
Are Timed Automata Updatable?

Patricia Bouyer, Catherine Dufourd,
Emmanuel Fleury, and Antoine Petit�

LSV, CNRS UMR 8643, ENS de Cachan,
61 Av. du Président Wilson,

94235 Cachan Cedex, France

{bouyer, dufourd, fleury, petit}@lsv.ens-cachan.fr

Abstract. In classical timed automata, as defined by Alur and Dill

[AD90,AD94] and since widely studied, the only operation allowed to
modify the clocks is the reset operation. For instance, a clock can neither
be set to a non-null constant value, nor be set to the value of another
clock nor, in a non-deterministic way, to some value lower or higher than
a given constant. In this paper we study in details such updates.

We characterize in a thin way the frontier between decidability and un-
decidability. Our main contributions are the following :

- We exhibit many classes of updates for which emptiness is undecid-
able. These classes depend on the clock constraints that are used –
diagonal-free or not – whereas it is well known that these two kinds
of constraints are equivalent for classical timed automata.

- We propose a generalization of the region automaton proposed by
Alur and Dill, allowing to handle larger classes of updates. The
complexity of the decision procedure remains Pspace-complete.

1 Introduction

Since their introduction by Alur and Dill [AD90,AD94], timed automata are
one of the most studied models for real-time systems. Numerous works have been
devoted to the “theoretical” comprehension of timed automata and their exten-
sions (among a lot of them, see [ACD+92], [AHV93], [AFH94], [ACH94], [Wil94],
[HKWT95], [BD00], [BDGP98]) and several model-checkers are now available
(HyTech

1 [HHWT95,HHWT97], Kronos
2 [Yov97], Uppaal

3 [LPY97]). These
works have allowed to treat a lot of case studies (see the web pages of the tools)
and it is precisely one of them – the ABR protocol [BF99,BFKM99] – which has
motivated the present work. Indeed, the most simple and natural modelization
of the ABR protocol uses updates which are not allowed in classical timed au-
tomata, where the only authorized operations on clocks are resets. Therefore we

� This work has been partly supported by the french project RNRT “Calife”
1 http://www-cad.eecs.berkeley.edu/~tah/HyTech/
2 http://www-verimag.imag.fr/TEMPORISE/kronos/
3 http://www.docs.uu.se/docs/rtmv/uppaal

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 464–479, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Are Timed Automata Updatable? 465

have considered updates constructed from simple updates of one of the following
forms:

x :∼ c | x :∼ y + c, where x, y are clocks, c ∈ Q+, and ∼∈ {<,≤, =, �=,≥, >}
More precisely, we have studied the (un)decidability of the emptiness problem
for the extended timed automata constructed with such updates. We call these
new automata updatable timed automata. We have characterized in a thin way
the frontier between classes of updatable timed automata for which emptiness
is decidable or not. Our main results are the following :

- We exhibit many classes of updates for which emptiness is undecidable. A
surprising result is that these classes depend on the clock constraints that are
used – diagonal-free (i.e. where the only allowed comparisons are between a
clock and a constant) or not (where the difference of two clocks can also be
compared with a constant). This point makes an important difference with
“classical” timed automata for which it is well known that these two kinds
of constraints are equivalent.

- We propose a generalization of the region automaton proposed by Alur and
Dill, which allows to handle large classes of updates. We thus construct an
(untimed) automaton which recognizes the untimed language of the consid-
ered timed automaton. The complexity of this decision procedure remains
Pspace-complete.
Note that these decidable classes are not more powerful than classical timed
automata in the sense that for any updatable timed automaton of such a
class, a classical timed automaton (with ε−transitions) recognizing the same
language – and even most often bisimilar – can be effectively constructed.
But in most cases, an exponential blow-up seems unavoidable and thus a
transformation into a classical timed automaton can not be used to obtain
an efficient decision procedure. These constructions of equivalent automata
are available in [BDFP00b].

The paper is organized as follows. In section 2, we present basic definitions of
clock constraints, updates and updatable timed automata, generalizing classical
definitions of Alur and Dill. The emptiness problem is briefly introduced in
section 3. Section 4 is devoted to our undecidability results. In section 5, we pro-
pose a generalization of the region automaton defined by Alur and Dill. We
then use this procedure in sections 6 (resp. 7) to exhibit large classes of updata-
ble timed automata using diagonal-free clock constraints (resp. arbitrary clock
constraints) for which emptiness is decidable. A short conclusion summarizes
our results.
For lack of space, this paper does not contain proofs which can be found in
[BDFP00a].

2 About Updatable Timed Automata

In this section, we briefly recall some basic definitions before introducing an ex-
tension of the timed automata, initially defined by Alur and Dill [AD90,AD94].

466 P. Bouyer et al.

2.1 Timed Words and Clocks

If Z is any set, let Z∗ (resp. Zω) be the set of finite (resp. infinite) sequences of
elements in Z. And let Z∞ = Z∗ ∪ Zω.
In this paper, we consider T as time domain, Q+ as the set of non-negative
rational and Σ as a finite set of actions. A time sequence over T is a finite or
infinite non decreasing sequence τ = (ti)i≥1 ∈ T∞. A timed word ω = (ai, ti)i≥1

is an element of (Σ × T)∞, also written as a pair ω = (σ, τ), where σ = (ai)i≥1

is a word in Σ∞ and τ = (ti)i≥1 a time sequence in T∞ of same length.
We consider an at most countable set X of variables, called clocks. A clock
valuation over X is a mapping v : X → T that assigns to each clock a time value.
The set of all clock valuations over X is denoted TX. Let t ∈ T, the valuation
v + t is defined by (v + t)(x) = v(x) + t, ∀x ∈ X.

