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Abstract. We address the problem of automatic analysis of parametric
counter and clock automata. We propose a semi-algorithmic approach
based on using (1) expressive symbolic representation structures called
Parametric DBM’s, and (2) accurate extrapolation techniques allowing
to speed up the reachability analysis and help its termination. The tech-
niques we propose consist in guessing automatically the effect of itera-
ting a control loop an arbitray number of times, and in checking that
this guess is exact. Our approach can deal uniformly with systems that
generate linear or nonlinear sets of configurations. We have implemented
our techniques and experimented them on nontrivial examples such as a
parametric timed version of the Bounded Retransmission Protocol.

1 Introduction

Counter automata and clock automata (timed automata) are widely used models
of both hardware and software systems. A lot of effort has been devoted to the
design of analysis techniques for these models (see e.g., [ADI4/HNSY92|[Hal93]
BWO94/BGLIS|/CJI8]). While the verification problem is undecidable in general
for counter automata, this problem is decidable for timed automata [AD94],
and there are model-checking algorithms and efficient verification tools for them
[DOTY96ILPY97].

In this paper, we address the problem of analysing parametric counter and
timed automata, i.e., models with counters and/or clocks that can be compared
with parameters defined lower and upper bounds on their possible values. These
parameters may range over infinite domains and are in general related by a set of
constraints. We are interested in reasoning in a parametric way about the beha-
viours of a system: verify that the system satisfies some property for all possible
values of the parameters, or find constraints on the parameters defining the set of
all possible values for which the system satisfies a property. These two problems,
i.e., parametric verification and parameter synthesis, can be solved (in the case
of safety properties) as reachability problems in parametric models. Unfortuna-
tely, classical timed automata, where clocks can only be compared to constants,
do not allow such a parametric reasoning. Moreover, it has been shown that for
parametric timed automata, the reachability problem is undecidable [AHV93].
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In this paper, we propose a semi-algorithmic approach that allows to deal
with parametric counter and timed systems. We define new symbolic represen-
tations for use in their reachability analysis, and provide powerful and accurate
techniques for computing representations of their sets of reachable configura-
tions. The representation structures we define are extensions of the Difference
Bound Matrices that are commonly used for representing reachability sets of
(nonparametric) timed automata [Di8IJACDT92[Yov98|. Our structures, called
Parametric DBM’s (PDBM’s) encode constraints on counters and/or clocks ex-
pressing the fact that their values (and their differences) range in parametric
bound intervals, i.e., the bounds of these intervals depend from the parameters.
PDBM’s are coupled with a set of constraints on the parameters. Such Constrai-
ned PDBM’s allow to represent linear as well as nonlinear sets of configurations.
We show in the paper how the basic manipulation operations on DBM’s can be
lifted to the parametric case, and then, we address the problem of computing
the set of reachable configurations using Constrained PDBM’s.

The main contribution of the paper is the definition of accurate extrapo-
lation techniques that allow to speed up the computation of the reachability
set and help the termination of the analysis. Our extrapolation technique con-
sists in guessing automatically the effect of iterating a control loop (a loop in
the control graph of the model) an arbitrary number of times, and checking,
also automatically, that this guess is exact. More precisely, we can decide the
exactness in the linear case and a subclass of the nonlinear case which can be
reduced to the linear one. Hence, our extrapolation technique allows to gene-
rate automatically the ezxact set of reachable configurations. Furthermore, the
extrapolation principle we propose is simple and uniform for counter and clock
systems, which allows to consider systems with both kinds of variables. Another
feature of our techniques is that they allow the automatic analysis of systems
that generate nonlinear sets of configurations, which is beyond the scope of the
existing algorithmic analysis techniques and tools.

We have implemented a package on Constrained PDBM’s as well as a re-
achability analysis procedure based on our extrapolation techniques. We have
experimented our prototype on nontrivial examples including systems generating
linear sets of reachable configurations, as well as systems generating nonlinear
sets of constraints. In all these examples, our analysis procedure terminates and
generates the exact set of reachable configurations. These experiments show that
our approach is powerful and accurate. In particular, we have been able to verify
automatically a parametric timed version of the Bounded Retransmission Proto-
col (BRP) [HSV94]. The model we consider is a parametric timed counter system
where parameters are constrained by nonlinear formulas (defined in [DKRT97]).

