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Abstract This paper presents a stochastic method based on the differential evolution (DE)

algorithm to address a wide range of sequencing and scheduling optimization problems. DE

is a simple yet effective adaptive scheme developed for global optimization over continuous

spaces. In spite of its simplicity and effectiveness the application of DE on combinatorial

optimization problems with discrete decision variables is still unusual. A novel solution

encoding mechanism is introduced for handling discrete variables in the context of DE and its

performance is evaluated over a plethora of public benchmarks problems for three well-known

NP-hard scheduling problems. Extended comparisons with the well-known random-keys

encoding scheme showed a substantially higher performance for the proposed. Furthermore,

a simple slight modification in the acceptance rule of the original DE algorithm is introduced

resulting to a more robust optimizer over discrete spaces than the original DE.

Keywords Differential evolution . Encoding solutions . Representation mechanism .

Discrete optimization . Scheduling . Meta-heuristics

1 Introduction

Differential evolution (DE) is a population-based heuristic recently proposed by Storn and

Price (1997) for global optimization over continuous spaces. DE codes the space to be

searched as a set of D-dimensional floating-point vectors. Initially, a population of N randomly

chosen vectors is created, and DE’s attempt is to replace all the vectors of the population,

with better ones (generated by specific variation operators) per iteration. The overall iterative

process cycles until a suitable, user-defined stopping criterion is satisfied.
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Since its invention, DE has been applied with high success on many numerical opti-

mization problems (Cheng and Hwang, 2001; Lin et al., 2004; Sun et al., 2005). Moreover,

different variants of the basic DE model have been proposed to improve its efficiency over

continues problems. Ali and Törn (2004) developed several variants of the basic DE. Com-

parisons showed that these variants are superior to the original DE, as well as, to many other

direct search global optimization algorithms including genetic algorithms (GAs), and the

controlled random search method. Kaelo and Ali (2006) proposed modifications in mutation

and localization in the acceptance rule of DE resulting in two new versions of the original

algorithm. Experiments over multiple benchmark test problems showed that these new DE

algorithms are superior to the original DE. A thorough comparative study of the performance

of DE and four other global optimization algorithms is presented in Ali et al. (2005). The

methodology used by the authors based on a modified performance profile plot together with

quartile sequential plots is general and applicable to stochastic algorithms.

Despite the simplicity and the high efficiency of DE, its application on the solution of

combinatorial optimization problems (COPs) with discrete decision variables is still un-

usual. One of the possible reasons for this lack is its difficulty to evolve permutation strings

so that to directly present feasible solutions to these problems. Note that, most of these prob-

lems have solutions presented through permutation vectors, while DE maintains and evolves

floating-point vectors. In the framework of population-based heuristics, a well-known repre-

sentation technique that deals with floating-point vectors for discrete optimization of COPs

is the random-keys encoding (Bean, 1994); proposed to work with real-coded GAs. After

experimentation, we found random-keys encoding not well suited within DE for discrete

optimization, and thus it was decided to implement a new robust encoding scheme.

The purpose of this paper is twofold: first, to investigate the application of the DE on

sequencing and scheduling COPs. To the best of our knowledge, very few works such as

(Onwubolu, 2004; Nearchou, 2006), have applied DE on COPs, such as the traveling sales-

man problem (Onwubolu, 2004), and the machine layout design problem (Nearchou, 2006).

The majority of previous works studied the application of DE on global optimization over

continuous spaces only. To that purpose, a novel representation scheme is introduced that can

be used by DE for vector’s encoding. This scheme maps real-coded vectors to feasible permu-

tation strings thus giving the ability to DE to address any COP that follows the permutation

property.1 As a second contribution of this paper, we suggest a very simple (yet effective)

modification in the acceptance rule of the original DE algorithm. Extended numerical studies

showed that this modification results to a much more robust optimizer over discrete spaces

than the original DE algorithm.

The performance of the proposed DE is evaluated through experimental work over public

benchmark test problems with known lower (or upper) bounds for three classic schedul-

ing problems: the flow-shop scheduling problem (FSSP), the single-machine total weighted

tardiness problem (TWTP), and the single machine common due date scheduling problem

(CDDSP). Three different DE strategies are examined each one based on a different explo-

ration/exploitation mechanism.

The rest of this paper is organized as follows: Section 2 gives a brief description of the

basic DE model for optimization over continuous spaces. Section 3 formulates the three COPs

(FSSP, TWTP, CDDSP) under consideration. Section 4 introduces a new solutions’ encoding

scheme that can effectively address a wide range of COPs with discrete decision variables. A

1 The solutions to these problems are represented by all the possible permutations {π1, π2, . . . , πn} of a
sequence of integers {1, 2, . . . , n} who correspond to the decision variables of the problem.
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step-by-step description of the proposed DE algorithm for discrete optimization is presented

in Section 5. Section 6, presents and discusses in detail comparative experimental results of

the algorithms over public benchmarks concerning the three scheduling problems. Moreover,

in the same section a very simple yet effective DE variant is introduced and incorporated in

the overall experimental process. Finally, Section 7 summarizes the contribution of the paper

and states some directions for future work.