2.2 Clock Constraints

Given a subset of clocks X ⊆ X, we introduce two sets of clock constraints over
X . The most general one, denoted by C(X), is defined by the following grammar:

ϕ ::= x ∼ c |x − y ∼ c |ϕ ∧ ϕ | ¬ϕ | true

where x, y ∈ X, c ∈ Q+, ∼ ∈ {<,≤, =, �=,≥, >}

We will also use the proper subset of diagonal-free constraints, denoted by
Cdf(X), where the comparison between two clocks is not allowed. This set is
defined by the grammar:

ϕ ::= x ∼ c |ϕ ∧ ϕ | ¬ϕ | true,

where x ∈ X, c ∈ Q+ and ∼ ∈ {<,≤, =, �=,≥, >}

We write v |= ϕ when the clock valuation v satisfies the clock constraint ϕ.

2.3 Updates

An update is a function from TX to P(TX) which assigns to each valuation a
set of valuations. In this work, we restrict ourselves to local updates which are
defined in the following way.

A simple update over a clock z has one of the two following forms:

up ::= z :∼ c | z :∼ y + d

where c ∈ Q+, d ∈ Q, y ∈ X and ∼ ∈ {<,≤, =, �=,≥, >}

Let v be a valuation and up be a simple update over z. A valuation v′ is in up(v)
if v′(y) = v(y) for any clock y �= z and if v′(z) verifies:

{
v′(z) ∼ c if up = z :∼ c
v′(z) ∼ v(y) + d if up = z :∼ y + d

Are Timed Automata Updatable? 467

A local update over a set of clocks X is a collection up = (upi)1≤i≤k of simple
updates, where each upi is a simple update over some clock xi ∈ X (note that
it could happen that xi = xj for some i �= j). Let v, v′ ∈ Tn be two clock
valuations. We have v′ ∈ up(v) if and only if, for any i, the clock valuation v′′

defined by {
v′′(xi) = v′(xi)
v′′(y) = v(y) for any y �= xi

verifies v′′ ∈ upi(v). The terminology local comes from the fact that v′(x) depends
on x only and not on the other values v′(y).

Example 1. If we take the local update (x :> y, x :< 7), then it means that the
value v′(x) must verify : v′(x) > v(y)∧v′(x) < 7. Note that up(v) may be empty.
For instance, the local update (x :< 1, x :> 1) leads to an empty set.

For any subset X of X, U(X) is the set of local updates which are col-
lections of simple updates over clocks of X . In the following, we need
to distinguish the following subsets of U(X) :

- U0(X) is the set of reset updates. A reset update up is an update such that
for every clock valuations v, v′ with v′ ∈ up(v) and any clock x ∈ X , either
v′(x) = v(x) or v′(x) = 0.

- Ucst(X) is the set of constant updates. A constant update up is an update
such that for every clock valuations v, v′ with v′ ∈ up(v) and any clock
x ∈ X , either v′(x) = v(x) or v′(x) is a rational constant independent of
v(x).

2.4 Updatable Timed Automata

An updatable timed automaton over T is a tuple A = (Σ, Q, T, I, F, R, X), where
Σ is a finite alphabet of actions, Q is a finite set of states, X ⊆ X is a finite set
of clocks, T ⊆ Q × [C(X) × Σ × U(X)] × Q is a finite set of transitions, I ⊆ Q
is the subset of initial states, F ⊆ Q is the subset of final states, R ⊆ Q is the
subset of repeated states.
Let C ⊆ C(X) be a subset of clock constraints and U ⊆ U(X) be a subset of
updates, the class Aut(C,U) is the set of all timed automata whose transitions
only use clock constraints of C and updates of U . The usual class of timed
automata, defined in [AD90], is the family Aut(Cdf (X),U0(X)).
A path in A is a finite or an infinite sequence of consecutive transitions:

P = q0
ϕ1,a1,up1−−−−−−→ q1

ϕ2,a2,up2−−−−−−→ q2 . . . , where (qi−1, ϕi, ai, upi, qi) ∈ T, ∀i > 0

The path is said to be accepting if it starts in an initial state (q0 ∈ I) and either
it is finite and it ends in an final state, or it is infinite and passes infinitely
often through a repeated state. A run of the automaton through the path P is
a sequence of the form:

〈q0, v0〉
ϕ1,a1,up1−−−−−−→

t1
〈q1, v1〉

ϕ2,a2,up2−−−−−−→
t2

〈q2, v2〉 . . .

468 P. Bouyer et al.

where τ = (ti)i≥1 is a time sequence and (vi)i≥0 are clock valuations such that:



v0(x) = 0, ∀x ∈ X

vi−1 + (ti − ti−1) |= ϕi

vi ∈ upi (vi−1 + (ti − ti−1))

Remark that any set upi(vi−1 + (ti − ti−1)) of a run is non empty.
The label of the run is the timed word w = (a1, t1)(a2, t2) . . . If the path P is
accepting then the timed word w is said to be accepted by the timed automaton.
The set of all timed words accepted by A over the time domain T is denoted by
L(A, T), or simply L(A).

