by a flux applied through
a separate coil (flux injector). Large magnetic fields at the SQUID can be
avoided by ensuring that most of the injected current flows through the pick-
up meander. The signal from the detector SQUID is fed to a series array
SQUID for amplification.

A optical micrograph of a prototype self-inductance MMC pick-up mean-
der is shown in Fig. 28a. A picture of the meander with a 2µm Au:Er film
deposited on top by sputtering is displayed in Fig. 28b.

Two different techniques for producing the Au:Er films have been ex-
plored, co-evaporation and sputtering. Surprisingly, the heat capacity of both
types of films has turned out to be considerably larger than that measured for
bulk samples having similar Er concentrations [40]. Also, the specific heat of
the vapor-deposited films under the condition that gµBB/kBT � 1 was ob-
served to increase with increasing temperature, which is contrary to what is
expected and found for bulk samples. It should be pointed out that in the case
of the self-inductance devices the magnetic field in the paramagnetic material
has a rather large distribution, and a comparison using just a mean value for
the field may not be very accurate. However, the qualitative and quantitative
discrepancies between the heat capacity observed for films and bulk samples
are so large that the field distribution cannot explain the differences. It seems
likely at this point that the properties of the films themselves are responsible
for the observations. A detailed understanding, however, is lacking.



Metallic Magnetic Calorimeters 209

Fig. 28. Optical micrograph of a prototype MMC pick-up meander before (a) and
after (b) deposition of a 2µm Au:Er film. The detector area is about 100 µm ×
100 µm. Courtesy B. Zink

The performance of the prototype self-inductance MMCs were tested us-
ing a 55Fe source. As expected, the thermal coupling of the Au:Er to the
SQUID was much stronger than that of sensors attached by vacuum grease,
which were discussed in the previous section. The thermalization times range
from 200 µs to 1 ms at 50mK. The energy resolution obtained with a sput-
tered Au:Er film containing 720 ppm of natural Er was 115 eV at 6 keV. Two
factors are mainly responsible for the rather poor energy resolution of these
early self-inductance devices, the unexplained high heat capacity of the Au:Er
film and a strong 1/f noise component from the electronics.

3.4 Activity Measurements in Metrology

Various fields of research such as environmental studies, nuclear waste man-
agement and geochronology require a better knowledge of the properties of
radioisotopes having long half-lives or emission at low-energy. The difficulty
in obtaining such information is mainly due to source self-absorption and
to the dramatic decrease of detection efficiency of conventional detectors for
low-energy photons and electrons. Cryogenic detectors have the potential to
overcome such problems in that a detection efficiency of close to 100% is pos-
sible in the range from a few eV up to 10 keV for both X-rays and electrons.

Magnetic calorimeters have been used to demonstrate the potential of
cryogenic detectors for absolute activity measurements [52, 53]. The goal of
these investigations was to measure the relative activity of 55Fe, decaying by
electron capture from the K, L and M shells. Theoretical calculations predict
that the probabilities for capture occurring from the K, L and M shells of 55Fe
should be 88.5%, 9.8% and 1.7%, respectively. The L captures arise almost
exclusively the L1 sub-shell. The probability of capture from the L2 and L3
sub-shells is negligible for practical measurements. The relative probabilities
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for capture from the five M sub-shells cannot be calculated reliably and are
unknown experimentally. The rearrangement of the shells after the capture
process is accompanied by the emission of a cascade of Auger electrons and
X-rays. The total energy released in each cascade equals the binding energy of
the captured electron. Therefore, if all emitted electrons and X-rays of a cas-
cade are detected within the detector, one line is to be expected at 6.539keV
for K capture events, one line at 769 eV for L capture, and at least one line
at 84 eV for M capture.

