
FoCs - Automatic Generation of
Simulation Checkers

from Formal Specifications

Yael Abarbanel, Ilan Beer, Leonid Gluhovsky,
Sharon Keidar, and Yaron Wolfsthal

IBM Haifa Research Laboratory, Israel
{yaell,beer,leonid,sharon,wolfstal}@il.ibm.com

1 Introduction and Motivation

For the foreseeable future, industrial hardware design will continue to use both
simulation and model checking in the design verification process. To date, these
techniques are applied in isolation using different tools and methodologies, and
different formulations of the problem. This results in cumulative high cost and
little (if any) cross-leverage of the individual advantages of simulation and formal
verification.

With the goal of effectively and advantageously exploiting the co-existence of
simulation and model checking, we have developed a tool called FoCs (”Formal
Checkers”). FoCs, implemented as an independent component of the RuleBase
toolset, takes RCTL1 properties as input and translates them into VHDL pro-
grams (”checkers”) which are integrated into the simulation environment and
monitor simulation on a cycle-by-cycle basis for violations of the property.

Checkers, also called Functional Checkers, are not a new concept: manually-
written checkers are a traditional part of simulation environments (cf. [GB+99]).
Checkers facilitate massive random testing, because they automate test results
analysis. Moreover, checkers facilitate the analysis of intermediate results, and
therefore save debugging effort by identifying problems directly - ”as they hap-
pen”, and by pointing more accurately to the source of the problems.

However, the manual writing and maintenance of checkers is a notoriously
high-cost and labor-intensive effort, especially if the properties to be verified are
complex temporal ones. For instance, in the case of a checker for a design with
overlapping transactions (explained in Section 3), writing a checker manually is
an excruciating error-prone effort.

Observing the inefficient process of manual checker writing in ongoing IBM
projects has inspired the development of FoCs, as a means for automatically
generating checkers from formal specifications. For each property of the specifi-
cation, represented as an RCTL formula, FoCs generates a checker for simulation.
This checker essentially implements a state machine which will enter an error
1 RCTL includes a rich and useful set of CTL safety formulas and regular expressions,

see [BBL98]

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 538–542, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



FoCs 539

state in a simulation run if the formula fails to hold in this run. The next section
will describe the checker generation process in more detail.

Experience with FoCs in multiple projects has been very favorable in terms of
verification cost and quality. Verification effort is reduced by leveraging the same
formal rules for model checking of small design blocks as well as for simulation
analysis across all higher simulation levels. An equally important benefit of FoCs
is the conciseness and expressiveness of RCTL formulas. Formulas consisting of
just a few lines can efficiently represent complex and subtle cases, which would
require many lines of code if described in a language such as VHDL. This makes
maintenance, debugging, porting and reuse of specifications and checkers highly
cost-effective.

2 Tool Architecture and Implementation

Figure 1 shows the overall environment in which FoCs operates. The user pro-
vides a design to be verified, as well as formal specifications and a set of test
programs generated either manually or automatically. FoCs translates the formal
specification into checkers, which are then linked to the design and simulated
with it. During simulation, the checker produces indications of property viola-
tions. It is up to the user to decide what action to take: fix the design, the
property, or the simulation environment.

failed?

Formal Spec

(e.g. VHDL)

RCTL

Design

Test
Programs

FoCs Checkers
(e.g. VHDL)

Simulator

Fig. 1. FoCs Environment

FoCs translates RCTL into VHDL as follows: First, each property is trans-
lated into a non-deterministic finite automaton (NFA) and a simple AG(p) for-
mula, where p is a Boolean expression. The NFA has a set of distinguished error
states, and the formula specifies that the NFA will never enter an error state
(entering an error state means that the design does not adhere to the specifica-
tion under the test conditions). The translation details are described in [BBL98].

Since contemporary simulators do not support non-determinism, the NFA
has to be converted into a deterministic automaton (DFA). The DFA, in turn,
is translated into a VHDL process - the FoCs checker. The AG(p) formula is
translated into a VHDL Assert(p) statement that prints a message when the
VHDL process reaches a state where the underlying property is violated, and
possibly stops simulation.



540 Y. Abarbanel et al.

The number of states of the DFA may be exponential in the number of
states of the NFA, but simulation is sensitive to the size of the representation
(the number of VHDL lines) rather than to the number of states. The number
of VHDL lines in the resulting VHDL checker is at most quadratic in the size
of the property. Practically, it is almost always linear because of the types of
properties that people tend to write.

The above translation process is implemented within the RuleBase model
checker [BBEL96].

3 Example

The following example will demonstrate the conciseness and ease of use of RCTL
for checker writing and the advantage of automatic checker generation. Assume
that the following property is part of the specification: If a transaction that
starts with tag t has to send k bytes, then at the end of the transaction
k bytes have been sent. The user can formulate this property in RCTL as
follows:

forall k: 2

{∗, start & start tag=t & to send=k, !end∗, end & end tag=t} → {sent=k}
Manual writing of a checker for this property may become complicated if transac-
tions may overlap, which means that a new transaction may start while previous
transactions are still active. The checker writer has to take into consideration
all possible combinations of intervals and perform non-trivial bookkeeping. The
RCTL formula is evidently much more concise and readable than the resulting
VHDL file or a manually written VHDL or C program.

4 Using FoCs for Coverage Analysis

The quality of simulation-based verification depends not only on thorough check-
ing of results, but also on the quality of the tests used (a.k.a. input patterns or
test vectors) [KN96]. FoCs checkers can serve to enhance the quality of tests by
providing a means for measuring test coverage. Test coverage measurement is the
process of recording if certain user-defined events occurred during simulation of a
set of tests. When used for coverage purposes, the FoCs checkers will evaluate the
quality of the test suite by discovering events, or scenarios, that never happen
during simulation. This feedback will guide the user which further tests are
needed in order to cover scenarios that have not been exercised.