Remark 1. A “folklore” result on timed automata states that the families
Aut(C(X),U0(X)) and Aut(Cdf (X),U0(X)) are language-equivalent. This is be-
cause any classical timed automaton (using reset updates only) can be trans-
formed into a diagonal-free classical timed automaton recognizing the same
language (see [BDGP98] for a proof). Another “folklore” result states that
constant updates are not more powerful than reset updates i.e. the families
Aut(C(X),Ucst(X)) and Aut(C(X),U0(X)) are language-equivalent.

3 The Emptiness Problem

For verification purposes, a fundamental question about timed automata is to
decide whether the accepted language is empty. This problem is called the empti-
ness problem. To simplify, we will say that a class of timed automata is decidable
if the emptiness problem is decidable for this class. The following result, due to
Alur and Dill [AD90], is one of the most important about timed automata.

Theorem 1. The class Aut(C(X),U0(X)) is decidable.

The principle of the proof is the following. Let A be an automaton of
Aut(C(X),U0(X)), then a Büchi automaton (often called the region automaton of
A) which recognizes the untimed language Untime(L(A)) of L(A) is effectively
constructible. The untimed language of A is defined as follows : Untime(L(A)) =
{σ ∈ Σ∞ | there exists a time sequence τ such that (σ, τ) ∈ L(A)}.
The emptiness of L(A) is obviously equivalent to the emptiness of Un-

time(L(A)) and since the emptiness of a Büchi automaton on words is decidable
[HU79], the result follows. In fact, the result is more precise: testing emptiness
of a timed automaton is Pspace-complete (see [AD94] for the proofs).

Remark 2. From [AD94] (Lemma 4.1) it suffices to prove the theorem above for
timed automata where all constants appearing in clock constraints are integers
(and not arbitrary rationals). Indeed, for any timed automaton A, there exists
some positive integer δ such that for any constant c of a clock constraint of A,
δ.c is an integer. Let A′ be the timed automaton obtained from A by replacing
each constant c by δ · c, then it is immediate to verify that L(A′) is empty if and
only if L(A) is empty.

Are Timed Automata Updatable? 469

4 Undecidable Classes of Updatable Timed Automata

In this section we exhibit some important classes of updatable timed automata
which are undecidable. All the proofs are reductions of the emptiness problem
for counter machines.

4.1 Two Counters Machine

Recall that a two counters machine is a finite set of instructions over two counters
(x and y). There are two types of instructions over counters:

- incrementation instruction of counter i ∈ {x, y} :

p : i := i + 1 ; goto q (where p and q are instruction labels)

- decrementation (or zero-testing) instruction of counter i ∈ {x, y} :

p : if i > 0
{

then i := i − 1 ; goto q
else goto q′

The machine starts at instruction labelled by s0 with x = y = 0 and stops at a
special instruction Halt labelled by sf .

Theorem 2. The emptiness problem of two counters machine is undecidable
[Min67].

4.2 Diagonal-Free Automata with Updates x := x − 1

We consider here a diagonal-free constraints class.

Proposition 1. Let U be a set of updates containing both {x := x − 1 |x ∈ X}
and U0(X). Then the class Aut(Cdf(X),U) is undecidable.

Sketch of proof. We simulate a two counters machine M with an updatable
timed automaton AM = (Σ, Q, T, I, F, R, X) with X = {x, y, z}, Σ = {a} (for
convenience reasons labels are omitted in the proof) and equipped with updates
x := x − 1 and y := y − 1. Clocks x and y simulate the two counters.
Simulation of an increment appears on Figure 1. Counter x is implicitly incre-
mented by letting the time run during 1 unit of time (this is controlled with the
test z = 1). Then the other counter y is decremented with the y := y−1 update.

p q
z = 1, z := 0 z = 0, y := y − 1z = 0

Fig. 1. Simulation of a incrementation operation over counter x.

Simulation of a decrement appears on Figure 2. Counter x is either decremented
using the x := x − 1 update if x ≥ 1, or unchanged otherwise.

470 P. Bouyer et al.

p q

q’

x ≥ 1 z = 0, x := x − 1z = 0

x = 0

Fig. 2. Simulation of a decrementation operation on the counter x.

Remark that we never compare two clocks but only use guards of the form i ∼ c
with i ∈ {x, y, z} and c ∈ {0, 1}.
To complete the definition of AM, we set I = {s0} and F = {sf}. The language
of M is empty if and only if the language of AM is empty and this implies
undecidability of emptiness problem for the class Aut(Cdf(X),U).

4.3 Automata with Updates x := x +1 or x :> 0 or x :> y or x :< y

Surprisingly, classes of arbitrary timed automata with special updates are unde-
cidable.

Proposition 2. Let U be a set of updates containing U0(X) and (1) {x := x +
1 |x ∈ X} or (2) {x :> 0 |x ∈ X} or (3) {x :> y |x, y ∈ X} or (4) {x :< y |x, y ∈
X}, then the class Aut(C(X),U) is undecidable.