The main difficulty in performing an experiment to measure the relative
probabilities is to detect the several lines at very different energies and activ-
ities with close to 100% quantum efficiency. This was achieved by enclosing
the 55Fe source in a gold absorber so as to record all events emitted in a 4π
solid angle. A drop of 55Fe in solution was deposited onto a 30µm thick gold
foil. During the drying of the drop, small crystals formed on the surface of
the gold. The foil was then folded and re-laminated to a final thickness of
about 20µm. A rectangular piece of foil, ∼ 75 µm × 150µm, fully contain-
ing the source, was cut out as the detector absorber. The effective absorber
thickness was about 10µm resulting in a quantum efficiency of over 99.9%
for 6.5 keV X-rays. The absorber was then attached by ultrasonic welding to
a Au:Er sensor disc (60 µm diameter, 20µm thick) containing about 900 ppm
of enriched Er. The absorber/sensor combination was placed in a SQUID
loop and fixed using a small amount of vacuum grease. Because the 60µm
diameter of the sensor exceeded the 50µm diameter of the SQUID loop, the
signal size was somewhat reduced.

The detector was operated at a temperature of 25mK in a magnetic
field of about 3mT. Figure 29 shows a spectrum on a logarithmic energy
scale that was obtained by counting for about 6 hours at a count rate of
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about 0.5/s. Three distinct peaks are observed, as expected. This is the first
time all three capture lines have been seen in a single spectrum. To analyze
the spectrum quantitatively, the K-line was used to adjust the energy scale,
assuming that the detector is approximately linear up to this energy.15 The
measured energies for the M and L lines are in very good agreement with
the theoretical values. The experimentally determined relative activities of
the K, L and M lines are 88.2%, 10.3% and 1.5%, respectively. Within the
accuracy of the experiment these values are in agreement with the theoretical
calculations.

The small tails observed on the low-energy side of the K and L lines most
likely originate from the absorption of Auger electrons within the source crys-
tals, the energy not being fully transferred to the gold during the duration a
typical pulse signal. It should be possible to avoid this effect by electrolytic
deposition of the source material. The energy resolution of ∆E ≈ 16 eV (de-
termined from baseline noise) and the counting statistics at low energies were
not sufficient to resolve a possible M shell substructure. The energy resolution
was poorer than the best detector discussed in Sect. 3.2 for several reasons.
The sensor/absorber heat capacity was large, the size of the sensor was not
appropriate for the SQUID loop, and temperature fluctuations introduced
noise because the calorimeter was not operated in a gradiometer configura-
tion. The background at low energies is mainly the result of radioactivity in
the materials surrounding the detector. We expect, that the precision of this
experiment can be increased significantly by raising the activity of the source,
lowering the radioactive background and improving the energy resolution of
the calorimeter.

3.5 Gamma-Ray Spectroscopy

Because of the weak dependence of the sensitivity of a magnetic calorimeter
on the absorber heat capacity, this type of device can be considered for ap-
plications requiring a large absorber mass, such as needed in high-resolution
gamma-ray spectroscopy. Indeed, a prototype of a MMC detector for gamma
rays has already been studied [54, 55, 56].

The spectrum of a 57Co source as measured with a MMC detector is
shown in Fig. 30a. In addition to the lines at 122keV and 136keV, several
lines at lower energies are observed, which are due to the escape of X-ray
fluorescence photons of Au. The additional broad low-count background is
mostly due to electron escape processes and to gamma rays that deposit only
part of their energy by Compton scattering. Note that the 14 keV line also
expected for 57Co was not observed in this experiment because of absorption
in the material encapsulating the source.
15 Given the large heat capacity of the absorber/sensor package this should be a

good approximation
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Fig. 30. (a) Spectrum of a 57Co source measured with a prototype MMC detector
operated at T = 25mK and in a magnetic field of B = 4.7 mT [56]. (b) Measured
signal size versus the energy of the expected lines in the 57Co spectrum shown in
(a) [56]

In this experiment a gold cylinder (360µm diameter, 500µm long) con-
taining 480 ppm of natural erbium was used both as absorber and sensor.
The quantum efficiency for detecting 122 keV gamma rays hitting directly
the 500µm thick gold is approximately 80%. At the operating conditions
of T = 25 mK and B = 4.7 mT the heat capacity of the Au:Er cylinder
is approximately 4 × 10−9 J/K. This is more than three orders of magnitude
higher than the heat capacity of the high resolution X-ray detectors discussed
in Sect. 3.2.