Outline: In Section 2] we give some basic definitions and introduce the kind of
constraints and operations we use in our models. In Section [3], we introduce the
parametric counter and timed systems. In Section @] we introduce the PDBM’s
and the basic operations we consider on these structures. In Section [H], we define
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extrapolation techniques and show their use in reachability analysis. In Section
Bl we discuss the current status of our implementation and experiments.

Related Work: The (semi-)algorithmic symbolic approach have been used for
counter automata and timed systems in many works such as [CH78/HNSY92]
Hal93]BWI4HHWTI5BGLISIBGPISICIIE]. However, none of the existing works
can deal with systems with nonlinear sets of reachable configurations.

Our extrapolation techniques have the same motivation as the widening ope-
rations [CH78/BGPI8] used in the framework of abstract interpretation [CC77],
and the techniques based on the use of meta-transitions [BW94JCJ9§]. The aim
of all these techniques is to speed up the computation of the reachable configu-
rations and help the termination of the analysis. However, the existing widening
techniques compute upper approximations using convex polyhedra. Our tech-
niques are more accurate since they compute the exact effect of iterating an
operation (control loop) an arbitrary number of times. Hence, our techniques
are similar from this point of view to the techniques based on computing meta-
transitions such as [BW94]. Compared with the technique of [BW94] for instance,
our technique can sometimes detect “periodicities” more efficiently because it ta-
kes into account the set of configurations under consideration.

Furthermore, our extrapolation techniques are based on a principle of gues-
sing the effect of the iterations which is in the same spirit as the principle of
widening. But our principle differs technically from it and also differs from wi-
dening because we can check that our guess is exact. The principle of checking
the exactness of a guess has been used in [FO97|] in the context of system on
strings. However, the techniques in [FO97] are different from ours, and [FO97]
does not address the question of making a guess.

The problem of verifying the BRP has been addressed by several resear-
chers [HSV94IGdP96/Mat96/DKRTI7]. However these work either provide ma-
nual proofs, or use finite-state model-checking on abstract versions of the proto-
col or for particular instances of its parameters. In [AAB99a/AABT99b| we have
verified automatically an infinite-state version of the protocol with unbounded
queues. However, we have considered in that work an abstraction of the clocks
and counters and we have ignored the timing aspects that are addressed in this
paper. In [DKRT97] the constraints that must be satisfied by the parameters are
investigated. Then, their automatic verification using Uppaal is done only for a
finite set of particular values satisfying these constraints. As far as we know, our
work is the first one which allows to check automatically that these (nonlinear)
constraints indeed allow the BRP to meet its specifications.

2 Preliminaries

Let X be a set of variables and let x range over X'. The set of arithmetical terms
over X, denoted AT'(X), is defined by the grammar:

tu=0|1]a|t—t|t+t|t=t
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The set of first-order arithmetical formulas over X', denoted FO(X), is defi-
ned by the grammar:

pu=t<t|-¢| ¢V ¢|Ix. ¢|Isint(t)

Formulas are interpreted over the set of reals. The predicate Is_int expresses
the constraint that a term has an integer value.

The fragment of FO(X) of formulas without the I's_int predicate is called the
first-order arithmetics of reals and denoted RFO(X). The fragment of FO(X)
of formulas without multiplication (x) is called the linear arithmetics and is
denoted LFO(X). It is well-known that the problem of satisfiability in FO(X)
is undecidable, whereas it is decidable for both fragments RFO(X) and LFO(X).

Let P be a set of parameters. Then, a simple parametric constraint is a
conjunction of formulas of the form x < t or z — y < t, where xz,y € X, <€
{<,<}, and ¢t € AT(P). We denote by SC(X,P) the set of simple parametric
constraints.

Each simple parametric constraint defines a family of convex polyhedra with
parametric bounds. These polyhedra are of a special kind called zomes in the
timed automata literature. Notice that if all the bounds in a simple constraint are
parameter-free terms (i.e., they represent constant values), then this constraint
defines a unique convex polyhedron (zone).

We consider simple operations on variables corresponding to special kinds
of assignments. We allow assignments of variables that are either of the form
x =1y +t or of the form z := ¢, where z,y € X are variables (z and y may be
the same variable), and ¢t € AT(P).

