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Abstract. Bounded Model Checking based on SAT methods has re-
cently been introduced as a complementary technique to BDD-based
Symbolic Model Checking. The basic idea is to search for a counter ex-
ample in executions whose length is bounded by some integer k. The
BMC problem can be efficiently reduced to a propositional satisfiabi-
lity problem, and can therefore be solved by SAT methods rather than
BDDs. SAT procedures are based on general-purpose heuristics that are
designed for any propositional formula. We show that the unique charac-
teristics of BMC formulas can be exploited for a variety of optimizations
in the SAT checking procedure. Experiments with these optimizations on
real designs proved their efficiency in many of the hard test cases, com-
paring to both the standard SAT procedure and a BDD-based model
checker.

1 Introduction

The use of SAT methods for Symbolic Model Checking has recently been intro-
duced in the framework of Bounded Model Checking [4]. The basic idea is to
search for a counter example in executions whose length is bounded by some
integer k. The BMC problem can be efficiently reduced to a propositional sa-
tisfiability problem, and can therefore be solved by SAT methods rather than
BDDs. SAT procedures do not suffer from the potential space explosion of BDDs
and can handle propositional satisfiability problems with thousands of variables.
The first experiments with this idea showed that if k is small enough, or if the
model has certain characteristics, it outperforms BDD-based techniques [9].

SAT procedures are based on general-purpose heuristics that are designed
for any propositional formula. In this paper we will show that the unique cha-
racteristics of BMC formulas can be exploited for a variety of optimizations
in the SAT checking procedure. These optimizations were implemented on top
of CMU’s BMC {4] and the SAT checker Grasp [11l12], without making use of
features that are unique to either one of them.

! We distinguish between the tool BMC and the method BMC.
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We benchmarked the various optimizations, and also compared them to re-
sults achieved by RuleBase, IBM’s BDD-based Model Checker [1l2]. RuleBase
is considered one of the strongest verification tools on the market, and inclu-
des most of the reductions and BDD optimizations that have been published
in recent years. The benchmark’s database included 13 randomly selected 'real-
life’ designs from IBM’s internal benchmark set. Instances trivially solved by
RuleBase are typically not included in this set, a fact which clearly creates a
statistical bias in the results. Thus, although we will show that in 10 out of the 13
cases the improved SAT procedure outperformed RuleBase, we can not conclude
from this that in general it is a better method. However, we can conclude that
many of the (BDD-based model checking) hard problems can easily be solved by
the improved SAT procedure. A practical conclusion is therefore that the best
strategy would be to run several engines in parallel, and then present the user
with the fastest result.

Our results are compatible with [5] in the sense that their experiment also
showed a clear advantage of SAT when k is small, and when the design has
specific characteristics that make BDDs inefficient. We found it hard to predict
which design can easily be solved by BMC, because the results are not strictly
monotonic in k or the size of the design. We have one design that could not
be solved with BMC although there was a known bug in cycle 14, and another
design which was trivially solved, although it included a bug only in cycle 38.
The SAT instance corresponding to the second design was 5 times larger than
the first one, in terms of number of variables and clauses. We also found that
increasing k in a given design can speed up the search. This can be explained,
perhaps, by the fact that increasing k can cause an increase in the ratio of
satisfying to unsatisfying assignments.

The rest of this paper is organized as follows: in the next two sections we
describe in more detail the theory and practice of BMC and SAT. In Section
we describe various BMC-specific optimizations that we applied to the SAT pro-
cedure. In sections [5] and [f] we list our experimental results, and our conclusions
from them.

2 BMC - The Tool and the Generated Formulas

The general structure of an AGp formula, as generated in BMC, is the following:

k—1 k
p: IoA N el i+ 1) A\ ~ P) (1)
=0 =0

where Ij is the initial state, p(i,7 + 1) is the transition between cycles ¢ and
1+ 1, and P; is the property in cycle ¢. Thus, this formula can be satisfied iff
for some ¢ (i < k) there exists a reachable state in cycle ¢ which contradicts the
property P;. Focusing on potential bugs in a specific cycle can be formulated by
simply restricting the disjunction over P; to the appropriate cycle. BUC takes an
SMV - compatible model and generates a propositional SAT instance according
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to Equation (). The size of the generated formula is linear in &, and indeed
empirical results show that k strongly affects the performance. As a second step,
BMC transforms the formula to CNF. To avoid the potential exponential growth
of the formula associated with this translation, it adds auxiliary variables, and
performs various optimizations.