The implementation of coverage checkers is similar to that of functional
checkers. The only difference is that instead of reporting an error, a coverage
checker provides a positive indication when covering the relevant scenario. An
2 The semantics of forall are intuitive. The implementation, however, is not trivial.

It involves spawning a new automaton whenever a new value of k is encountered.
Neither the formal semantics nor the implementation are included here due to lack
of space.



FoCs 541

example of a scenario to cover is: a snoop event happens twice between
read and write, which can be formulated in RCTL as follows:

{∗, read, {!snoop∗, snoop, !snoop∗, snoop} & {!write∗} } → {cover}
A special case of coverage analysis is detection of simulation vacuity. While

vacuity in model checking is defined as a failure of a subformula to influence
the model checking results [BBER97], simulation vacuity refers to the failure of
a set of tests to trigger a functional checker, which means that the checker did
not influence simulation results. To detect simulation vacuity, FoCs attaches a
coverage checker to each functional checker it generates; the coverage checker
indicates whether the functional checker was triggered in at least one simulation
run.

5 Experience

The FoCs toolset has been deployed in several projects in IBM, notably in the
GigaHertz processor development effort in Austin and in the IBM Haifa ASIC
development laboratory. FoCs has also been successfully used by the formal
verification team of Galileo Technology, Inc. The experience with FoCs in these
projects has been very favorable in terms of verification cost and quality. Using
FoCs, verification effort was reduced - reportedly by up to 50% - by using the
same formal rules for model checking at the unit level and for simulation analysis
in the subsystem and system levels. This reduction was achieved despite the fact
that the addition of checkers increases simulation time considerably (up to a
factor of two). Thousands of FoCs checkers were written so far by virtue of the
great ease of writing RCTL specifications and translating them to FoCs checkers.

6 Related Work

In a previous work, Kaufmann et al [KMP98] described an approach to verifi-
cation in which all specifications and assumptions have the form AG(p), where
p is a Boolean formula. Both specifications and assumptions of this form can
be used in simulation, with specification being translated into simple checkers,
and assumptions being translated into testbench code which avoids leading the
simulation into undesired states.

Canfield et al [CES97] describe a platform called Sherlock, aiming to serve
both model checking (through translation to CTL) and simulation. Sherlock in-
cludes a high level language for specifying reactive behavior, while we use RCTL
- a regular expression based language. While Sherlock postprocesses simulation
traces, our method works during simulation. No experience has been described
in [CES97]. Our own experience has demonstrated that the simple, concise syn-
tax and semantics of RCTL, coupled with online simulation checking, is highly
useful to the verification teams with whom we work.



542 Y. Abarbanel et al.

Finally, in [SB+97], Schlipf et al describe a methodology and tool that inspi-
red our work. They unify formal verification and simulation efforts by automa-
tically translating state machines which represent the environment specification
either to simulation behavioral models or to input for a model checker. Boo-
lean assertions attached to the state machines serve as AG(p) formulas in model
checking or Assert(p) in simulation. In contrast, our solution represents the spe-
cification as temporal logic formulas rather than state machines, for the sake of
conciseness and readability.

7 Future Plans

Although focused on checker generation for functional testing and coverage ana-
lysis, we view FoCs as a step towards a full methodology of ”Formal Specification,
Design and Verification”. We intend to provide a set of integrated, complemen-
tary tools that will facilitate the use of formal specification for multiple purposes.
Once written, the formal specification will:
- Serve as an executable specification; architects can experiment with it while
defining the specification
- Be used as a golden model to resolve ambiguities and misunderstandings during
the implementation stage
- Be translated into temporal formulas for model checking
- Be translated into simulation checkers
- Be used for derivation of coverage criteria
- Provide hints for automatic test generation
We believe that such a methodology, once supported by the appropriate tools,
will significantly contribute to the quality and efficiency of the design process.

References

[BBEL96] I. Beer, S. Ben-David, C. Eisner, A. Landver, ”RuleBase: an Industry-
Oriented Formal Verification Tool”, Proc. DAC’96, pp. 655-660.

[BBER97] I. Beer, S. Ben-David, C. Eisner, Y. Rodeh, ”Efficient Detection of Va-
cuity in ACTL Formulas”, CAV’97, LNCS 1254, pp. 279-290.

[BBL98] I. Beer, S. Ben-David, A. Landver, ”On-The-Fly Model Checking of
RCTL Formulas”, CAV’98, LNCS 1427, pp. 184-194.

[CES97] W. Canfield, E.A. Emerson, A. Saha, ”Checking Formal Specifications
under Simulations” Proc. ICCD’97.

[GB+99] D. Geist, G. Biran, T. Arons, Y. Nustov, M. Slavkin, M. Farkash, K.
Holtz, A. Long, D. King, S. Barret, ”A Methodology for Verification of
a System on Chip”, Proc. DAC’99.

[KN96] M. Kantrowitz, L. M. Noack, ”I’m Done Simulating; Now What? Verifi-
cation Coverage Analysis and Correctness ”, Proc. DAC’96.

[KMP98] M. Kaufmann, A. Martin, C. Pixley, ”Design Constraints in Symbolic
Model Checking”, CAV ’98, LNCS 1427, pp. 477-487.

[SB+97] T. Schlipf, T. Buechner, R. Fritz, M. Helms and J. Koehl, ”Formal veri-
fication Made Easy”, IBM Journal of R&D, Vol. 41, No. 4/5 , 1997.


	Introduction and Motivation
	Tool Architecture and Implementation
	Example
	Using FoCs for Coverage Analysis
	Experience
	Related Work
	Future Plans