3 Parametric Timed Counter Systems

A Parametric Timed System (PTS) is a tuple 7 = (Q, C, P, 1,§) where

— (@ is a finite set of control states,

— C={ec1,...,cn} is a finite set of clocks,

P is a finite set of parameters,

I:Q — SC(C,P) is a function associating invariants with control states,

— ¢ is a finite set of transitions of the form (q1, g, sop, ¢2) where ¢1,92 € Q,
g € SC(C, P) is a guard, and sop is a simple operation over C.

Clocks and parameters range over a set ID which can be either the set of
positive reals IR=" (dense-time model) or the set of positive integers IN (discrete-
time model). Parameters can be seen as variables that are not modified by the
system (they keep their initial values all the time). A configuration of T is a
triplet {(q,v,7) where ¢ € @, v : C — ID is a valuation of the clocks, and
v : P — ID is a valuation of the parameters.

Given a transition 7 = (q1, g, sop,q2) € 0, we define a transition relation
—, between configurations: (q1,v1,71) =+ {(q2,v2,72) iff (v1,7) E g and vy =
sop(v1). We also define a time-transition relation ~» between configurations:
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(q1,v1,71) ~ {(q2,v2,72) iff ¢ = g2 and Ir € ID. v5 = v; + r and Vi’ <
ro(vi+ry) E @)

Let 7 € ¢ and let X be set of configurations. Then, we define post,(X) to be
the set {o : Jo’ € X. 0’ ~» 0 =, 0~ o}, and post(X) = |J, 5 post,(X). Given
a sequence of transitions 0 = 14, ..., 7,, we define postg = post,, o--- o post,,.

A Parametric Counter System (PCS) is a tuple C = (Q, X, P, §) where X is
a set of integer valued variables (counters), and @, P, and § are defined in the
same manner as for PTS’s (substitute C' by X in the definition of 9).

A configuration of C is a triplet (g,v,7) where ¢ € Q, v : X — IN, and
v : P — IN. Given a transition 7 € §, we define a relation —, in the same
manner as for PTS’s. The function post; here is defined without considering
time-transitions.

We can define also parametric models M = (Q,C, X, P,I,6) having both
counters and clocks by a straightforward extension of the definitions of the PTS’s
and PCS’s. We do not allow comparisons between clocks and counters in the
guards and the invariants. We call these models Parametric Timed Counter
Systems (PTCS’s).

4 Symbolic Representation Structures

4.1 Parametric Difference Bound Matrices

To simplify the presentation, we consider here only the case of PTS’s. The tre-
atment of counters is analogous since we have the same kind of guards and ope-
rations on counters as on clocks. We introduce representation structures for sets
of configurations of PTS’s that are extensions of the Difference Bound Matrices
used for representing reachability sets of (nonparametric) timed automata.

Let T = (Q,C,P,1,0) be a PTS, let C = {c1,...,c,} be the set its clocks,
and let ¢y be an additional clock whose value is always equal to 0. Then, any
simple parametric constraint can be represented by a (n+1) x (n+ 1) matrix M
of elements in AT(P) x {<, <}, where each entry M (i,j) = (¢, <) encodes the
constraint ¢; — ¢; < t. We call such a matrix M a Parametric Difference Bound
Matriz (PDBM).

A parameter constraint is a quantifier-free formula in FO(P). A Constrained
PDBM is a pair (M, ®) where M is a PDBM and @ is a parameter constraint.
A symbolic configuration is a pair (q, (M, ®)) where g € Q is a control state, and
(M, @) is a Constrained PDBM representing a set of clock and parameter values.

4.2 Basic Operations on Constrained PDBM’s

We define operations for manipulating Constrained PDBM’s by lifting all the
standard operations on DBM’s [Dil89yACD'92]Yov98| to the parametric case.
The operations that are worth discussing are: transformation into a canonical
form (which is also used for emptyness check), intersection (used with guards
and invariants when computing sets of successors), and inclusion test.
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Canonical form Different constrained PDBM’s can represent the same para-
metric set of configurations due to the fact that some of the bounds may not
be tight enough. For instance, consider the constrained PDBM corresponding to
the set of constraints:

S=0<2<pA0<y<pA0<2—y<0,0<p <p2)

It can be seen that if the upper bound on x (i.e., p2) is replaced by p;, then we
obtain another representation of the same parametric set of configurations as S.
This representation corresponds to the canonical form of S.