Every ACTL* formula (the subset of CTL* that contain only universal path
quantifiers) can be reduced to a SAT instance, under bounded semantics [4].
While all safety properties can be expressed in the form of AGp [3], to handle
temporal operators such as AFp, BMC adds to ¢ the disjunction \/,_, ,_; p(k, 1),
thus capturing the possibility of a loop in the state transition graph. Fairness
is handled by changing the loop condition to include at least one state which
preserves the fairness condition.

3 SAT Checkers and Grasp

In this section we briefly outline the principles followed by modern propositional
SAT-checkers, and in particular those that Grasp (Generic seaRch Algorithm
for the Satisfiability Problem) is based on. Our description follows closely the
one in [TT].

Most of the modern SAT-checkers are variations of the well known Davis-
Putnam procedure [[7]. The procedure is based on a backtracking search algo-
rithm that, at each node in the search tree, chooses an assignment (i.e. both a
variable and a Boolean value, which determines the next subtree to be traver-
sed) and prunes subsequent searches by iteratively applying the unit clause rule.
Iterated application of the unit clause rule is commonly referred to as Boolean
Constraint Propagation (BCP). The procedure backtracks once a clause is found
to be unsatisfiable, until either a satisfying assignment is found or the search tree
is fully explored. The latter case implies that the formula is unsatisfiable.

A more generic description of a SAT algorithm was introduced in [1I]. A
simplified version of this algorithm is shown in Fig. [Il

At each decision level d in the search, a variable assignment Vy = {T, F'}
is selected with the Decide () function. If all the variables are already decided
(indicated by ALL-DECIDED), it implies that a satisfying assignment has been
found, and SAT returns SATISFIABLE. Otherwise, the implied assignments are
identified with the Deduce() function, which in most cases corresponds to a
straightforward BCP. If this process terminates with no conflict, the procedure
is called recursively with a higher decision level. Otherwise, Diagnose () analyzes
the conflict and decides on the next step. First, it identifies those assignments
that led to the conflict. Then it checks if the assignment to Vy is one of them.
If the answer is yes, it implies that the value assigned to V; should be swapped
and the deduction process in line I3 is repeated. If the swapped assignment also
fails, it means that V; is not responsible for the conflict. In this case Diagnose ()
will indicate that the procedure should BACK-TRACK to a lower decision level 8
(8 is a global variable that can only be changed by Diagnose () ). The procedure
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// Input arg: Current decision level d

// Return value:

//  SAT(): {SATISFIABLE, UNSATISFIABLE}
// Decide(): {DECISION, ALL-DECIDED}

//  Deduce(): {0K, CONFLICT}

//  Diagnose():{SWAP, BACK-TRACK}

SAT (d)

{
ly: if (Decide (d) == ALL-DECIDED) return SATISFIABLE;
la: while (TRUE) {
l3: if (Deduce(d) '= CONFLICT) {
la: if (SAT (d+ 1) == SATISFIABLE) return SATISFIABLE;
ls: else if (8<d || d==0) // B is calculated in Diagnose()
le: { Erase (d); return UNSATISFIABLE; }

}
l7: if (Diagnose (d) == BACK-TRACK) return UNSATISFIABLE;
}
}

Fig. 1. Generic backtrack search SAT algorithm

will then backtrack d — 3 times, each time Erase ()-ing the current decision and
its implied assignments, in line [g.

Different SAT procedures can be modeled by this generic algorithm. For
example, the Davis-Putnam procedure can be emulated with the above algorithm
by implementing BCP and the pure literal rule in deduce (), and implementing
chronological backtracking (i.e. 8 = d—1) in diagnose (). Modern SAT checkers
include Non-chronological Backtracking search strategies (i.e. § = d — j,j >
1). Hence, irrelevant assignments can be skipped over during the search. The
analysis of conflicts can also be used for adding new constraints (called conflict
clauses) on the search. These constraints prevent the repetition of assignments
that lead to conflicts. This way the search procedure backtracks immediately if
a ’bad’ assignment is repeated. For example, if Diagnose () concludes that the
assignment x = T,y = F, z = F inevitably leads to a conflict, it adds the conflict
clause 1 = (~zVy V z) to p.