2 DE: The basic model

The DE algorithm utilizes N, D-dimensional parameter vectors xi,k , i = 1, 2, . . . , N , as a

population to search the feasible region �. The index k denotes the iteration (or generation)

number of the algorithm. The initial population,

S = {x1,0, x2,0, . . . , xN ,0}, (1)

where k = 0, is taken to be uniformly distributed in the search region. At each iteration, all

vectors in S are targeted for replacement. Therefore, N competitions are held to determine

the numbers of S for the next iterations. This is achieved by using mutation, crossover and

acceptance operators. In the mutation phase, for each target vector xi,k , i = 1, 2, . . . N , a

mutant vector
�

xi,k is obtained by

�

xi,k = xα,k + F(xβ,k − xγ,k), (2)

where α, β, γ ∈ {1, 2, . . . , N} are mutually distinct random indices and are also different

from the current target index i. The vector xα,k is known as the base vector and F > 0 is a

scaling parameter. The crossover operator is then applied to obtain the trial vector yi,k from
�

xi,k and xi,k . The crossover is defined by

y j
i,k =

⎧⎨⎩
�

x
j

i,k if R j ≤ CR or j = Ii

x j
i,k if R j > CR and j �= Ii

, (3)

where Ii is a randomly chosen integer in the set I, i.e., Ii ∈ I = {1, 2, . . . , D}; the superscript

j represents the j-th component of respective vectors; R j ∈ (0, 1), drawn randomly for each

j. The ultimate aim of the crossover rule is to obtain the trial vector yi,k with components

coming from the components of the target vector xi,k and the mutated vector
�

xi,k . This is

ensured by introducing CR and the set I. Notice that for CR = 1 the trial vector yi,k is the

replica of the mutated vector
�

xi,k . The targeting process (mutation and crossover) continues

until all members of S are considered. After all N trial vectors yi,k have been generated,

acceptance is applied. In the acceptance phase, the function value at the trial vector, f (yi,k),

is compared to f (xi,k), the value at the target vector and the target vector is updated using

xi,k+1 =
{

yi,k if f (yi,k) < f (xi,k)

xi,k otherwise
(4)

Reproduction (mutation and crossover) and acceptance continues until some stopping con-

ditions are met.
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The mechanism described above is only one variant of the basic DE algorithm known as

scheme DE1 (Storn and Price, 1997). There are also some other DE variants, only differ in

the way they create the mutant vector (Equation (2)). Two such well-known variants called

DE2 and DE3, respectively are given by the following two relations:

�

x i,k = xα,k + λ(xbest,k − xα,k) + F(xβ,k − xγ,k) (5)

Where, λ is a control variable and xbest,k is the best vector of the current population.

�

xi,k = xbest,k + F(xα,k + xβ,k − xγ,k − xδ,k) (6)

In Eq. (6) the mutant vector is generated using four vectors randomly selected from the pop-

ulation (with α �= β �= γ �= δ �= i ∈ {1, 2, . . . , N } together with the population best vector.

This scheme is known as DE3. The usage of two difference vectors seems to improve the

diversity of the population.

3 Sequencing and scheduling problems

3.1 The flow-shop scheduling problem (FSSP)

FSSP is a strongly NP-hard (Rinnooy, 1976) COP that has captured the interest of a significant

number of researchers. The problem can be described as follows: let n jobs from a job set

{1, 2, . . . , n}, with n > 1, have to be processed on m machines {1, 2, . . . , m} in the order

given by the indexing of the machines. Each job consists of m operations and each operation

requires a different machine. The processing time of each job i on machine j is fixed and

denoted by ti j (i = 1, . . . , n; j = 1, . . . , m). Preemption is not allowed, thus, the operation

of each job on a machine requires an uninterrupted period of time. Each job can be processed

on one machine at a time and each machine can process only one job at a time. The objective

is to find the optimal schedule (permutation of all jobs), which has the minimum sum of job

completion times.

Let C( ji , k) denotes the completion time of job ji on machine k, and let { j1, j2, . . . , jn}
denotes a permutation of jobs, then the completion time for an n-job m-machine FSSP is

calculated as follows:

C( j1, 1) = t j11

C( j1, k) = C( j1, k − 1) + t j1k, k = 2, . . . ,m
C( ji , 1) = C( ji−1, 1) + t ji 1, i = 2, . . . ,n
C( ji , k) = max {C( ji−1, k), C( ji , k − 1)} + t ji k, i = 2, . . . ,n,k = 2, . . . ,m

(7)

Then, the FSSP can be formulated by

min Cmax = C( jn, m). (8)

3.2 The total weighted tardiness problem (TWTP)

TWTP is an NP-hard problem for which instances with more than 50 jobs cannot be solved to

optimality with state-of-the-art enumeration techniques such as branch and bound algorithms
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(Abdul-Razaq et al., 1990). In TWTP, n jobs have to be processed on a single machine.

Associated with each job j there are three quantities: a processing time p j , a weight w j

(denoting the relative priority of job j), and a due date d j ( j = 1, 2, . . . , n). The jobs are

available for processing at time zero, while the machine is available for continuous processing

of the jobs. Once a job begins processing it is completed without interruption (i.e. preemption

is not allowed). The tardiness of a job j is defined as Tj = max{0, C j − d j }, where C j is the

completion time of job j in the current job sequence. The goal is to find a sequence of jobs

which minimizes the sum of the weighted tardiness, i.e., TWTP can be formally written as

min
n∑

j=1

w j · Tj (9)

3.3 The common due date scheduling problem (CDDSP)

CDDSP can be formally defined as follows: consider n jobs (numbered 1, 2, . . . , n) to be

processed without interruption on a single machine which can handle only one job at a time.

Each job j (j = 1 , . . . , n) is available at time zero, requires a positive processing time

p j and ideally must be completed exactly on a specific (common for all jobs) due date d.

Penalties are incurred whenever a job is completed before or after this due date. Therefore,

an ideal schedule is one in which all jobs finish on the specific due date. Assuming that C j

is the completion time of job j, then the earliness and tardiness of job j are given by the

relations, E j = max(0, d − C j ) and Tj = max(0, C j − d), respectively, for all j = 1 , . . . ,

n. The objective is therefore to find a processing order of the n jobs that minimizes

n∑
j=1

(α j E j + β j Tj ) (10)

where, α j , β j ( j = 1, . . . , n) are the earliness and tardiness (nonnegative) penalties, respec-

tively, for job j and constitute data input to the scheduling problem. A common due date d is

called unrestrictive when d ≥ ∑n
1 p j holds, otherwise is called restrictive. Even the simplest

formulation CDDSP leads to an NP-hard COP (Baker and Scudder 1990). In this work we

consider one of the hardest versions of the basic CDDSP, that with a restrictive common due

date and different earliness/tardiness penalties.