We recall that in the nonparametric case, canonical forms of DBM’s are
constructed using the Floyd Warshall algorithm which computes the minimum
path between all pairs of entries. In the parametric case we consider here, we
follow the same principle by running a symbolic Floyd Warshall algorithm. Du-
ring its execution, this algorithm needs to determine minimums between terms
built from those appearing in the original matrix. (We omit here the technical
discussion about how to deal with strict vs. nonstrict inequalities.) For that, the
algorithm assumes each of the two possible cases and check their consistency
w.r.t. the parameter constraints: given two terms ¢; and ts, it considers the case
where min(ty,t2) = t1 (resp. min(ty,t2) = t2) and adds t1 < to (resp. t1 > t2) in
the parameter constraints, and then it delivers the consistent cases among these
two, may be both of them. (We address below the decidability of this consistency
check.)

For instance, the canonical form of S can be easily computed in this manner;
the case splitting gives two cases but one of them is inconsistent (p; > ps).
However, if we remove p; < po from S, we obtain two constrained PDBM’s
corresponding to each of the possible cases (p1 < p2 or p1 > p2). Notice that the
construction of canonical forms allows also to test the emptyness of constrained
PDBM’s.

Now, in order to check the consistency of each of the possible cases when
computing the minimum between two terms, we have to test the satisfiability of
formulas ¢ of the form

@(P) Nty < 1o

where <€ {<,<} and @ is a parameter constraint. If @ is in LFO(P) (linear
constraint) or in RFO(P) (all parameters are reals), then this test is decidable.

If @ is a nonlinear formula of FO(P) mixing integer and real parameters, this
test is of course undecidable. Nevertheless, we still can test safely the satisfiability
of ¢ in RFO(P) (i.e., we check the satisfiability of ¢ under the assumption that
all the parameters are reals). If ¢ in not satisfiable in RFO(P), we are sure that
it is not satisfiable for its original interpretation in FO(P). However, ¢ could be
satisfiable in RFO(P) whereas there are no integer valuations of P satisfying
it. Hence, by interpreting formulas of FO(P) in RFO(P), we consider upper
approzimations of the sets of possible configurations.

Intersection Given two constrained PDBM’s S; = (M7, ®1) and Sy = (Ms, D2),
the intersection of S; and Sy is represented in general by a set of constrained
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PDBM’s. Roughly speaking, the construction consists in computing for every
i and j, the minimum between the two terms M (i,7) and Ms(i,j), under the
parameter constraints @1 A @o. This is done by case splitting and checking the
consistency of each case, as in the construction of canonical representations ex-
plained above.

Again, checking the consistency of the different cases produced by case split-
ting is decidable if the parameter constraints are in LFO(P) or RFO(P). Hence,
in this case the construction of the intersection is exact. In the general case,
checking satisfiability in RFO(P) instead of FO(P) is a safe consistency test
that yields an upper approximation of the intersection.

Test of inclusion Let S; = (M;,®P1) and Sy = (M, P2) be two canonical
constrained PDBM’s. The inclusion of S; in S5 can be expressed by the following
formula :

The validity of ¢ is decidable if it is in LFO(P) or in RFO(P). Otherwise,
we have a safe test of inclusion by checking the validity of ¢ in RFO(P). Indeed,
if ¢ is valid RFO(P), then it is also valid in FO(P) and hence, if our inclusion
test answer positively, we are sure that it is true. However, if ¢ is not valid, it
does not mean that S; is not included in Ss.

5 Reachability Analysis

5.1 Building Symbolic Reachability Graphs

Let 7 be a PTCS. We present a procedure which, given a symbolic configuration
S, computes a representation of the set post*(S). For that, starting from S, we
construct a symbolic reachability graph where each vertex is a symbolic confi-
guration and edges correspond to transitions of 7. The vertices of the symbolic
graph are treated according to a depth-first traversal. The construction stops
when each symbolic configuration that can be generated is covered by (included
in) some symbolic configuration that has been already computed. During this
construction, we use extrapolation in order to help termination.