From the large number of decide () strategies suggested over the years, ex-
periments with Grasp have demonstrated that the Dynamic Largest Individual
Sum (DLIS) has the best average results [I0]. DLIS is a rather straightforward
strategy: it chooses an assignment that leads to the largest number of satisfied
clauses. In this research we only experimented with DLIS, although different
problem domains may be most efficiently solved with different strategies.
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4 Satisfiability Checking of BMC Formulas

In this section we describe various BMC-specific optimizations that have been
implemented on top of Grasp. Many of the optimizations deal with familiar
issues that are typically associated with BDDs: variable ordering, direction of
traversal (backward Vs. forward), first subtree to traverse, etc.

4.1 Constraints Replication

The almost symmetric structure of Equation () can be used for pruning the
search tree when verifying AGp formulas. In the following discussion let us first
ignore Iy, and assume that ¢ is fully symmetric.

Conflict clauses, as explained in Section B, are used for pruning the search
tree by disallowing a conflicting sequence (i.e. an assignment that leads to an un-
satisfied clause) to be assigned more than once. We will use the alleged symmetry
in order to add replicated clauses, which are new clauses that are symmetric to
the original conflict clause. Each of these clauses can be seen as a constraint on
the state-space which, on the one hand preserves the satisfiability of the formula
and, on the other hand, prunes the search tree.

Let us illustrate this concept by an example. Suppose that deduce() con-
cluded that the assignment z4, = T,y7; = F,z5 = F always leads to a conflict
(the subscript number in our notation is the cycle index that the variable refers
to). In this case it will add the conflict clause 7 = (~ x4 V y7 V 25) to p. We
claim that the symmetry of Equation () implies that, for example, the assign-
ment x3 = T,ys = F,z4 = F will also lead to a conflict, and we can therefore
add the replicated clause m1 = (~ x3 V yg V 24) to ¢. Let us now generalize this
analysis. Let 0 be the difference between the largest and lowest index of the
variables in 7 (in our case d =7 —4 = 3). For all 0 <i < k — J, the assignment
x; =T,y;43 = F, z;41 = F will also result in a conflict and we can therefore add
the replicated clause m; = (~ ; V yit3 V 2it1)-

Yet, ¢ is not fully symmetric. ¢ is not fully symmetric because of I, and
because of the Bounded Cone of Influence reduction [5] B. The BCOI reduction
eliminates variables that are not affecting the property up to cycle k. It can eli-
minate, for example, z; for k —3 < ¢ < k and y; for £ —5 < j < k. Consequently
cycle k—5 will not be symmetric anymore to cycle k— 3 in ¢. Typically variables
are eliminated only from the right hand side, i.e., if a variable xj is not elimina-
ted, than for all ¢ < k, z; is also not eliminated. In the following discussion we
concentrate on this typical case. Minor adjustments are needed for the general
case.

There are two options to handle the asymmetry caused by the BCOI reduc-
tion. One option is to restrict the replicated clauses to 0 < i < k— 4§ — A, where

2 This is in addition to several other manipulations that BMC performs on ¢ which are
easy to overcome, and will not be listed here.
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A is the number of cycles affected by the BCOI reduction. Another option is to
add replicated clauses as long as all their variables are contained in the BCOI.
The second option can be formalized as follows. Let C' be the set of variables
in the conflict clause. For a variable o € C', denote by k, < k the highest index
s.t. ok, is a variable in ¢ (without the BCOI reduction, k, = k for all variables)
and by i, the index of o in C. Also, let minc = min{i, } and ¢ = min{(k, —i,)}
for all o € C. Intuitively, 1 is the maximum number of clauses we can add to
the 'right’ (i.e. with a higher index) of the conflict clause. We now add replicated
clauses s.t. the variable ¢ for which i, = min, ranges from 0 to mingc + .