4 Representation schemes for sequencing and scheduling optimization problems

4.1 The random-keys encoding

Representation (or coding) is the mapping from a state space of possible solutions to a

state space of encoded solutions within a particular data structure. The natural coding for

sequencing and scheduling problems is the permutation vectors (or integer vectors). So the

solution (1 6 4 3 7 2 5) for a 7-job FSSP represents the order in which the jobs are executed on

a number of m machines, i.e., job 1 followed by job 6, followed by job 4, etc. Similarly, the

same solution for a 7-job TWTP, or a 7-job CDDSP represents the order in which the 7 jobs

must proceed on a specific single machine with objective the minimization of the functions

given in Eqs. (9), or (10), respectively.

In order to apply the DE algorithm on such COPs, it is crucial to design a suitable encoding

scheme that maps the floating-point vectors to good permutation vector solutions. Random-

keys representation (Bean, 1994) is the most famous solutions’ encoding scheme in the
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field of population heuristics dealing with sequencing optimization problems. According to

this technique, each solution is encoded as a vector of D floating-point numbers, where D
corresponds to the number of problem’s parameters. The components of the vector are sorted

and their order in the vector determines the final solution to the problem. For example, for a

7-job FSSP (alternatively TWTP, or CDDSP), the vector (0.23, 0.82, 0.03, 0.47, 0.21, 0.15,

0.68) corresponds to the job sequence 3 – 6 – 5 – 1 – 4 – 7 – 2, since the 3rd component

in the vector has the lowest value ( =0.03), followed by the 6th component in the vector,

which is the second smallest number (=0.15), and so on. Note that the application of any

traditional crossover on the floating-point vectors always results to legal solutions to the

physical problem and thus, this method overcomes the difficulty of maintaining feasibility

from parent to offspring appeared with permutation encoding. Although random-keys work

well in the context of a real-coded GA (Bean, 1994), after much experimentation we found

this encoding scheme to be poor suited within the DE algorithm to address COPs.

4.2 The sub-range encoding: A new solution representation scheme for COPs

Due to the low performance of DE with random-keys, a new solutions encoding mechanism

was designed and used. The main features of the proposed representation technique are

described below. Without lose the generality, in the description we will use terms borrowed

from the field of Evolutionary Computation such as the genotype (i.e., the vector’s structure

evolved by the DE algorithm), the phenotype (i.e., the actual solution to the physical problem

corresponding to a specific genotype). Accordingly, every component of a vector is called

gene.

1. In a pre-processing phase, the range [1, D] (where D is the number of problem’s parameters)

is divided into D equal sub-ranges and the upper bound of each sub-range is saved in an

array of floating-point numbers. Let’s call this array SR (stands for Sub-Range). Therefore,

the content of the array is SR = [1/D, 2/D, 3/D , . . . ,D/D]T .

2. Each floating-point vector in the genotypic level is encoded as a D-dimensional real-valued

vector with each gene corresponding to a decision variable of the physical COP.

3. Each genotype is mapped to a corresponding phenotype. The components of a phenotype

are integer numbers in [1, D]; sorted according to the sub-range index in which belong

the corresponding genes of the genotype.

4. Crossover and mutation operators are performed in the genotypic level, not on the derived

solutions (i.e., not on the phenotypes).

5. Each phenotype is then checked and repaired so that to finally present a valid solution to

the COP.

The mechanism of building the proto-phenotype of a given genotype g works as follows:

Procedure: Proto-Phenotype (SR, g)

Step 1) Let j = 1 // j denotes the position of the gene in the genotype g //

Step 2) Determine the sub-range index corresponding to the j-th gene of the

vector. Let’s q (q ∈ I = 1, 2, . . . , D) the index of this sub-range.

Step 3) Put the integer q in the j-th position of the proto-phenotype solution Pg

Step 4) Let j = j + 1.

Step 5) Repeat steps (2)–(4) until j > D.

Step 6) Return (Pg)
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Table 1 Building phenotypes from real-coded genotypes via the sub-range encoding scheme

Gene position Gene value Sub-range index Generated proto-phenotype

1 0.23 2 (2 )

2 0.82 6 (2 6 )

3 0.03 1 (2 6 1 )

4 0.47 4 (2 6 1 4 )

5 0.21 1 (2 6 1 4 1 )

6 0.15 2 (2 6 1 4 1 2 )

7 0.68 5 (2 6 1 4 1 2 5)

For example, let again the genotype, g = (0.23, 0.82, 0.03, 0.47, 0.21, 0.15, 0.68) men-

tioned in Section 4.1. Since the related COP has 7 decision variables (D = 7), then the array

S R = [1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 7/7]T = [0.14, 0.29, 0.43, 0.57, 0.71, 0.86, 1.0]T . Ta-

ble 1 shows analytically how the phenotype corresponding to g is built using the above

procedure.

As one can see from Table 1, the first gene (=0.23) lies in the second sub-range (0.14 <

0.23 ≤ 0.29), the second gene (=0.82) lies in the sixth sub-range (0.71 < 0.82 ≤ 0.86), etc.