Our extrapolation technique is based on guessing automatically the effect of
iterating an arbitrary number of times a control loop (cycle in the control graph
of T), starting from a given symbolic configuration, and checking that this guess
is exact (does not introduce nonreachable configuarations). Informally, we can
present our extrapolation principle as follows: Let S be a symbolic constraint
and let @ be a control loop, and suppose that the difference (in a sense which
will be defined later) between posty(S) and S, say A, is equal to the difference
between postz(S) and poste(S). Then, we suspect that the effect of iterating 6
will be to add at each step the same A to the original set, i.e., after n iterations,
the set of reachable configurations will be roughly S+nA (the precise set is given
below). Roughly speaking, our technique consists in guessing that a control loop
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0 (which is may be a composition of several simple loops) defines a periodic
operation starting from a particular set of configurations. In many cases, our
guess is exact. Moreover, the exactness of the effect obtained by extrapolation
can be expressed as an arithmetical formula (we discuss later the decidability
issue of this check).

Notice that our extrapolation technique introduces new parameters (n) cor-
responding to numbers of iterations of control loops. In order to deal with sets
represented by means of such variables, we have to extend our symbolic repre-
sentations and introduce open constrained PDBM’s.

Let us call iteration parameters these auxiliary variables and let IV be the set
of such variables. In order to deal with sets represented using iteration variables
we have to extend our symbolic representation and introduce open PDBM’s.

5.2 Open Constrained PDBM’s

Let N be a (countable) set of iteration variables. An open PDBM is a PDBM
such that its elements are terms are in AT(PUN) x {<, <}. We extend also the
definitions of Constrained PDBM’s and symbolic configurations by considering
that the terms appearing in parameter constraints are in AT(P U N).

Now, let us see how to extend the operations on PDBM to open PDBM'’s. The
construction of canonical forms as well as intersection can be done as previousely.
The problematic operation if the test of inclusion. Indeed, given two canonical
constrained open PDBM’s S; = (M7,®1) and Sy = (Ms, Ps), the inclusion of
S71 in S5 can be expressed by the formula v:

VP.VN. (Is_int(N)A®1(P,N) = AN’. Is_int(N")A®o(P, N')AM;(N) < Ma(N')

When ¢ is a linear formula (a LFO formula), the validity of 4 is decidable,
and hence, the inclusion problem between constrained open PDBM’s is decidable
in this case.

Another interesting case is what we call the half-linear case which corre-
sponds to the following situation: using quantifier elimination, the obtained for-
mula from v after eliminating all the real valued parameters in P is a linear
formula on N U N’. The validity of this formula can be checked since LFO on
integers (Presburger arithmetics) is decidable. The elimination of the real valued
parameters can be done automatically using the techniques of quantifier elimi-
nation in RFO (we do not need to assume that N and N’ are sets of integer
variables).

Using this technique, we can deal with significant cases of systems generating
nonlinear sets of configurations. For instance, in the analysis of the Bounded
Retransmission Protocol, all the inclusion tests are half-linear.

Beyond the class of half-linear systems, the test of inclusion is undecidable.
Nevertheless, even in this general case, it is possible to have a safe test of inclu-
sion. However, we cannot adopt the naive approach which consists in checking
the validity of ¢ in RFO since 9 has an alternation of universal and existential
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quantification. Then, the solution we propose is to define a formula v’ in RFO
which is “reasonably” stronger than . This formula is:

VP.VN. &, (P,N) =
IN'| 1
IN'.YN". N [N/ - N/| < 5 = P2(P.N") A Mi(N) < Ms(N")

i=1

The idea is to require that for every real vector IV, there is a real vector N’ such
that M; < M, holds for all the real vectors N in a neighborhood of N’ which
contains at least one integer vector. Thus, if 9’ holds, necessarily 1 holds too.

5.3 Extrapolation

We present hereafter our extrapolation principle. We need first to introduce some
notations.

Let T = (Q,C,X,P,1,6) be a PTCS. A control loop is a cycle in the graph
(Q,9), i.e., a path (q1,91,50p1,41) - - (qn; Gn, SOPn, q;,) such that ¢ = ¢;, and
Vie{l,....,n—1}, ¢} = qit1.

Given an open PDBM M (resp. symbolic constraint S = (M, ®)), we denote
by Iter(M) (resp. Iter(S)) the set of iteration variables appearing in M (resp.
in M or @). Let S = (M,P) be a constrained PDBM. Given n € N such that
n & Iter(S), we denote by ST, the constrained PDBM (M, & An > 0). Given
a PDBM M’ such that Iter(M’) C Iter(S), we denote by S + M’ the symbolic
constraint (M + M’, D).