Ezample 1. For the conflict clause m = (~ x4V y; V 2z5), we have C = {x4,y7, 25}
and minc = 4. Suppose that k, = 5,k, = 10 and k., = 7. Also, suppose that
k =10 and A =5 (since k; = 5, A has to be greater or equal to (10 — 5) = 5).
According to the first option, z will range from 0 to (10 —5— (7 —4)) = 2. Thus,
the replicated clauses will be (~ 2oV y3V z1)...(~ x2 V y5 V 23). According to
the second option, we calculate ¢» = min((5 —4),(10 — 7),(7 — 5)) = 1, and
therefore x will range from 0 to (4 + 1) = 5. Thus, this time the right most
clause will be (~ x5 V ys V zg). O

Example [[]demonstrates that the second option allows for more replicated clau-
ses to be added, and is therefore preferable.

The influence of I is not bounded, and can propagate up to cycle k. Therefore
a simple restriction on the replicated clauses is insufficient. A somewhat ’brute-
force’ solution is to simulate an assignment for every potential replicated clause,
(i.e. assign values that satisfy the complement of m;) and check if it leads to
a conflict. The overhead of this option is rather small, since it only requires to
assign |m;| variables and then deduce () once. If this results in a conflict, we can
add m; to the formula. However, the addition of wrong clauses can only lead to
false positives, and therefore we can skip the simulation and refer to constraint
replication as an under approximation method (this also implies that for the
purpose of faster falsification, many other under approximation heuristics can
be implemented by adding clauses to ¢). Hence, we can first skip the simulation,
and only if the formula is unsatisfiable, run it again with simulation.

The overhead of adding and simulating the replicated clauses is small in
comparison to its benefit. In all the test cases we examined, as will be shown in
Section [B] the replicated clauses accelerated the search, although not dramati-
cally.

4.2 Static Ordering

The variable ordering followed by dynamic decide() procedures (such as the
previously mentioned DLIS strategy) is constructed according to various 'greedy’
criteria, which do not utilize our knowledge of ¢’s structure. A typical scenario
when using these procedures, in the context of BMC formulas, is that large sets of
clauses associated with distant cycles are being satisfied independently, until they
‘collide’, i.e. it is discovered that the assignments that satisfied them contradict
each other. Fig. ] demonstrates this scenario, by showing two distant sets of
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assigned variables (around the 5" and 20" cycles), that grow independently
until at some point they collide. Similarly, they can collide with the constraints
imposed by the initial state Iy or the negation of the property in cycle k. To
resolve this conflict, it may be necessary to go back hundreds of variables up
the decision tree. We claim that this phenomena can potentially be avoided by
guiding the search according to the (k-unfolding of the) Variable Dependency
Graph (VDG). This way conflicts will be resolved on a more 'local’ level, and
consequently less time will be wasted in backtracking.

I conflict -P,

Vs Vao

Fig. 2. With default dynamic ordering strategies, it is common that distant sets of
variables are assigned values independently. We refer the reader to a technical report
[9], where we show snapshots of the number of variables from each cycle that are
assigned a value at a given moment. These charts prove that this phenomena indeed
occur when using these strategies.

The most natural way to implement such a strategy is to predetermine a static
order, following either a forward or a backward Breadth - First Search (BFS)
on VDG. Indeed, our experiments have shown that in most cases this strategy
speeds up the search.

Ordering strategies. We now investigate variations of the BFS strategy. Let
us first assume that we are looking for a counter example in a particular cycle k.
In this case a strict backward traversal may spend a significant amount of time
in paths which include unreachable states. This fact will be revealed only when
the search reaches Iy (we denote the set of variables in a sub-formula v by 9 ),
which is placed last in the suggested order. Enforcing a static forward traversal,
on the other hand, may result in a prolonged search through legal paths (i.e.
paths that preserve the property), that will be revealed only when Py is decided
(these are the two 'walls’ in Fig.[2). A similar dilemma is associated with BDD-
based techniques (see for example [6] and [8]). It seems that the (unknown) ratio
between the number of paths that go through unreachable states and the number
of legal paths is crucial for determining the most efficient direction of traversal
in both methodologies.