As it is clear, the generated final phenotype (2 6 1 4 1 2 5) is illegal since it contains duplicated

genes. Hence, to finally produce a valid version of the phenotype vector the following two-

steps repairing procedure it is applied on the proto-phenotype:

1. Delete the duplicate genes.

(2 6 1 4 5)

2. Fill the empty locations in the vector by selecting randomly the remaining (unused) genes.

(2 6 1 4 7 3 5)

Therefore, the genotype g = (0.23, 0.82, 0.03, 0.47, 0.21, 0.15, 0.68) corresponds to the

job sequence 2 – 6 – 1 – 4 – 7 – 3 – 5; which is different from the job-sequence generated by

the random-keys encoding (see sub-section 4.1).

5 The DE algorithm for discrete COPs

Since we described the proposed representation mechanism for mapping floating-point vec-

tors to actual scheduled solutions we are now ready to present step-by-step the proposed DE

implementation for discrete optimization.

Algorithm DE for discrete optimization

Pre-processing step:
Read all the necessary input data related to the specific COP;

Build the Sub-Range array: S R = [1/D, 2/D, 3/D, . . . , 1]T ;

Initialization step:
Set values for the DE control parameters (N , F, CR);

Initialize generation counter k = 0;

Generate a population S with N, D-dimensional floating-point vectors

S = {x1,k, x2,k, . . . , xN,k};
// where the components of each point xi,k , i = 1, 2, . . . N , are floating-point

numbers randomly chosen within the range [0,1]. //
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Repeat
for i = 1 to N do

Mutation step:
Generate a mutant vector

�

xi,k using Equation (2).

Crossover step:
Generate a trial vector yi,k by crossing xi,k and

�

xi,kusing Equation (3).

Solution Interpretation Step:
// build the proto-phenotypes corresponding to the genotypes xi,k and yi,k //

Pxi,k ← Proto Phenotype (SR,xi,k);

Pyi,k ← Proto Phenotype (SR,yi,k);

// repair (if needed) the phenotypes so that to correspond to feasible

solutions //

Repair (Pxi,k ); Repair (Pyi,k );

Acceptance step:
if COST(Pyi,k ) < COST(Pxi,k ) then xi,k+1 = yi,kelse xi,k+1 = xi,k

endfor
Population Statistics Step:

Determine the population best phenotype solution Pbest;

if k = 0 then
P∗ = Pbest // keep track for the best-so-far solution //

else if COST(Pbest) < COST(P∗) then
P∗ = Pbest

endif
k = k + 1 // increment iteration counter //

Until k > MAXI; // MAXI stands for Maximum Iterations //

Return (P∗)

In a pre-processing phase, the algorithm takes as input, data concerning the specific COP

to be solved. Specifically, the input information include: (a) for FSSP the number of jobs

(n) to be scheduled, the number of operations (m) for each job, and the processing time per

job. (b) For TWTP, the number of jobs, the processing time and the due date per job, and a

weight factor denoting the relative priority of each job. (c) For CDDSP, the number of jobs

to be scheduled, a due date common for all jobs, and for each job the processing time, and

two penalty coefficients related to the earliness or the tardiness of the job. All the problems

are of dimension D = n.

The mutation and crossover steps are identical to the original DE algorithm described

in Section 2 and responsible to create the mutant and trial vectors, respectively. The solu-

tion interpretation step is responsible to generate for these target and trial genotypes the

corresponding phenotypes. This is done by calling the procedures Proto Phenotype() and

Repair() described in Section 4.2. The resulting phenotypes represent actual solutions to the

COP under consideration. The quality of these solutions is evaluated by function COST()

in the acceptance step of the algorithm. In particular, COST() computes the actual cost of

each phenotype solution. For the case of FSSP, this cost corresponds to the makespan (Cmax)

(Equation (8)), while for TWTP and CDDSP, this cost correspond to the summations given

by Equations (9) and (10), respectively. The genotype corresponding to the best phenotype

(i.e., to the solution with the lowest cost) survives and replaces the current target vector of

the population. The four steps (mutation, crossover, solution interpretation, acceptance) are

repeated for all the N points of the entire population.

Springer



J Heuristics (2006) 12:395–411 403

After generating the population of the next iteration, the algorithm determines the best

population phenotype. The performance of this solution is then compared to that of the best-

so-far solution. The overall process is repeated until a maximum number of iterations (MAXI)
is surpassed. The returned by the algorithm best-so-far solution constitutes the ‘best’ solution

to the COP.

6 Experimental results and discussion

6.1 Comparative heuristics

The effectiveness of the DE algorithm was examined through simulation experiments over

public benchmarks instances for the three COPs presented in Section 3. Three DE variants

namely, DE1, DE2 (with λ = 0.5), and DE3 (all described in Section 2) were implemented

and evaluated, first using the proposed sub-range solution encoding scheme and then using

the random-keys encoding. In the following analysis we will refer to the former scheme by

SR and to the latter by Rkeys. Accordingly, we will refer to the various versions of DE with

notations such as DE3 SR (stands for DE3 with SR), DE3 Rkeys (i.e., DE3 with Rkeys), etc.

Furthermore, in the experimental comparisons we included a novel slight modification of

the original DE algorithm. This modification concerns the acceptance rule and is given by

the relation,

x j
i,k+1 =

{
r j if R j ≤ ρ

x j
i,k+1 otherwise

, ∀ j = {1, 2, . . . , D} (11)

where, x j
i,k+1the j-th component of the updated target vector xi,k+1, i = 1, 2, . . . N . R j �=

r j are random numbers drawn uniformly within the range (0,1) for each j, and ρ a small (user-

defined) fixed probability. After experimentation we found ρ = 0.1 to be a good choice for

our study. The idea with Eq. (11) is to enforce more the exploration ability of the algorithm by

replacing with probability ρ the components of the updated target vector (created by Eq. (4))

with random numbers. Numerical results showed that the use of this simple change improves

significantly the performance of the original DE algorithm, especially when used with DE3

heuristic. Therefore, we decided to adopt DE3 with the proposed modification and refer to

the new heuristic as mDE3.