Given the large heat capacity of the detector the absorption of a single
122 keV photon causes a temperature change in the sensor of about 5µK,
which corresponds to a relative change of δT/T = 2 × 10−4 at 25mK. This
implies that the detector exhibits a high degree of linearity up to the max-
imum energy recorded in this experiment. This is demonstrated in a plot
of the measured pulse heights of the 57Co gamma ray lines and the known
escape peaks of Au as a function of their energies, as shown in Fig. 31b. No
deviation from linearity outside of the experimental error of 5 × 10−4 was
found. The calculated non-linearity is an order of magnitude smaller than
this.

The Au:Er cylinder was located inside a 32-turn coil of superconducting
wire, which was connected to the input coil of a commercial, flux-modulated
SQUID to form a superconducting flux transformer. Since the Au sensor was
spot-welded to a large block of copper, which served as the thermal reservoir,
the thermalization time was approximately 200µm. A signal produced by a
single 122 keV gamma ray is shown in Fig. 30a.

The energy resolution determined by the FWHM of the line at 122keV
is 340 eV. The two main broadening mechanisms of approximately equal im-



Metallic Magnetic Calorimeters 213

-0.5 0.0 0.5 1.0
Time t [ms]

0.0

0.1

0.2

0.3

0.4

M
ag

ne
tic

F
lu

x
δΦ

[Φ
0]

Eγ = 122 keV
Au:Er 300 ppm

T = 30 mK
B = 2 mT

τ = 130 µs

-1.0 -0.5 0.0 0.5 1.0
Time t [ms]

-1.0

-0.5

0.0

0.5

1.0

M
ag

ne
tic

F
lu

x
δΦ

[Φ
0]

reconstructed

acquired data

-1 Φ0

Eγ = 122 keV
Au:Er 480 ppm
T = 9 mK
B = 1.7 mT

a) b)

Fig. 31. (a) Signal resulting from the absorption of a single 122 keV gamma ray.
(b) The solid line shows a single 122 keV event with Φ < 0.5 Φ0 as recorded with a
SQUID electronics with a slew rate of 20 Φ0/ms. The dashed line shows the recon-
structed pulse after recalculation of the working point [57]

portance are random noise at low frequencies, as determined from baseline
traces, and insufficient temperature stability of the cryostat. The incoher-
ent sum of the noise from these two sources accounts almost entirely for the
observed energy resolution.

Due to the use of a flux transformer the sensitivity of the detector was
somewhat reduced. However, this was not an important limitation is this
experiment because the slew rate (20 Φ0/ms) of the SQUID electronics re-
stricted the size of the flux changes to about 0.5Φ0. With larger signals, flux
jumps occurred, which prohibited an accurate determination of the total flux
change. Under optimal conditions the signal size from the 122keV gamma
ray was considerably larger than Φ0. A typical event with flux jump is shown
in Fig. 31b.

The prototype gamma ray detector discussed in this section was not opti-
mized for a specific application, but was used to demonstrate the potential of
MMCs in gamma ray detection. An optimized detector would include an ab-
sorber. To give a specific example of the capabilities of a optimized detector
we assume an absorber with a heat capacity of Ca = 1 nJ/K, a value which is
similar to that of the prototype detector and corresponds roughly to a gold
absorber of (650 µm)3. In addition, we assume an operational temperature of
T = 50 mK and relaxation times of τ0 = 1 µs and τ1 = 1 ms as in the example
discussed in Sect. 3.2. Such a detector is expected to have an intrinsic energy
resolution of about ∆EFWHM = 60 eV.
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4 Summary and Outlook

We have discussed the basic thermodynamic properties of metallic magnetic
calorimeters and the paramagnetic sensor material. Furthermore, a model
has been presented which allows for the optimization of the signal to SQUID
noise ratio for different detector geometries. Based on these findings, the
principle limitations of the energy resolution of metallic magnetic calorimeters
have been discussed and guidelines for the design of MMCs with optimized
energy resolution have been derived. Results obtained with several prototype
detectors have been presented.