The strict backward or forward BFS causes the constraints, either on the
first or the k-th cycle, to be considered only in a very 'deep’ decision level, and
the number of backtracks will consequently be very high, sometimes higher than
the default dynamic strategies. Another problem with straight BFS results from
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the very large number of variables in each cycle. Typically there are hundreds
or even thousands of variables in each cycle. It creates a large gap between each
variable and its immediate neighbors in VDG, and therefore conflicts are not
resolved as locally as we would like to.

These two observations indicate that the straightforward BFS solution should
be altered. On the one hand, we should keep a small distance between P, and
Py, and on the other hand we should follow VDG as close as possible. This
strategy can be achieved, for example, by triggering the BFS with a set S of
small number of variables from each cycle. As a minimum, it has to include P}
(otherwise not all the variables will be covered by the search). Different strategies
can be applied for choosing the variables from the other cycles. For example, we
can choose P; for all ZE

When we generalize our analysis and assume that we are looking for a counter
example in the range 0..k, the set S := (Jy<; < P; is the smallest initial set which
enables the BF'S procedure to cover the full set of variables in a single path. Initial
sets smaller than S will require more than one path. This will split the set of
variables of each cycle into a larger number of small sets, and consequently create
a big gap between them (i.e. between each node and its siblings on the graph).
If two such distant siblings are assigned values which together contradict their
parent node, then the backtrack ’jump’ will be large. Increasing S, on the other
hand, will create a large gap between neighboring variables on VDG (i.e. between
a node and its sons on the graph). This tradeoff indicates that a single optimal
heuristic for all designs probably does not exist, and that only experiments can
help us to fine-tune S.

There are, of course, numerous other possible ordering strategies. Like BDDs,
on the one hand it has a crucial influence on the procedure efficiency, and on the
other hand, an ordering heuristic which is optimal for all designs is hard to find.

Unsatisfiable instances. A major consideration in designing SAT solvers,
is their efficiency in solving unsatisfiable instances. Although the various opti-
mizations (e.g. conflicting clauses, non-chronological backtracking) are helpful
in these cases as much as they are with satisfiable instances, while satisfiable
instances can be solved fast by a good ’guess’ of assignments, an instance can be
proven to be unsatisfiable only after an exhaustive exploration of the state-space.

We now show that the order imposed by the previously suggested backward
BFS is particularly good for unsatisfiable BMC-formulas. In the following dis-
cussion we denote ¢’s sub-formulas \/,_, , ~ P; and /\i:ol p(i,i+1) by P and
p respectively.

Let us assume that the property holds up to cycle k, and consequently ¢
is unsatisfiable. Since the transition relation p is consistent [, a contradiction
in ¢ will not be found before the first variables from P are decided. Yet, since

3 This is not always possible because for i < k, P; might be removed by the BCOI
reduction.

4 Inconsistent transition relations can occur, but typically can also be trivially detec-
ted.
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typically |P| < |p|, it is possible that the search will backtrack on p’s variables
for a very long time before it reaches P. Thus, by forcing the search to begin
with P, we may be able to avoid this scenario. However, starting from P is not
necessarily enough, because this way we only shift the problem to the variables
that define P. It is clear that a BFS backwards on the dependency graph, from
the property variables to the initial state is a generalization of this idea and
should therefore speed up the proof of unsatisfiability.

4.3 Choosing the Next Branch in the Search Tree

The proposed static ordering does not specify the Boolean value given to each
variable. This is in contrast to the dynamic approach where this decision is
implicit. Here are four heuristics that we examined:

1. Dynamic decision. The value is chosen according to one of the dynamic
Decide() strategies, which are originally meant for deciding both on the
variable and its value. For example, the DLIS strategy chooses the value
that satisfies the largest number of clauses.

2. Constant, or random decision. The most primitive decision strategy is to
constantly assign either 0’ or ’1’ to the chosen variable, or alternatively, to
choose this value randomly. As several experiments have shown in the past
[10], choosing a random or a constant value is not apriori inferior to dynamic
decision strategies as one might expect. Any dynamic decision strategy can
lead to the 'wrong side of the tree’, i.e. can cause the search to focus on
an unsatisfiable sub-tree. Apparently constant or random decisions in many
cases avoid this path and consequently speed up the search.