All the DE variants were coded in Pascal programming language and run on a Pentium

IV 3.2 GHz PC. The evaluations were performed over public benchmark test problems with

known lower (or upper) bounds. To quantify the generated solutions two performance criteria

were used: (a) the average percentage offset from the global optimum solution (�avg%), and

(b) the average percentage solution effort (Eavg%). The two criteria are given below:

�avg% = CostDE − C∗

C∗ × 100 (12)

Where, CostDE , is the cost of the best solution achieved by a heuristic for a specific benchmark

test instance, and C
∗

is the corresponding exact optimal (or near-optimal) solution reported

in the literature for this test instance. Thus, for the case of FSSP, CostDE corresponds to the

makespan (Eq. (8)), while for TWTP and CDDSP, CostDE corresponds to the summations
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given by Eqs. (9) and (10), respectively. The second criterion is,

Eavg% = kopt

MAXI
× 100 (13)

In Equation (13), kopt is the iteration number at which the best solution for a specific test

instance has been achieved, and MAXI = 500 × n, is the maximum number of iterations an

algorithm run; n is the number of the jobs to be scheduled (i.e., the size of the COP). It is

underlined, that all the tested algorithms were left running for the same MAXI number of

iterations.

6.2 Choice of the control parameters’ settings

The three control parameters (population size N ≥ 4, crossover rate CR ∈ [0, 1], and

mutation-scale factor F ∈ (0, 2)) included in the components of the DE algorithm, and

the many possible choices make the determination of the perfect settings a very difficult

task, almost impossible. Much investigation on the selection of the appropriate settings of

these parameters was undertaken in preliminary tests. In this sub-section we give a detailed

description of the experimental design methodology used to determine these settings.

In particular, N was defined to vary with the size of the COP, i.e., N = n (= number

of the jobs to be scheduled). Moreover, N remains fixed during the algorithms’ execution.

For CR and F two different control schemes were used: a static scheme where the values of

the parameters are kept fixed for the whole life of the evolutionary process, and a dynamic

scheme where parameters’ values are varying through DE run.

More specific, in the static scheme, CR was defined to take values within the following

discrete range {0.1, 0.3, 0.5, 0.7, 0.9}. In the dynamic scheme, CR was defined to be adapted

per iteration by the relation,

if Costmin ≥ T × Costavg then CR = CR init else CR = � × CR (14)

This scheme gives to CR a high value at the beginning of the run and decreases this rate

slowly by the diversity of the population. CR is initially defined equal to CR init = 0.8, and

decreased in each new iteration by a factor � = 0.95 using the linear relation CR = �×CR .

If the minimum generated cost (Costmin) of the current population becomes almost the same

to the average population cost (Costavg), then a very small diversity is encountered in the

population and thus the crossover rate is reset to the initial value CR init. Moreover, in the case

where CR becomes very small (<0.05), it is again reset to CR init. T (= 0.97) is a user-defined

threshold.

For parameter F, the following static control scheme was used: firstly F ∈ [0.5, 0.7, 0.9],

and secondly F is estimated by a rule proposed by Zaharie (2002). This rule considers

the values of the control parameters satisfying the equation 2F2 − 2/N + CR/N = 0 to be

critical for the convergence ability of DE. Zaharie proposed this rule after an analysis of the

influence of the mutation and crossover operators on the expected population variance of DE

when applied for optimization over continuous spaces. In the case of the dynamic control

scheme, we experimented with two different strategies recently proposed by Kaelo and Ali

(2006) and Ali and Törn (2004), respectively. According to the first strategy, for each mutated

point, F is randomly chosen within the range [−1, −0.4] ∪ [0.4, 1] (Kaelo and Ali, 2006).

While according to the second strategy, F should take large values in the early stages and

small values at the later stages of the DE algorithm. This strategy (Ali and Törn, 2004), is

Springer



J Heuristics (2006) 12:395–411 405

Table 2 Choosing the correct settings for the parameters CR and F. Average %offset over characteristic
benchmarks for the three COPs: (a) FSSP, (b) TWTP, and (c) CDDSP

F

CR 0.50 0.70 0.90 Zaharie’s rule Ali & Törn scheme Kaelo & Ali scheme

(a) FSSP

0.1 2.41 1.96 1.90 2.03 1.83 1.83

0.3 2.29 2.47 1.90 2.03 2.31 2.31

0.5 2.72 2.63 2.80 2.39 2.32 2.32

0.7 2.33 2.87 2.75 2.38 2.92 2.92

0.9 2.54 2.57 2.92 2.40 2.81 2.81

CR = � × CR 1.69 1.37 2.12 1.22 1.90 2.01

(b) TWTP

0.1 0.93 0.92 0.88 0.78 0.93 0.89

0.3 2.09 3.63 2.77 4.67 2.18 3.94

0.5 7.85 6.58 16.59 5.80 6.23 6.54

0.7 19.93 10.10 8.03 6.47 23.29 9.19

0.9 13.47 16.10 8.64 17.18 18.52 7.57

CR = � × CR 0.90 0.88 0.87 0.86 0.86 0.69
(c) CDDSP

0.1 −3.82 −3.64 −3.57 −3.84 −3.82 −3.75

0.3 −3.55 −3.53 −3.84 −3.75 −3.55 −3.60

0.5 −3.84 −3.82 −3.77 −3.39 −3.84 −3.77

0.7 −3.83 −3.64 −3.82 −3.84 −3.83 −3.83

0.9 −3.64 −3.58 −3.67 −3.60 −3.64 −3.68

CR = � × CR −3.82 −3.57 −3.73 −3.82 −3.74 −3.84

implemented by the relation,

F =
⎧⎨⎩ max

(
0, 1 − ∣∣ fmax

fmin

∣∣) if
∣∣ fmax

fmin

∣∣ < 1

max
(
0, 1 − ∣∣ fmin

fmax

∣∣) otherwise
(15)

where, fmax and fmin are the maximum and minimum function values in S, respectively. F
takes its values within the range [0,1].