Sketch of proof. The proofs are four variations of the construction given for
proposition 1. The idea is to replace every transition labelled with updates x :=
x− 1 or y := y− 1 (framed with dashed lines on pictures) by a small automaton
involving the other kinds of updates only. The counter machine will be now
simulated by an updatable timed automaton with four clocks {w, x, y, z}. We
show how to simulate an x := x − 1 in any of the four cases :

(1) Firstly clock w is reset, then update w := w+1 is performed until x−w = 1
(recall that x simulates a counter and that we are interested to its integer
values). Secondly, clock x is reset and update x := x + 1 is performed until
x = w.

(2) A w :> 0 is guessed, followed by a test x−w = 1. Then a x :> 0 is guessed,
followed by a test x = w.

(3) Clock w is reset, w :> w is guessed and test x − w = 1 is made. Then clock
x is reset, x :> x is guessed and test x = w is made.

(4) A w :< x is guessed, followed by test x − w = 1. Then a x :< x is guessed,
followed by a test x = w.

In the four cases, operations are made instantaneously with the help of test z = 0
performed at the beginning and at the end of the decrementation simulation.
Remark that for any case we use comparisons of clocks. We will see in section 6
that classes of diagonal-free timed automata equipped with any of these four
updates are decidable.
Let us end the current section with a result about mixed updates. Updates of
the kind y + c ≤: x :≤ z + d (with c, d ∈ N) can simulate clock comparisons. In
fact, in order to simulate a test x−w = 1, it suffices to guess a w + 1 ≤: z′ :≤ x

Are Timed Automata Updatable? 471

followed by a x ≤: z′ :≤ w + 1. Both guesses have solutions if and only if
[w + 1; x] = [x; w + 1] = {x} if and only if (x−w = 1). In conclusion, we cannot
mix different kinds of updates anyhow, while keeping diagonal-free automata
decidable:

Proposition 3. Let U be a set of updates containing U0(X) and {x + c ≤: y :≤
z + d |x, y, z ∈ X, c, c′ ∈ N}. Then the class Aut(Cdf (X),U) is undecidable.

5 Construction of an Abstract Region Automaton

We want to check emptiness of the timed language accepted by some timed au-
tomaton. To this aim, we will use a technique based on the original construction
of the region automaton ([AD94]).

5.1 Construction of a Region Graph

Let X ⊂ X be a finite set of clocks. A family of regions over X is a couple
(R, Succ) where R is a finite set of regions (i.e. of subsets of TX) and the
successor function Succ : R → R verifies that for any region R ∈ R the following
holds:

- for each v ∈ R, there exists t ∈ T such that v + t ∈ Succ(R) and for every
0 ≤ t′ ≤ t, v + t′ ∈ (R ∪ Succ(R))

- if v ∈ R, then for all t ∈ T, v + t ∈ Succ∗(R)

Let U ⊂ U(X) be a finite set of updates. Each update up ∈ U induces naturally a
function ûp : R → P(R) which maps each region R into the set {R′ ∈ R |up(R)∩
R′ �= ∅}. The set of regions R is compatible with U if for all up ∈ U and for all
R, R′ ∈ R:

R′ ∈ ûp(R) ⇐⇒ ∀v ∈ R, ∃v′ ∈ R′ such that v′ ∈ up(v)

Then, the region graph associated with (R, Succ,U) is a graph whose set of nodes
is R and whose vertices are of two distinct types:

R −→ R′ if R′ = Succ(R)
R =⇒up R′ if R′ ∈ ûp(R)

Let C ⊂ C(X) be a finite set of clock constraints. The set of regions R is com-
patible with C if for all ϕ ∈ C and for all R ∈ R: either R ⊆ ϕ or R ⊆ ¬ϕ.

5.2 Construction of the Region Automaton

Let A be a timed automaton in Aut(C,U). Let (R, Succ) be a family of re-
gions such that R is compatible with C and U . We define the region automaton
ΓR,Succ(A) associated with A and (R, Succ), as the finite (untimed) automaton
defined as follows:

472 P. Bouyer et al.

- Its set of locations is Q×R; its initial locations are (q0,0) where q0 is initial
and 0 is the region where all clocks are equal to zero; its repeated locations
are (r, R) where r is repeated in A and R is any region; its final locations
are (f, R) where f is final in A and R is any region.

- Its transitions are defined by:
· (q, R) ε−−→ (q, R′) if R → R′ is a transition of the region graph,
· (q, R) a−−→ (q′, R′) if there exists a transition (q, ϕ, a, up, q′) in A such

that R ⊆ ϕ and R =⇒up R′ is a transition of the region graph.

Theorem 3. Let A be a timed automaton in Aut(C,U) where C (resp. U) is
a finite set of clock constraints (resp. of updates). Let (R, Succ) be a family of
regions such that R is compatible with C and U . Then the automaton ΓR,Succ(A)
accepts the language Untime(L(A)).

Assume we can encode a region in a polynomial space, then we can decide the
emptiness of the language in polynomial space. It suffices to guess an accepted
run in the automaton by remembering only the two current successive configu-
rations of the region automaton (this is the same proof than in [AD94]).
We will now study some classes of timed automata, and consider particular
regions which verify the conditions required by the region automaton. This will
lead us to some decidability results using the above construction.