3. Searching for a flat counter example. Analysis of bugs in real designs, leads
to the observation that most of them can be reached by computations which
are mostly 'flat’, i.e. computations where the frequency in which the majority
of the variables swap their values is low. This phenomenon can be exploited
when ’guessing’ the next subtree to be traversed. Suppose that the Decide ()
function chose to assign a variable z; for some 0 < i < k. Let x; and x, be
the left and right closest neighboring variables of x; that are already assigned
a value at this point (if no such variable exists, we will say that z;, or z,,
is equal to L). To construct a flat counter example, if x; = x, we will
assign x; their common value. The following simple procedure generalizes
this principle:

|l = largest number s.t. [ <+¢ and z; is assigned.
r = smallest number s.t. r > ¢ and z, is assigned.
if Xy #J_
if (z; =, || zr =L1) return x;; else return {T,F};
else
if (z, #1) return z,; else return {T,F};

The non-deterministic choice can be replaced by one of the heuristics that
were suggested above (e.g. dynamic, constant).
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4. Repeating previous assignments. When the search engine backtracks from
decision level d to (3, all the assignments that are either decide()d or
deduce () d between these two levels are undone by erase (). We claim that
repeating previous assignments can reduce the number of backtracks. This
is because we know that all assignments between levels 3+ 1 and d do not
contradict one another nor do they contradict the assignments with decision
level lower than (3 (otherwise the procedure would backtrack before level d).
In order to decide on each variable’s value for the first time, this strategy
should be combined with one of the strategies that were described before.

4.4 A Combined Dynamic and Static Variable Ordering

The static ordering can be combined in various ways with the more traditional
dynamic procedures. We have implemented two such strategies:

1. Two phase ordering. The static traversal is used for the first maz variables,
and then the variables are Decide ()-d dynamically.

2. Sliding window. Variables are chosen dynamically from a small set of varia-
bles, corresponding to a 'window’ which progresses along the static order that
we chose. Let V' : vy..v,, be the static variable ordering, and let V' : vf..v},
be the (ordered) subset of V’s variables that are currently not assigned a
value. Let 1 < w < k be an arbitrary number denoting the window size. In
each step, a variable is dynamically chosen from the set of variables that are
within the borders of the window [v] — v],]. Note that the two extreme ends
of w, namely w = 1 and w = k, correspond to the pure static and dynamic
orderings, respectively.

4.5 Restricting Decide() to Dominating Variables

While ¢ typically contains tens of thousands of variables, not more than 10%-
20% of them are the actual model’s variables. The other 80% are auxiliary va-
riables that were added to ¢ in order to generate a compact CNF formula. It is
clear that the model’s variables are sufficient for deciding the satisfiability of the
formula, and therefore it should be enough to decide() only them (however,
if the formula has more than one satisfying assignment, some of the auxiliary
variables should be assigned too). The same argument can be applied to a much
smaller set of variables: the inputs. The input variables are typically less than
5% of the total number of variables, and can determine alone the satisfiability
of the formula?. Thus, if we restrict Decide () to one of these small sets, we po-
tentially reduce the depth of the decision tree, on the expense of more deduce ()
operations.

5 Here we assume that all non-deterministic assignments are replaced by conditional
assignments, where the ’guard’ of the condition is a new input variable.
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5 Experimental Results

The Benchmark included 13 designs, on a 'one property per design’ base. The
properties were proven in the past to be false, and the cycle in which they
fail was known as well. Thus, the Benchmark focuses on a narrow view of the
problem: the time it takes to find a bug in cycle k, when k is pre-known. The
iterative process of finding k is, of course, time consuming, which might be more
significant than any small time gap between BMC and regular model checking.

The results presented in Fig. Blsummarize some of the more interesting con-
figurations which we experimented with. In Fig.[d we present more information
regarding the SAT instance of each case study (the no. of variables and clauses)
as well as some other Grasp configurations which were generally less successful.
The right-most column in this figure includes the time it takes to prove that there
is no bug up to cycle k — 1, with the SM configuration. These figures are im-
portant for evaluating the potential performance differences between satisfiable
and unsatisfiable instances.