Since we described the experimental design methodology for the determination of CR and

F, we can now study the effect of these control schemes on DE. To that purpose, we selected

three characteristic sets of test instances taken from a well-known, public benchmarks library

(at http://mscmga.ms.ic.ac.uk/). These instances are: the 10 instances of the Taillard’s 20-

jobs, 10-machines FSSP, the first 20 instances contained in the 40-jobs TWTP, and the 10

instances of the 20-jobs CDDSP. Each one of the tested DE variants was run 30 times over the

selected characteristic test instances and the results obtained were averaged. Table 2 displays

the generated �avg% using the various control schemes. Note that, only the results due to the

best DE heuristic are presented in the table, which is mDE3 SR. A quite similar effect of CR

and F on the performance of the other DE variants was also investigated.

As one can observe from Table 2(a), the best result for FSSP (�avg% = 1.22) was obtained

using the proposed adapted CR scheme (Equation (14)) and the Zaharie’s rule for the estima-

tion of F. For TWTP (Table 2(b)) best results were obtained using the adapted CR scheme

and F estimated by Kaelo’s and Ali’s strategy. While, for CDDSP (Table 2(c)), the previous

combination, i.e. adaptable CR and F estimated by the strategy of Kaelo and Ali (2006) was
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again one of the most effective choices for DE. Hence, the following control schemes were

finally adopted for the experimental evaluations: adaptable CR for all COPs, F estimated by

Zaharie’s rule for FSSP, and F estimated by Kaelo’s and Ali’s strategy for both TWTP and

CDDSP.

6.3 The FSSP benchmark tests

The DE heuristics were first tested over the well-known Taillard’s benchmarks FSSPs (Tail-

lard, 1993). Taillard’s problems have been found to be very difficult, in the sense that the best

solutions found till now are through the use of a very lengthy Tabu-search heuristic (Taillard,

1990). These benchmarks range from small size instances with 20 jobs on 5 machines to

large size instances with 500 jobs on 20 machines. There are ten instances for each size

problem, with each instance having a different lower bound. To get the average performance

of the heuristics, ten runs on each test instance were performed and the solution quality was

averaged.

Table 3 illustrates the results obtained by the DE heuristics over these benchmarks with

up to 200 jobs on 20 machines. The results correspond to the mean percentage offset from

the existing upper bounds (�avg%), averaged over the ten instances within each category of

problems, and the mean % effort (Eavg%) spent by the heuristics until the convergence. The

best solutions found in each problem’s category are illustrated in boldfaced. For instance,

for the case of the 20×5 (stands for 20 jobs on 5 machines) category of problems, the best

result (�avg% = 0.93) was achieved by the proposed heuristic mDE3 SR, while the second

best performance (�avg% = 1.24) was achieved by DE2 SR. From Table 3 one can clearly

observe that the use of the proposed solutions’ encoding scheme (SR) within DE results to

a substantially higher performance than that obtained using Rkeys. DE with SR managed

to generate solutions of much higher quality (schedules with shorter makespans), in all the

experiments. Note that, for DE with Rkeys we present only the results obtained by the best

DE variant, which is DE3. The two other schemes (DE1 and DE2) with Rkeys performed

even worse.

More specifically, mDE3 SR outperformed the other DE heuristics in all categories of

problems obtaining solutions with an average percentage offset equal to 2.13 (see the last

Table 3 Comparative results between the five heuristics over the Taillard’s FSSP benchmarks

DE1 SR DE2 SR DE3 SR DE3 RKeys mDE3 SR
Problem

n × m �avg% Eavg% �avg% Eavg% �avg% Eavg% �avg% Eavg% �avg% Eavg%

20 × 5 2.53 22.12 1.24 10.87 1.33 3.93 9.32 7.70 0.93 30.62

20 × 10 2.50 27.88 1.82 21.63 1.50 21.19 16.11 2.97 1.22 28.36

20 × 20 3.05 12.30 1.68 7.03 1.37 13.82 11.23 2.83 1.04 26.17

50 × 5 1.22 13.10 1.39 4.86 1.42 10.04 7.07 4.80 0.42 47.81

50 × 10 5.21 46.22 2.31 64.15 3.02 41.35 17.11 5.14 2.83 46.61

50 × 20 5.88 40.17 4.75 64.36 4.12 60.42 19.78 18.84 3.79 53.93

100 × 5 1.37 7.92 1.41 9.24 1.29 9.06 6.20 1.49 0.34 36.66

100 × 10 4.23 22.13 2.44 51.30 2.48 51.83 16.09 9.06 2.16 45.03

100 × 20 5.21 6.15 4.72 70.28 4.65 47.72 15.92 4.19 4.03 68.41

200 × 10 3.42 63.39 2.82 22.24 2.77 15.36 20.56 2.15 2.06 73.87

200 × 20 5.41 26.38 5.71 31.97 5.26 23.14 23.65 3.93 4.66 67.50

Average 3.64 26.16 2.75 32.54 2.66 27.08 14.82 5.74 2.13 47.72
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line of Table 3). Very near to this performance are firstly, the results obtained by DE3 SR

(a mean �avg% = 2.66), and secondly the results generated by DE2 SR (a mean �avg% =
2.75). DE1 SR gave results of even lower quality with a mean �avg% = 3.64. The use of

Rkeys encoding failed to produce schedules of low makespan. In all the experiments, the

results obtained using Rkeys were of very poor quality with an average offset from optimum

approx. equal to 14.8%. A result indicating that this encoding scheme is unsuitable for use

within DE to address FSSPs.