6 Considering Diagonal-Free Updatable Timed Automata

Definition of the Regions We Consider - We consider a finite set of clocks X ⊂ X.
We associate an integer constant cx to each clock x ∈ X , and we define the set
of intervals:

Ix = {[c] | 0 ≤ c ≤ cx} ∪ {]c; c + 1[| 0 ≤ c < cx} ∪ {]cx; +∞[}

Let α be a tuple ((Ix)x∈X ,≺) where:

- ∀x ∈ X , Ix ∈ Ix

- ≺ is a total preorder on X0 = {x ∈ X | Ix is an interval of the form]c; c+1[}
The region (defined by) α is thus

R(α) =




| ∀x ∈ X, v(x) ∈ Ix|
v ∈ TX | ∀x, y ∈ X0, the following holds|

| x ≺ y ⇐⇒ frac(v(x)) ≤ frac(v(y))




The set of all regions defined in such a way will be denoted by R(cx)x∈X
.

��
��
��
��

��
��
��
��

0 2 3

1

2

1

y

x

Example 2. As an example, assume we have
only two clocks x and y with the constants
cx = 3 and cy = 2. Then, the set of regions
associated with those constants is described in
the figure beside. The hashed region is defined
by the following: Ix =]1; 2[, Iy =]0; 1[and the
preorder ≺ is defined by x ≺ y and y �≺ x.

Are Timed Automata Updatable? 473

We obtain immediately the following proposition:

Proposition 4. Let C ⊆ Cdf (X) be such that for any clock constraint x ∼ c of
C, it holds c ≤ cx. Then the set of regions R(cx)x∈X

is compatible with C.

Note that the result does not hold for any set of constraints included in C(X).
For example, the region (]1; +∞[×]1; +∞[, ∅) is neither included in x − y ≤ 1
nor in x − y > 1.

Computation of the Successor Function - Let R = ((Ix)x∈X ,≺) be a region. We
set Z = {x ∈ X | Ix is of the form [c]}. Then the region Succ(R) = ((I ′x)x∈X ,≺′)
is defined as follows, distinguishing two cases:

1. If Z �= ∅, then

- I ′x =




Ix if x �∈ Z
]c, c + 1[if Ix = [c] with c �= cx

]cx,∞[if Ix = [cx]
- x ≺′ y if (x ≺ y) or Ix = [c] with c �= cx and I ′y has the form]d, d + 1[

2. If Z = ∅, let M be the set of maximal elements of ≺. Then

- I ′x =
{

Ix if x �∈ M
[c + 1] if x ∈ M and Ix =]c, c + 1[

- ≺′ is the restriction of ≺ to {x ∈ X | I ′x has the form]d, d + 1[}

Taking the previous example, the successor of the gray region is defined by
Ix =]1; 2[and Iy = [1] (drawn as the thick line).

We will now define a suitable set of updates compatible with the regions.

What About the Updates ? - We consider now a local update up = (upx)x∈X

over a finite set of clocks X ⊂ X such that for any clock x, upx is in one of
the four following subsets of U(X), each of them being given by an abstract
grammar:

- detx ::= x := c |x := z + d with c ∈ N, d ∈ Z and z ∈ X .
- infx ::= x :� c |x :� z + d | infx ∧ infx with �∈ {<,≤}, c ∈ N, d ∈ Z and

z ∈ X .
- supx ::= x :� c |x :� z + d | supx ∧ supx with �∈ {>,≥}, c ∈ N, d ∈ Z and

z ∈ X .
- intx ::= x :∈ (c; d) |x :∈ (c; z + d) |x :∈ (z + c; d) |x :∈ (z + c; z + d) where

(and) are either [or], z is a clock and c, d are in Z.

Let us denote by U1(X) this set of local updates. As in the case of simple updates,
we will give a necessary and sufficient condition for R′ to be in ûp(R) when R,
R′ are regions and up is a local update.

474 P. Bouyer et al.

Case of Simple Updates - We will first prove that for any simple update up,
R(cx)x∈X

is compatible with up. To this aim, we construct the regions belonging
to ûp(R) by giving a necessary and sufficient condition for a given region R′ to
be in ûp(R).
Assume that R = ((Ix)x∈X ,≺) where ≺ is a total preorder on X0 and that up is
a simple update over z, then the region R′ = ((I ′x)x∈X ,≺′) (where ≺′ is a total
preorder on X ′

0) is in ûp(R) if and only if I ′x = Ix for all x �= z and :

if up = z :∼ c with c ∈ N : I ′z can be any interval of Iz which intersects
{γ | γ ∼ c} and
– either I ′z has the form [d] or]cz; +∞[, X ′

0 = X0 \ {z} and ≺′=≺ ∩(X ′
0 ×

X ′
0).

– either I ′z has the form]d; d + 1[, X ′
0 = X0 ∪ {z} and ≺′ is any total

preorder which coincides with ≺ on X0 \ {z}.
if up = z :∼ y + c with c ∈ Z : we assume in this case that cz ≤ cy + c. Thus

if Iy is any interval in Iy then Iy + c is included in an interval of Iz (in
particular, whenever Iy is non bounded then Iy + c is non bounded, which
is essential in order to prove the compatibility).
I ′z can be any interval of Iz such that there exists α ∈ I ′z , β ∈ Iy with
α ∼ β + c and
– either I ′z has the form [d] or]cz; +∞[, X ′

0 = X0 \ {z} and ≺′=≺ ∩(X ′
0 ×

X ′
0).