We present results achieved by RuleBase under two different configurations.
RB1 is the default configuration, with dynamic reordering. RB2 is the same
configuration without reordering, but the initial order is taken from the order
that was calculated with RB1. These two configurations represent a typical
scenario of Model-Checking with RuleBase. Each time reordering is activated,
the initial order is potentially improved and saved in a special order file for future
runs. Thus, RB2 results can be further improved.

RuleBase results are compared with various configurations of Grasp, where
the first one is simply the default configuration without any of the suggested
optimizations.

The following table summarizes the various configurations, where the left
part refers to Fig. Bl and the right part to Fig. [t

Grasp|+R |4+SM|4+SMF|+SMR|+SMP||+SMD|+W;
Ordering: Dyn | Dyn| Stat | Stat Stat Stat Stat | Win i

Value: Dyn | Dyn| 1 Flat 1 Prev Dyn | Dyn
Variable set:| All | All |Model] Model | Model | Model || Model |Model
Replication: | No | Yes| No No Yes No No No

The Stat ordering refers to the static order suggested in Section L2, whereas
Dyn is the default dynamic decision strategy adopted by Grasp (DLIS). The
Win i refers to a combined dynamic and static ordering, where variables within
a window of size i are selected dynamically, as explained in Section[4.4. The ’1’,
Flat and Prev default values refer to the constant, flat and previous values sug-
gested in Section €3] (in +SMP we combined the Prev strategy with the default
value '1’). The Model variable set refers to a restriction on decide () to model
variables only, as described in Section 45 The Replication refers to constraint
replication and simulation, as explained in Section Bl All configurations include
the flag '+g60’, which restricts the size of the conflict clauses (and consequently
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also the size of the replicated clauses) to 60 literals. Other than very few cases,
all the other possible configurations did not perform better than those that are
presented.

The test cases in the figure below are separated into two sets: the 10 designs
in the first set demonstrate better results for the optimized SAT procedure, and
the 3 designs in the second set demonstrate an advantage to the BDD-based
procedure. Both sets are sorted according to the RB1 results.

Design #|K|RB1|RB2|Grasp|+R |+SM|+SMF|+SMP|+SMR
1 18| 7 6 282 | 115 3 57 29 4.1
2 5| 70 8 1.1 |1.1] 0.8 1.1 0.7 0.9
3 14| 597 | 375 | 76 | 52 3 2069 3 3
4 24| 690 | 261 | 510 [225| 12 27 12 12
5 12| 803 | 184 24 24 2 2 2 3
6 22| * | 356 * * 18 16 38 18
7 9| * |2671| 10 | 10 2 1.8 1.9 2
8 35| * * 16317 |2870| 20 338 101 74
9 38| * * 19035 | * 25 277 126 96
10 31 * * *19910( 312 22 64 330
11 32| 152 | 60 * * * * * *
12 31{1419(1126| * * * * * *
13 14| * [3626| * * * * * *

Fig. 3. Results table (Sec.). Best results are bold-faced. Asterisks (*) represent run
times exceeding 10,000 sec.

Remarks for Figures [3] and M

1. The time required by BMC to generate the formula is not included in the re-
sults. BMC generates the formula typically in one or two minutes for the large
models, and several seconds for the small ones. While generating the formula,
the improved BMC generate several files which are needed for performing the
various optimizations.

2. RuleBase supports multiple engines. The presented results were achieved
by the ’classic’ SMV-based engine. Yet, a new BDD-based engine that was
recently added to RuleBase (January 2000), performs significantly better on
some of these designs. This engine is based on sophisticated under and over
approximation methods that were not yet published.

3. When comparing RuleBase results to BMC results, one should remember
that the former has undergone years of development and optimizations,
which the latter did not yet enjoy. The various optimizations that have
been presented in this paper can be further improved and tuned. Various
combinations of the dynamic and static orderings are possible, and it is ex-
pected that more industrial experience will help in fine tuning them. The
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Design #| vars |clauses|+SM|+SMD|+Wso|+Wigo|+Wago |[+SM (k — 1)
1 9685 | 55870 3 36 46 46 51 20
2 3628 | 14468 | 0.8 0.7 0.7 0.7 0.8 0.4
3 14930( 72106 3 1216 8 3 17 934
4 28161| 139716 | 12 26 31 42 61 26
5 9396 | 41207 2 3 2 3 3 1
6 51654| 368367 | 18 243 111 418 950 28
7 8710 | 39774 2 1.8 2.5 1.9 2.8 1.3
8 58074| 294821 | 20 123 163 86 105 30
9 63624| 326999 | 25 136 164 153 181 230
10 61088| 334861 | 312 125 70 107 223 1061
11 32109| 150027 * * * * * *
12 39598| 19477 * * * * * *
13 13215 6572 * * * * * *