Now, let 6 be a control loop and let (¢q,5) be a symbolic configuration,
where S = (M,®) is a constrained PDBM. Then, suppose we have compu-
ted S; = (M1,P1) and Sy = (Ma,P2) such that (¢,S1) = poste(q,S) and
(¢,S2) = postp(q,S1). Let A = My — M and A" = My — M;. Our extrapo-
lation principle consists in checking whether the two following conditions hold:

C1: YP.VN. Is_int(N) Ado(P,N) = A = A,
C2: Vn > 0. post3(q, ST, +nA) = posty(q, Stn +(n + 1) A),

and, if C1 and C2 hold, in adding posty(q, ST, +nA) to the computed set of

reachable configurations, and the edge (g, S1) AN postg(q, STn +nA) to the
symbolic graph.

Condition C1 says that the effect of 6 after two iterations is to add A at
each step. Notice that we check the equality of the two matrices My — M; and
M, — M under the constraint @,. This constraint is stronger than &; which is
itself stronger than & due to the fact that each application of § may introduce
but never remove parameter constraints. Condition C2 allows to check that each
application of 6 has an effect of adding A, provided the guards and the invariants
in 6 are satisfied. In order to take into account the guards and invariants, we
compute the effect after n+1 iterations of 6 as the postg-image of (g, ST,, +na).
We can prove, by straightforward inductions, the following fact:
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Lemma 1 Let 0 be a control loop, let (q,S) be a symbolic configuration, and let
A be a PDBM. Then, the two following formulas are equivalent:

1. Vn > 0. posti(q, STn +nA) = posty(q, Stn +(n + 1)A),
2. ¥n > 0. post";“(q7 S) = postg(q, ST +nA).

By Lemma [l we can deduce that when it can be applyed, our extrapolation
principle is exact (it computes precisely the set postQH(Q, S), for any n > 0).

Both conditions C1 and C2 correspond to arithmetical formulas. These con-
ditions are of course decidable in the linear case, and they are also decidable in
the half-linear case, i.e., after elimination of the real-valued parameters in P, the
obtained formula is linear. Hence, we have an exact extrapolation technique in
these case.

In the general (nonlinear) case, the test of exactness C2 is actually not rele-
vant, since we can only compute upper-approximations of the reachability set in
this case. So, the extrapolation principle we apply in this case is a weak extra-
polation principle which consists in checking condition C1 only.

Actually, even in the linear and half-linear cases, it is often not necessary to
check the condition C2. It can be observed that the weak extrapolation principle,
even if it not guaranteed to compute the exact reachability set (it computes
and upper-approximation of it in general), it is more accurate than existing
widening operators [CH78/Hal93|] since it allows to capture periodicities (see
the examples in Section [5.I). We have used this principle to analyse several
examples of parametric counter and timed systems and in all these cases, our
procedure was able to compute the exact set of reachable configurations. In fact,
we can prove that for an important class of systems, the weak extrapolation
principle is exact. This class includes many of the usual examples encountered
in the literature (Bakery algorithm, lift controler, etc). For lack of space, we omit
addressing this issue in this version of the paper.

5.4 Examples

Let us illustrate the use of our reachability analysis techniques on small examples.

A simple linear system: Let us consider first a very simple counter system
which is described in Figure[ll In this example, x is counter and T is a parameter.

r<T/x:=x+2

Fig. 1. Linear counter system
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We suppose that the initial value of x is 0 and that T is not contrained. So,
the initial symbolic configuration is (0, true). The first execution of the unique
transition 6 of the system creates the edge:

(0, true) N (2,0 <T)

since z is incremented by 2, and before that (when its value was 0), it was
compared to T. The second iteration creates the edge

2,0<T) -5 (4,2<T)

At this point, we can check that condition C1 holds since the effect of the first
and second iteration of 6 is to add the same value 2 to x. Then, by the weak
extrapolation principle, the following edge is created

(2,0<T) AN posty((0,0 < n) + 2n) = posty(2n,0 < n)
=2n+2,0<nA2n<T)
Notice that the application of 6 to the symbolic configuration (2n,n > 0)
allowed to generate the constraint 2n < T relating n with 7. This illustrates
how guards (and also invariants in the case of timed systems) are taken into

account in the extrapolation technique.
It can be easily checked that condition C2 also holds. Indeed, we have

posta(2n,0 <n) = (2n +4,0 <nA2n+2 < T) = posty(2n + 2,0 < n)

and thus, we are sure that our extrapolation is exact.
It worths noting that our extrapolation principle can generate periodic sets
whereas classical widening techniques [CH7Z8[Hal93] will not.