Examining the computational effort, DE1 SR seems to be the fastest with a mean effort

approx. equal to 26%. Near to this bound comes the effort spent by DE3 SR (Eavg%≈27%).

The low average effort (≈6%) spent by DE3 Rkeys, is a characteristic caused by the premature

convergence of this algorithm. Actually, due to its poor effectiveness, this algorithm very soon

stacks to a (bad) local minima solution.

6.4 The TWTP benchmark tests

For the case of TWTP we used the famous benchmarks set available via the public ORLIB

library (web-location: http://mscmga.ms.ic.ac.uk/). This set comprised instances with 40,

50 and 100 jobs. For the 40 and 50 jobs the optimal solutions are known, while for the

100 job instances only the best so far (near-optimal) solutions are known. Each category of

problems contains 125 test instances. Each test instance includes for each job j (j = 1,2 , . . . ,

n) a processing timep j , a weight w j , and a due date d j (as analyzed in Section 3.2). The

results obtained by the heuristics over the above benchmarks are summarized in Table 4. To

quantify the quality of the generated solutions the following three performance indices were

used: �avg% (Equation (12), the number of exact optimal solutions found (nopt), and Eavg%
(Equation (13).

One can easily see from Table 4, that the performance of the DE variants with SR, are

by far superior from that of DE with Rkeys. Rkeys is too weak for use within DE to address

TWTP. Consequently, our observation and analysis is limited on the relative performance

of the DE heuristics with SR. These heuristics managed to generate solutions with a mean

offset from optimum less than 2% in the case of the 40-jobs TWTP, less than 3% in the

case of 50-jobs TWTP, and less than 2.5% in the case of the 100-jobs TWTP. mDE3 SR

heuristic became again the champion producing solutions with lower cost than the others. In

Table 4 Comparative results between the DE heuristics over the TWTP benchmarks. Test instances
with (a) 40-jobs. (b) 50-jobs, and (c) 100-jobs

DE1 SR DE2 SR DE3 SR DE3 RKeys mDE3 SR

(a) 40 jobs TWTP

�avg % 1.90 1.52 1.09 16.20 0.38
nopt 26 27 23 – 88
Eavg % 34.9 26.3 53.07 41.09 43.17

(b) 50 jobs TWTP

�avg % 2.89 1.90 1.60 23.05 1.12
nopt 28 26 25 – 44
Eavg % 31.9 59.81 44.72 53.90 61.89

(c) 100 jobs TWTP

�avg % 2.26 2.33 2.13 30.16 1.83
nopt 16 27 32 – 37
Eavg % 29.04 59.11 46.32 42.84 43.91
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Table 5 Seeding the initial population with a solution built by con-
structive rules. �avg% obtained by mDE3 SR in combination with
constructive rules over the 100-jobs TWTP instances

EDD MDD AU No seed

1.34 2.23 2.28 1.83

particular, mDE3 SR produced solutions with �avg% = 0.38% in the case of 40-jobs (Table

4(a)), �avg% = 1.12% in 50-jobs (Table 4(b)), and �avg% = 1.83% in 100-jobs TWTP (Table

4(c)). Moreover, mDE3 SR achieved the exact optimum solution in much more instances than

the remaining heuristics: particularly, in 88 out the total 125 of the 40-jobs, in 44 instances

of the 50-jobs, and in 37 out the total 125 instances of the 100-jobs TWTP. The second best

performance was again achieved by DE3 SR heuristic.

Furthermore, the effect of seeding the initial population of the DE algorithm with a single

solution generated by a constructive TWT rule was examined. The goal here is to investigate

whether or not, seeding the initial population of DE results to better final solutions. Three

of the most referred in the related literature quick constructive rules were included in the

comparisons namely, Earliest Due Date (EDD), Apparent Urgency (AU), and Modified Due

Date (MDD) (Potts and Wassenhove 1991, Crauwels et al., 1998).� EDD technique sorts the jobs by ascending order of their due dates d j ( j = 1, 2, . . . , n).� AU sequences the jobs based on the apparent urgency, which is defined as AU j = (w j/p j ) ·
exp(− max(0, d j − C j − p j )/μ · P̄) (∀ j = 1, 2, . . . , n). Where, p j the processing time of

the jth job, w j a weight denoting the relative priority of job j, and d j the due date for job j. C j

is the completion time of job j in the generated job sequence μ is a user defined parameter

(called the ‘look-ahead’ parameter) set according to the tightness of the due dates (here,

μ = 2). P̄ is the average processing time.� MDD puts the jobs in non-decreasing order of the modified due dates, given by the relation

mdd j = {C + p j , d j }. Where C is the sum of the processing times of the already sequenced

jobs.

Table 5 displays �avg % obtained by the best heuristic mDE3 SR in combination with each

one of the three constructive heuristics mentioned above. The results concern the 100-jobs

TWTP benchmarks. As one can see from Table 5, seeding the initial population with a solution

generated by EDD rule results to the highest performance. This combination (mDE3 SR +
EDD) managed to generate solutions with �avg % = 1.34%. While the use of MDD and AU

rules performed worse, resulting to final solutions of lower quality.

6.5 The CDDSP benchmark tests

We now compare the performance of the tested DE heuristics on CDDSP. The comparisons

were carried out on a set of public benchmarks recently proposed by Biskup and Feldmann

(2001). These benchmarks include 280 test instances ranging from small size instances with

10 jobs to large size instances with 1000 jobs. There are ten instances for each size problem.