Fig. 4. Other, less successful configurations

implementation of the SAT checker Grasp can also be much improved even
without changing the search strategy. It was observed by [10] that an efficient
implementation can be more significant than the decision strategy.

6 Conclusions

1. Neither BDD techniques nor SAT techniques are dominant. Yet, in most
(10 out of 13) cases the optimized SAT procedure performs significantly
better. As was stated before, only significant differences in performance are
meaningful, because normally k is not pre-known. Such differences exist in
8 of the 10 cases.

2. The SM, SMP and SMR strategies are better in all cases compared to the
default procedure adopted by Grasp. The SM strategy seems to be the best
one.

3. The static ordering apparently has a stronger impact on the results than the
strategy for choosing the next subtree. This can be explained by the fact that
wrong choices of values are corrected ’locally’ when the variable ordering
follows the dependency graph, as was explained before. Surprisingly, the
constant decision "TRUE’, which is the most primitive strategy, proved to be
the most efficient (in another experiment we tried to solve design #10, which
is the only one that is solved significantly better by other configurations,
with a constant decision 'FALSE’. It was solved in about 3 seconds, faster
than all other configurations). The 'flat’ decision strategy performed better
only in three cases. The "Prev’ decision was better than 'flat’ in 6 designs,
but only once better than the simple constant decision. Yet, it seems to be

5 In [M], SATO [13] was used rather than Grasp. Although in some cases it is faster
than Grasp, it is restricted in the number of variables it can handle, and seems to
be less stable.
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more stable in achieving fast results than both of them. As for the sliding
window strategy, Fig. @l shows that in most cases increasing the window size
only slows down the search. The surprising success of the constant decision
strategy can perhaps be attributed to its zero overhead. It can also indicate
that most bugs in hardware designs can be revealed when the majority of
the signals are 'on’. Only further experiments can clarify if this is a general
pattern or an attribute of the specific designs that were examined in the
benchmark.

4. Constraint replication (+simulation) requires a small overhead, which does
not seem to be worthwhile when used in combination with static ordering.
Yet, it speeds up the standard search based on dynamic ordering.

This can be explained by the inherent difference between dynamic and static
orderings: suppose that the assignment x1 = T and ys9 = F leads to a
conflict, and suppose that their associated decision levels were 10 and 110
respectively when the conflict clause (—z1 V ya0) was added to ¢. In static
ordering, the decision level for each variable remains constant. As a result,
even if the search backtracks to a decision level lower than 10, the conflict
clause will not be effective until the search once again arrives at decision
level 110. In dynamic ordering, on the other hand, there is a chance that
these two variables will be decided much closer to each other, and therefore
the clause will prune the search tree earlier.

Another reason for the difference is related to the typical sizes of backtracking
in each of the methods. Since conflicts are resolved on a more "local’ level
in the SM strategy, conflict clauses (either the original ones or the replica-
ted clauses) are made of variables which are relatively close to each other
in terms of their associated decision level. Therefore the non-chronological
backtracking 'jump’ caused by these clauses is relatively small.

5. Both SAT methods and BDD based methods do not have a single dominant
configuration. BDDs can run with or without reordering, with or without
conjunctive partitioning, etc. As for SAT methods, all the optimizations de-
scribed in Section [4] can be activated separately, and indeed, as the results
table demonstrate, different designs are solved better with different con-
figurations. Given this state of affairs, the most efficient solution, as was
mentioned in the introduction, would be to run several engines in parallel
and present the user with the fastest solution. This architecture will not only
enable the users to run SAT and BDD based tools in parallel, but also to
run these tools under different configurations in the same time, which will
obviously speed up the process of model checking.
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