A simple half-linear system: Now, let us consider the parametric timed
automaton given in Figure[2, where ¢ and ¢’ are real-valued clocks, and T' and
T’ are real-valued parameters. Let us assume that the initial configuration is

c<TNAN=T")c:=0

Fig. 2. Half-linear clock system

(c=0,d =0,0<TA0<LT). Then, the first application of the transition 6 of
the system gives:

0,0,0<TA0<ST) -5 (T,0,0< TAOLT)
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and the second iteration gives:
(T',0,0< TAO<T) -2 (27,0,0 < T' < T

Then, the condition C1 of our extrapolation principle holds with A(¢) = T” and
A(d') = 0. Following the weak extrapolation principle, we create a 8*-edge from
(T7,0,0 < T A0 LT to poste(n+T7,0,0<nA0<TA0LT) wich is equal
to:

(n+1)*«T,0,0<nA0<T AnxT' <T)

The generated symbolic configuration is nonlinear, but still, all decision problems
we need on it are decidable due to the fact that they are half-linear. For instance,
after generating this symbolic configuration, we need to check for its emptyness
by deciding whether the parameter constraints are satisfiable. This is very simple
in this example because after eliminating the parameters 7' and 7" (supposed to
be real valued), we get a trivial linear constraint on n which is n > 0. It can also
be seen that in this case, the condition C2 (exactness of the extrapolation) can
be done straigthforwardly.

A complex half-linear system: We consider here an example which is inspired
from the model of the Bounded Retransmission Protocol. It consists of a systems
with two clocks ¢; and ¢y and a counter x (see Figure[3)). Intuitively, c; represents

01:T1/\{E<M/
c1:=0z:=x+1

co=To ANz <M
a ‘@

c1 <T

Fig. 3. The Nonlinear Kernel of the BRP

the clock of a sender and cs the clock of a receiver. These clocks are compared
with parametric bounds 77 and T, supposed to be real values. The counter x
counts the number of times the loop € on the state ¢ is performed. The transition
0 corresponds in the BRP to a retransmission action by the sender. The number
of these retransmissions is bounded by M which is an integer parameter. We
assume that the parameters 77, To, and M are related by a nonlinear constraint

To > M +T}

which means that the timeout of the receiver is at least M (the maximum number
of retransmissions) times the timeout of the sender. The question is whether the
state g1 (considered as a bad state) is reachable under the constraint above.
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Roughly speaking, this correponds to a property of synchronisation between
the sender and receiver in the BRP: The timeout of the receiver should not
expire before the sender has finished all his possible retransmissions. Notice that
the constraint above is not precisely the one considered on the timeouts in the
BRP [DKRT97], but our aim here is just to show simply and faitfuly the main
problems that appear in the analysis of a complex system such as the BRP.
Let us compute the reachability set starting from the initial configuration:
0<c1 <TIN0Lca<Ti1Ncy —co=0Az=0,
0<TINOLSTONOLS MATy, >M=x*T

The two first applications of 8 give successively
0<a<TTiNTT1 < <2TMT Ny —co=Ti ANz =1,
0<TIANOLSToANO< MATy, >M=xT

and

OSCl STl/\ZTl SCQ S3T’1/\Cl762:2T’1/\£E:27
O<TINOLZTHONLI< MANTy>M=xT;
At this point, it can be checked that the extrapolation condition C1 holds with
A(er) =0, A(e) = Th, A(eq — ) =T, and A(z) = 1. (Notice that, in general,
the differences between lowers bounds and upper bounds could be different, and
thus, A may correspond to nondeterministic increasings represented by intervals
instead of precise values as in this example and the previous ones.) Then, by the
weak extrapolation principle we can create the configuration:
0<c1 <TiA(n+1)«xTy <co<(n+2)xTy
ANceag—c=Mh+1D)«Th Ax=n+1,
0<nAOLSTINOLSTOoAN< MANTy, >M=xT