– either I ′z has the form]d; d + 1[, X ′
0 = X0 ∪ {z} and

• If y �∈ X0, ≺′ is any total preorder on X ′
0 which coincides with ≺ on

X0 \ {z}.
• If y ∈ X0, then:

∗ either Iy + c �= I ′z and ≺′ is any total preorder on X ′
0 which

coincides with ≺ on X0 \ {z}
∗ either Iy + c = I ′z and ≺′ is any total preorder on X ′

0 which
coincides with ≺ in X0 \ {z} and verifies:
· z ≺′ y and y ≺′ z if ∼ is =
· z ≺′ y and y �≺′ z if ∼ is <
· z ≺′ y if ∼ is ≤
· y ≺′ z if ∼ is ≥
· z �≺′ y and y ≺′ t if ∼ is >
· (z ≺′ y and y �≺′ z) or (z �≺′ y and y ≺′ z) if ∼ is �=

From this construction, it is easy to verify that R(cx)x∈X
is compatible with any

simple update.

2

3

��
��
��
��

��
��
��
��

�����
�����
�����
�����

0 2 3

1

2

1

1
0y

x

Example 3. We take the regions described in the
figure beside. We want to compute the updating
successors of the region 0 by the update x :> y+2.
The three updating successors are drawn in the
figure beside. Their equations are:
- Region 1: I ′

x =]2; 3[, I ′
y =]0; 1[and y ≺′ x

- Region 2: I ′
x = [3], I ′

y =]0; 1[
- Region 3: I ′

x =]3; +∞[, I ′
y =]0; 1[

Are Timed Automata Updatable? 475

Remark 3. Note that the fact that updates of the form z := z−1 (even used with
diagonal-free constraints only) lead to undecidability of emptiness (Section 4),
is not in contradiction with our construction. This is because we can not assume
that cz ≤ cz − 1.

Case of Local Updates - We will use the semantics of the local updates from
section 2.3 to compute the updating successors of a region. Assume that R =
((Ix)x∈X ,≺) and that up = (upx)x∈X is a local update over X then R′ =
((I ′x)x∈X ,≺′) ∈ ûp(R) if and only if there exists a total preorder ≺′′ on a subset
of X ∪ X ′ (where X ′ is a disjoint copy of X) verifying

y ≺′′ z ⇐⇒ y ≺ z for all y, z ∈ X
y′ ≺′′ z′ ⇐⇒ y ≺′ z for all y, z ∈ X

and such that, for any simple update upi appearing in upx, the region Ri =
((Ii,x)x∈X ,≺i) defined by

Ii,x =
{

Ix if x �= xi

I ′x otherwise
and

· y ≺i z ⇐⇒ y ≺ z for y, z �= xi

· xi ≺i z ⇐⇒ x′
i ≺′′ z for z �= xi

· z ≺i xi ⇐⇒ z ≺′′ x′
i for z �= xi

belongs to ûpi(R).
Assume now that U is a set of updates included in U1(X). It is then technical,
but without difficulties, to show that under the following hypothesis:

- for each simple update y :∼ z + c which is part of some local update of U ,
condition cy ≤ cz + c holds

the family of regions (R(cx)x∈X
, Succ) is compatible with U . In fact, the set

X ∪X ′ and the preorder ≺′′ both encode the original and the updating regions.
This construction allows us to obtain the desired result for local updates.

Remark 4. In our definition of U1(X), we considered restricted set of local up-
dates. Without such a restriction, it can happen that no such preorder ≺′′ exists.
For example, let us take the local update x :> y ∧ x :< z and the region R de-
fined by Ix = [0], Iy = Iz =]0; 1[, z ≺ y and y �≺ z. Then the preorder ≺′′ should
verify the following : y ≺′′ x′, x′ ≺′′ z, z ≺′′ y and y �≺ z, but this leads to a
contradiction. There is no such problem for the local updates from U1(X), as we
only impose to each clock x′ to have a value greater than or lower than some
other clock values.
For the while, we have only considered updates with integer constants but an
immediate generalization of Remark 2 allows to treat updates with any rational
constants. We have therefore proved the following theorem:

Theorem 4. Let C ⊆ Cdf (X) be a set of diagonal-free clock constraints. Let U ⊆
U1(X) be a set of updates. Let (cx)x∈X be a family of constants such that for each
clock constraint y ∼ c of C, condition c ≤ cy holds and for each update z :∼ y + c
of U , condition cz ≤ cy + c holds. Then the family of regions (R(cx)x∈X

, Succ) is
compatible with C and U .

476 P. Bouyer et al.

Remark 5. Obviously, it is not always the case that there exists a family of
integer constants such that for each update y :∼ z + c of U , condition cy ≤ cz + c
holds. Nevertheless:

– It is the case when all the constants c appearing in updates y :∼ z + c are
non-negative.

– In the general case, the existence of such a family is decidable thanks to
results on systems on linear Diophantine inequations [Dom91].

For any couple (C,U) verifying the hypotheses of theorem 4, by applying theo-
rem 3, the family Aut(C,U) is decidable. Moreover, since we can encode a region
in polynomial space, testing emptiness is Pspace, and even Pspace-complete
(since it is the case for classical timed automata).