Magnetic calorimeters have reached a level of development at which many
interesting applications are conceivable. However, several important issues
will need to be addressed in the further development of MMC detectors:
1. Suitable techniques are required for the micro-fabrication of fully inte-
grated MMC detectors. In this context it will be necessary to study the mag-
netic properties of thin paramagnetic films produced by sputtering or vapor
deposition techniques. 2. The origin of the unexplained 1/f excess noise needs
to be investigated. If this noise contribution cannot be sufficiently reduced,
it will likely be a limiting factor in the energy resolution of MMCs. To in-
vestigate the origin of 1/f noise, the properties of temperature sensors based
on other paramagnetic materials need to be studied. 3. Advanced readout
schemes including multiplexing techniques have to be developed to allow for
large MMC arrays. Although the underlying physics of MMC and TES de-
tectors is quite different it seems conceivable that the development of SQUID
based multiplexing schemes for MMCs can benefit to a large extent from the
enormous progress that has been made in multiplexing TES detectors.

These and many other aspects of magnetic calorimeters have to be inves-
tigated to make use of the full potential of this kind of cryogenic detector.
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M.v. Schickfus, R. Stolz, V. Zakosarenko, and B.L. Zink for many useful and
stimulating discussions.

References

[1] T.C.P. Chui, D.R. Swanson, M.J. Adriaans, J.A. Nissen, J.A. Lipa: Phys. Rev.
Lett. 69, 3005 (1992). 151

[2] P. Day, I. Hahn, T.C.P. Chui, A.W. Harter, D.Rowe, J.A. Lipa: J. Low Temp.
Phys. 107, 1 (1997). 151

[3] P.B. Welander, I. Hahn: Rev. Sci. Instrum. 72, 3600 (2001). 151



Metallic Magnetic Calorimeters 215

[4] B.J. Klemme, M.J. Adriaans, P.K. Day, D.A. Sergatskov, T. L. Aselage, R.V.
Duncan: J. Low Temp. Phys. 116, 133 (1999). 151

[5] W. Seidel: Diploma Thesis, Technische Universität München 1986, unpub-
lished. 151

[6] M. Bühler, E. Umlauf: Europhys. Lett. 5, 297 (1988) 152, 154
[7] E. Umlauf, M. Bühler: Proc. Symp. Supercon. and Low-Temp. Detectors, eds.

G. Waysand and G. Chardin, 309 (North-Holland, Amsterdam 1989). 152,
154

[8] E. Umlauf, M. Bühler: Proc. Int. Workshop on Low Temperature Detectors
for Neutrino and Dark Matter (LTD4), eds. N.E. Booth and G.L. Salmon, 229
(Editors Frontieres, Gir-sur-Yvette 1991). 152, 154

[9] M. Bühler, E. Umlauf: Proc. Int. Workshop on Low Temperature Detectors
for Neutrino and Dark Matter (LTD4), eds. N.E. Booth and G.L. Salmon, 237
(Editors Frontieres, Gir-sur-Yvette 1991). 152, 154

[10] E. Umlauf, M. Bühler: Proc. SPIE Conference 1743, 391 (San Diego 1992).
152, 154

[11] M. Bühler, E. Umlauf, D. Drung, H. Koch: Proc. 5th Int. Conf. on Super-
con. Quantum Devices and their Application, eds. H. Koch and H. Lübbig
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