The transition to the state g; is executable if the following set of parameter
constraints (obtained by intersection with the guard) is satisfiable:

0<nA0<TINO <ToAnn+1 < MAn+1)«T; <Tp < (n+2)xT1 ATy > M+T)

The formula above is actually half-linear because after the elimination of the
real parameter 75 we obtain the constraint

0§nA0§T1/\n+1<M/\(n+2)*T1>M*T1
and after the elimination of T; we obtain the formula:
0<nAn+1<MAM<n+2

This formula is a linear constraint on integer variables, and thus its satisfiabi-
lity can be decided. Clearly the formula above is unsatisfiable since there is no
integers strictly between two successive integers. Hence, we conclude that ¢; is
not reachable.

Notice that we have omitted here the test of condition C2. Actually, this test
can also be decided as a half-linear satisfiability problem.



432 A. Annichini, E. Asarin, and A. Bouajjani

6 Implementation and Experiments

We have implemented a package of Constrained PDBM’s containing all the ba-
sic manipulation operations. Our current implementation uses the tool RED-
LoG/REDUCE [DS97/DSWO98] for quantification elimination and deciding satis-
fiability in RFO, and uses the tool OMEGA [BGP97] for deciding satisfiability
in Presburger arithmetics. In the nonparametric case, our package behaves as
a DBM package: all operations involving only constants are done without case
splitting (used for comparing parametric terms) and without invoking REDLOG
or OMEGA).

Based on this package, we have implemented a procedure for reachability
analysis using extrapolation. This procedure computes, when it terminates, a
symbolic graph of a given PTCS starting from a given symbolic configuration.
We have applied our procedure to several examples including counter and timed
systems that generate linear constraints such as:

— the Bakery algorithm for mutual exclusion with unbounded ticket counters
(0.82 sec with Omega as constraint solver) and two processes,

— the timed parametric Fisher’s mutual exclusion protocol (169.64 sec., Omega)
with two processes,

— the parametric lift controler of [Val89] where the number of floors is a para-
meter (286.32 sec, Omega),

as well as complex systems generating nonlinear constraints relating clocks and
counters. Indeed, we have applied our techniques to analyse the Bounded Re-
transmission Protocol which involves a nontrivial parametric reasoning on both
counters and clocks (~ 91 mn, Redlog/Reduce). We have considered for this ex-
ample the modelisation given in [DKRT97]. Our reachability analysis procedure
has been able to construct a symbolic graph corresponding to the partition of the
set of reachable configurations according to control states. This symbolic graph
represents a finite abstraction of the original infinite-state model. After projec-
tion on external actions and minimisation (using the CADP toolbox [FGK™'96]),
we got a finite model with 7 states on which the safety properties of the BRP
has been automatically checked.

The analysis of linear systems such as the Bakery algorithm and the lift con-
troler has been already done by other researchers using different techniques such
as widening [BGPI7T/BGLIE| or the computation of meta-transitions [BW94].
Our experiments show that our techniques are powerful enough to deal with all
these cases as well as, and in a uniform way, with systems generating nonlinear
constraints that are beyond the scope of the existing methods and tools. In all
the cases we considered, our procedure was able to compute the exact set of
reachable configurations.

7 Conclusion

We have introduced an extrapolation principle for analysing systems with coun-
ters and clocks based on the use of Parametric DBM’s. Our approach is an
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extension of the existing methods on timed automata to the case of systems
with parametric constraints. An interesting feature of our techniques is that
they can be applied uniformly to nonparametric or to parametric systems, to
linear systems or to nonlinear ones (which are beyond the scope of the known
techniques and tools). Moreover, our techniques are accurate and generate exact
reachability sets for a wide class of systems.

We have implemented our techniques in a tool prototype using Redlog/Reduce
and Omega as constraint solvers. The experiments we have done with our proto-
type show that our approach is powerful and effective. In particular, we have been
able to verify automatically a parametric timed version of the Bounded Retrans-
mission Protocol. Future work includes studying other symbolic representations
and associated extrapolation techniques, and identifying classes of arithmetical
constraints that can be handled efficiently. In particular, it would be interesting
to investigate parametric extensions of structures like CDD’s [LPWY99] and
DDD’s [MLAH99].

Finally, let us mention that in this paper we have addressed only forward
reachability analysis. Actually, the techniques we have developed can also be
used for backward analysis as well.
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