A parameter h (= 0.2, 0.4, 0.6, 0.8) was used by (Biskup and Feldmann, 2001) to produce

test instances with more or less restrictive common due dates. Test instances generated with

h = 0.2 are harder to be solved than those generated with greater values of h. The following

discussion concerns the application of the algorithms on benchmarks instances with up to

200 jobs generated with h = 0.2. For each test instance we are given the number of the jobs
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Table 6 Comparative results over public benchmark problems for CDDSP

DE1 SR DE2 SR DE3 SR DE3 RKeys mDE3 SR
Problem

n �avg% Eavg% �avg% Eavg% �avg% Eavg% �avg% Eavg% �avg% Eavg%

10 4.73 17.51 0.00 3.17 0.00 6.02 1.21 26.25 0.00 11.76

20 3.97 2.09 −0.68 19.76 −0.51 12.77 12.70 42.33 −3.84 7.74

50 6.00 19.41 −0.30 17.56 −0.24 10.81 30.12 31.73 −5.57 57.03

100 6.23 6.07 −4.80 33.05 −4.37 21.50 44.02 28.98 −5.93 97.62

200 8.30 11.35 −0.09 29.40 −0.11 39.98 53.10 28.30 −5.04 92.98

Average 5.85 11.29 −1.17 20.59 −1.05 18.22 28.23 31.52 −4.08 53.43

to be scheduled (n), a due date (d) common for all jobs, and for each job j ( j = 1, 2, . . . , n)

its processing timep j , and two penalty coefficients α j , β j for the earliness and the tardiness,

respectively.

Optimal solutions for the examinant benchmarks exist only for the instances with 10 jobs

and have been achieved using an integer programming formulation with LINDO software.

Table 6 illustrates the comparative results (averaged over the 10 instances of each problem’s

category) obtained by the five DE variants over these benchmarks. The best results obtained

are indicated in the table in boldfaced. The negative sign in some results denotes that the

corresponding heuristic managed to improve the existing upper bound producing solutions

of lower costs.

As one can see from Table 6, the performance of DE2 SR, DE3 SR, and mDE3 SR

are of high quality, with the latter being the best of all, producing solutions with a mean

�avg% over the five categories equal to −4.08%. This means that mDE3 SR improved the

existing upper bounds of Biskup’s and Feldmann’s benchmarks by approx. 4% in average.

For DE2 SR and DE3 SR an average improvement to the upper bounds greater than 1%

is reported. Furthermore, it is worth reporting that, these three heuristics reached the exact

optimum solution in all the test instances with 10 jobs, and improved the existing bounds

for all the test instances of the remaining CDDSPs. The highest improvement concerns the

Table 7 Running times in CPU (seconds) on a Pentium 3.2 GHz PC

FSSP Problem size (n)

Method 20 50 100 200

DE + SR 1.96 56.45 694.16 14,655.05

DE + RKeys 0.91 46.39 385.94 3,687.10

TWTP Problem size (n)

Method 40 50 100

DE + SR 28.94 58.40 631.06

DE + RKeys 0.00 0.16 308.50

CDDSP Problem size (n)

Method 10 20 50 100 200

DE + SR 0.90 3.37 56.16 835.63 11,027.52

DE + RKeys 0.81 3.09 37.66 311.40 4,992.39
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100-jobs instances. Here, the reported averaged improvements are approx. 4.8%, 4.4%, and

5.9% for DE2 SR, DE3 SR, and mDE3 SR, respectively. Examining the % effort, we can see

that, mDE3 SR spent in average more time than the other DE variants until the convergence.

DE with Rkeys produced acceptable solutions only for the case of 10-jobs instances (�avg%

= 1.21%). A rather poor performance is also achieved by DE1 SR. An event not observed

in the case of FSSP and TWTP.

Finally, for the completeness of this paper, we report in Table 7 the average running

times (in CPU seconds) needed by DE using the two encodings (SR, Rkeys). The times are

depended on the type and the size of the COP. As it is obvious, the use of Rkeys encoding

within DE results to a much faster algorithm than that of using SR.

7 Conclusion

This paper investigates the application of the differential evolution (DE) algorithm on the

solution of three classic NP-hard scheduling problems: the multiple machine flow-shop

scheduling problem, the single machine total weighted tardiness problem, and the single

machine common due date scheduling problem. DE is a recently developed heuristic that has

empirically proven to be very robust for global optimization over continuous spaces. By in-

corporating in DE a new representation scheme for solution encoding, it was experimentally

shown that DE is also quite robust for discrete optimization problems. Moreover, a very sim-

ple modification of the original DE algorithm was introduced and tested on public available

benchmarks for the three scheduling problems. The experimental comparisons showed that

the combination of the proposed encoding scheme with the new DE variant outperforms the

original DE algorithm for discrete optimization. Furthermore, the use of the proposed encod-

ing scheme within DE was found substantially superior to the use of the famous random-keys

technique. Random-keys encoding was found to be not suitable for use with DE for discrete

optimization.

We do not claim that the DE algorithm is more robust than existing effective heuristics

for any of the three problems presented. Instead, our main purpose was to show how DE

can address a wide range of combinatorial problems with discrete decision variables and to

measure its relative performance. To the best of our knowledge these are the first reported

results concerning the application of DE over public benchmarks with known optimal so-

lutions for the referred scheduling problems. Future work will investigate the application

of DE on other more complex combinatorial optimization problems such as the job-shop

scheduling problem. Moreover, the results obtained over the benchmarks of the common due

date scheduling problem were very encouraged. On going research is concentrated on the

development of a more robust version of DE with the hope to improve more the existing

upper bounds for the Biskup’s and Feldmann’s (2001) benchmarks. Hybridizing DE with

suitable local search techniques is a promising area of research to start with.
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