Remark 6. The p-automata used in [BF99] to modelize the ABR protocol can
be easily transformed into updatable timed automata from a class which fulfills
the hypotheses of theorem 4. Their emptiness is then decidable.

7 Considering Arbitrary Updatable Timed Automata

In this section, we allow arbitrary clock constraints. We thus need to define a
bit more complicated set of regions. To this purpose we consider for each pair
y, z of clocks (taken in X ⊂ X a finite set of clocks), two constants d−y,z ≤ d+

y,z

and we define

Jy,z = {] −∞; d−y,z[} ∪ {[d] | d−y,z ≤ d ≤ d+
y,z} ∪

{]d; d + 1[| d−y,z ≤ d < d+
y,z} ∪ {]d+

y,z; +∞[}

The region defined by a tuple ((Ix)x∈X , (Jx,y)x,y∈X ,≺) where

- ∀x ∈ X, Ix ∈ Ix

- if X∞ denotes the set {(y, z) ∈ X2 | Iy or Iz is non bounded}, then
∀(y, z) ∈ X∞, Jy,z ∈ Jy,z

- ≺ is a total preorder on X0 = {x ∈ X | Ix is an interval of the form]c, c+1[}

is the following subset of TX :




| ∀x ∈ X, v(x) ∈ Ix|
| ∀x, y ∈ X0, it holds|v ∈ TX || x ≺ y ⇐⇒ frac(v(x)) ≤ frac(v(y))|
| ∀y, z ∈ X∞, v(y) − v(z) ∈ Jy,z|




Are Timed Automata Updatable? 477

In fact, we do not have to keep in mind the values d−∗,∗ as y and z play symmetrical
roles and d−y,z is equal to −d+

z,y, thus we set dy,z = d+
y,z. The set of all regions

defined in such a way will be denoted by R(cy)x∈X ,(dy,z)y,z∈X
.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

0 2 3

1

2

1

y

x

Example 4. Assume that we have only two clocks
x and y and that the maximal constants are cx =
3 and cy = 2, with clocks constraints x−y ∼ 0 and
x−y ∼ 1. Then, the set of regions associated with
those constants is described in the figure beside.
The gray region is defined by Ix =]3; +∞[, Iy =
]2; +∞[and −1 < y −x < 0 (i.e. Jy,x is]− 1; 0[).

The region Succ(R) can be defined in a way similar to the one used in the
diagonal-free case. We also have to notice that this set of regions is compatible
with the clock constraints we consider.
Indeed we define the set U2(X) of local updates up = (upx)x∈X where for each
clock x, upx is one of the following simple updates:

x := c |x := y |x :< c |x :≤ c

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

0 2 3

1

2

1

3

2

1

y

x

From the undecidability results of Section 4,
we have to restrict the used updates if we
want to preserve decidability. For example, if
we consider the update y := y + 1 and the
regions described in the figure beside, the im-
ages of the region 1 are the regions 1, 2 and 3.
But we can not reach region 1 (resp. 2, resp.
3) from any point of region 1. Thus, this set of
regions does not seem to be compatible with
the update y := y + 1.

By constructions similar to the ones of Section 6, we obtain the following theo-
rem:

Theorem 5. Let C ⊆ C(X) be a set of clock constraints. Let U ⊆ U2(X) be a
set of updates. Let (cx)x∈X and (dy,z)y,z∈X be families of constants such that

- for each clock constraint y ∼ c of C, condition c ≤ cy holds,
- for each clock constraint x − y ∼ c, condition c ≤ dx,y holds,
- for each update y :< c or y :≤ c or y := c, it holds c ≤ cy, and for each clock

z, condition cz ≥ c + dy,z holds,
- for each update y := z, condition cy ≤ cz holds

Then the family of regions (R(cx)x∈X ,(dy,z)y,z∈X
,Succ) is compatible with C and U.

Thus, the class Aut(C,U) is decidable, and as in the previous case, testing
emptiness of updatable timed automata is Pspace-complete (unlike the case
of diagonal-free updates, the previous system of Diophantine equations always
has a solution).

478 P. Bouyer et al.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

0 2 3

1

2

1

1 3 4

y

x

0

2 Example 5. We take the regions we used be-
fore. We want to compute the updating succes-
sors of the region 0 by the update x :< 2. The
four updating successors are drawn in the fig-
ure beside. Their equations are:
- Region 1: I ′

x = [0] and I ′
y =]2;+∞[

- Region 2: I ′
x =]0; 1[, I ′

y =]2;+∞[
and Jy,x =]1; +∞[

- Region 3: I ′
x = [1] and I ′

y =]2;+∞[
- Region 4: I ′

x =]1; 2[, I ′
y =]2;+∞[

and Jy,x =]1; +∞[

8 Conclusion

The main results of this paper about the emptiness problem are summarized in
the following table:

U0(X) ∪ · · · Cdf (X) C(X)

∅ Pspace Pspace

{x := c |x ∈ X} ∪ {x := y |x, y ∈ X} Pspace Pspace

{x :< c |x ∈ X, c ∈ Q+} Pspace Pspace

{x := x + 1 |x ∈ X} Pspace Undecidable
{x :> c |x ∈ X, c ∈ Q+} Pspace Undecidable

{x :> y |x, y ∈ X} Pspace Undecidable
{x :< y |x, y ∈ X} Pspace Undecidable

{x :∼ y + c |x, y ∈ X, c ∈ Q+} Pspace Undecidable
{x := x − 1 |x ∈ X} Undecidable Undecidable

One of the surprising facts of our study is that the frontier between what is
decidable and not depends on the diagonal constraints (except for the x := x−1
update), whereas it is well-known that diagonal constraints do not increase the
expressive power of classical timed automata.
Note that, as mentioned before, the decidable classes are not more powerful than
classical timed automata in the sense that for any updatable timed automaton
of such a class, a classical timed automaton (with ε−transitions) recognizing the
same language – and even most often bisimilar – can be effectively constructed
[BDFP00b]. However, in most cases an exponential blow-up seems unavoidable.
This means that transforming updatable timed automata into classical timed
automata cannot constitute an efficient strategy to solve the emptiness problem.
In the existing model-checkers, time is represented through data structures like
DBM (Difference Bounded Matrix) or CDD (Clock Difference Diagrams). An
interesting and natural question is to study how such structures can be used to
deal with updatable timed automata.

Acknowledgements: We thank Béatrice Bérard for helpful discussions.

Are Timed Automata Updatable? 479

References

ACD+92. R. Alur, C. Courcoubetis, D.L. Dill, N. Halbwachs, and H. Wong-Toi. Min-
imization of timed transition systems. In Proc. of CONCUR’92, LNCS 630,
1992.

ACH94. R. Alur, C. Courcoubetis, and T.A. Henzinger. The observational power
of clocks. In Proc. of CONCUR’94, LNCS 836, pages 162–177, 1994.

AD90. R. Alur and D.L. Dill. Automata for modeling real-time systems. In Proc.
of ICALP’90, LNCS 443, pages 322–335, 1990.

AD94. R. Alur and D.L. Dill. A theory of timed automata. Theorical Computer
Science, 126:183–235, 1994.

AFH94. R. Alur, L Fix, and T.A. Henzinger. A determinizable class of timed au-
tomata. In Proc. of CAV’94, LNCS 818, pages 1–13, 1994.

AHV93. R. Alur, T.A. Henzinger, and M. Vardi. Parametric real-time reasoning. In
Proc. of ACM Symposium on Theory of Computing, pages 592–601, 1993.

BD00. B. Bérard and C. Dufourd. Timed automata and additive clock constraints.
To appear in IPL, 2000.

BDFP00a. P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata
updatable ? Research Report LSV-00-3, LSV, ENS de Cachan, 2000.

BDFP00b. P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Expressiveness of updatable
timed automata. Research report, LSV, ENS de Cachan, 2000. Submitted
to MFCS’2000.

BDGP98. B. Bérard, V. Diekert, P. Gastin, and A. Petit. Characterization of the
expressive power of silent transitions in timed automata. Fundamenta In-
formaticae, pages 145–182, 1998.

BF99. B. Bérard and L. Fribourg. Automatic verification of a parametric real-
time program : the ABR conformance protocol. In Proc. of CAV’99, LNCS
1633, 1999.

BFKM99. B. Bérard, L. Fribourg, F. Klay, and J.F. Monin. A compared study of two
correctness proofs for the standardized algorithm of ABR conformance.
Research Report LSV-99-7, LSV, ENS de Cachan, 1999.

Dom91. E. Domenjoud. Solving systems of linear diophantine equations : an alge-
braic approach. In Proc. of MFCS’91, LNCS 520, pages 141–150, 1991.

HHWT95. T.A. Henzinger, P. Ho, and H. Wong-Toi. A user guide to HyTech. In
Proc. of TACAS’95, LNCS 1019, pages 41–71, 1995.

HHWT97. T.A. Henzinger, P. Ho, and H. Wong-Toi. Hytech: A model checker for
hybrid systems. In Software Tools for Technology Transfer, pages 110–122,
1997.

HKWT95. T.A. Henzinger, P.W. Kopke, and H. Wong-Ti. The expressive power of
clocks. In Proc. of ICALP’95, LNCS 944, pages 335–346, 1995.

HU79. J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, languages
and computation. Addison Wesley, 1979.

LPY97. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1:134–152, 1997.

Min67. M. Minsky. Computation: finite and infinite machines. Prentice Hall Int.,
1967.

Wil94. T. Wilke. Specifying timed state sequences in powerful decidable logics
and timed automata. In Proc. of Formal Techniques in Real-Time and
Fault-Tolerant Systems, LNCS 863, 1994.

Yov97. S. Yovine. A verification tool for real-time systems. Springer International
Journal of Software Tools for Technology Transfer, 1, October 1997.

	Introduction
	About Updatable Timed Automata
	Timed Words and Clocks
	Clock Constraints
	Updates
	Updatable Timed Automata

	The Emptiness Problem
	Undecidable Classes of Updatable Timed Automata
	Two Counters Machine
	Diagonal-Free Automata with Updates x := x-1
	Automata with Updates x:=x+1 or x:>0 or x:>y or x:<y

	Construction of an Abstract Region Automaton
	Construction of a Region Graph
	Construction of the Region Automaton

	Considering Diagonal-Free Updatable Timed Automata
	Considering Arbitrary Updatable Timed Automata
	Conclusion

