
Decision Procedures for Inductive Boolean
Functions Based on Alternating Automata

Abdelwaheb Ayari, David Basin, and Felix Klaedtke

Institut für Informatik, Albert-Ludwigs-Universität Freiburg, Germany.

Abstract. We show how alternating automata provide decision proce-
dures for the equivalence of inductively defined Boolean functions that
are useful for reasoning about parameterized families of circuits. We use
alternating word automata to formalize families of linearly structured
circuits and alternating tree automata to formalize families of tree struc-
tured circuits. We provide complexity bounds and show how our decision
procedures can be implemented using BDDs. In comparison to previous
work, our approach is simpler, yields better complexity bounds, and, in
the case of tree structured families, is more general.

1 Introduction

Reasoning about parametric system descriptions is important in building scala-
ble systems and generic designs. In hardware verification, the problem arises in
verification of parametric combinational circuit families, for example, proving
that circuits in one family are equivalent to circuits in another, for every pa-
rameter value. Another application of parametric reasoning is in establishing
properties of sequential circuits, where time is the parameter considered. In this
paper we present a new approach to these problems based on alternating auto-
mata on words and trees.

The starting point for our research is the work of Gupta and Fisher [6,7]. They
developed a formalism for describing circuit families using one of two kinds of
inductively defined Boolean functions. The first, called Linearly Inductive Boo-
lean Functions, or LIFs, formalizes families of linearly structured circuits. The
second, called Exponentially Inductive Boolean Functions, or EIFs, models fami-
lies of tree structured circuits. As simple examples, consider the linear (serial)
and tree structured 4-bit parity circuits described by the following diagrams.

b1

2b

b3

b4

serial_parity
b4

b2

b3

b1

tree_parity

A LIF describing the general case of the linear circuit is given by the following
equations. (We will formally introduce slightly different syntax in §3 and §4.)

serial parity1(b1) = b1

serial parityn(b1, . . . , bn) = bn ⊕ serial parityn−1(b1, . . . , bn−1) for n > 1 .

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 170–185, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Decision Procedures for Inductive Boolean Functions 171

Similarly, an EIF describing the family of tree-structured parity circuits is:

tree parity1(b1) = b1

tree parity2n

(b1, . . . , b2n) = tree parity2n−1
(b1, . . . , b2n−1) ⊕

tree parity2n−1
(b2n−1+1, . . . , b2n) for n ≥ 1 .

Gupta and Fisher developed algorithms to translate these descriptions into
novel data-structures that generalize BDDs (roughly speaking, their data-struc-
tures have additional pointers between BDDs, which formalize recursion). The
resulting data-structures are canonical: different descriptions of the same family
are converted into identical data-structures. This yields a decision procedure
both for the equivalence of LIFs and for EIFs.

Motivated by their results, we take a different approach. We show how LIFs
and EIFs can be translated, respectively, into alternating word and tree auto-
mata, whereby the decision problems for LIFs and EIFs are solvable by automata
calculations. For LIFs, the translation and decision procedure are quite direct
and may be implemented and analyzed using standard algorithms and results
for word automata. For EIFs, the situation is more subtle since input is given
by trees where only leaves are labeled by data and we are only interested in
the equality of complete trees. Here, we decide equality using a procedure that
determines whether a tree automaton accepts a complete leaf-labeled tree.

The use of alternating automata has a number of advantages. First, it gives
us a simple view of (and leads to simpler formalisms for) LIFs and EIFs based on
standard results from automata theory. For example, the expressiveness of these
languages trivially falls out of our translations: LIFs describe regular languages
on words and EIFs describe regular languages on trees (modulo the subtleties
alluded to above). Hence, LIFs and EIFs can formalize any circuit family whose
behavior is regular in the language theoretic sense. Second, it provides a handle
on the complexity of the problems. For LIFs we show that the equality problem
is PSPACE-complete and for EIFs it is in EXPSPACE. The result for LIFs
represents a doubly exponential improvement over the previous results of Gupta
and Fisher and our results for EIFs, are to our knowledge, the first published
bounds for this problem. Finally, the use of alternating automata provides a
basis for adapting data-structures recently developed in the Mona project [10];
in their work, as well as ours, BDDs are used to represent automata and can often
exponentially compress the representation of the transition function. We show
that the use of BDDs to represent alternating automata offers similar advantages
and plays an important rôle in the practical use of these techniques.

We proceed as follows. In §2 we provide background material on word and
tree automata. In §3 and §4 we formalize LIFs and EIFs and explain our decision
procedures. In §5 we make comparisons and in §6 draw conclusions and discuss
future work.

172 A. Ayari, D. Basin, and F. Klaedtke

2 Background

Boolean Logic The set B(V) of Boolean formulae (over V) is built from the
constants 0 and 1, variables v ∈ V , and the connectives ¬, ∨, ∧, ↔ and ⊕.
For β ∈ B(V), β[α1/v1, . . . , αn/vn] denotes the formula where the vi ∈ V are
simultaneously replaced by the formulae αi ∈ B(V).

Boolean formulae are interpreted in the set B = {0, 1} of truth values. A
substitution is a function σ : V → B that is homomorphically extended to B(V).
For σ : V → B and β ∈ B(V) we write σ |= β if σ(β) = 1. We will sometimes
identify a subset M of V with the substitution σM : V → B, where σM (v) = 1
iff v ∈ M . For example, for the formula v1 ⊕ v2, we have {v1} |= v1 ⊕ v2 but
{v1, v2} 6|= v1 ⊕ v2.

Words and Trees Σ∗ is the set of all words over the alphabet Σ. We write λ for
the empty word and Σ+ for Σ∗ \ {λ}. For u, v ∈ Σ∗, u.v denotes concatenation,
|u| denotes u’s length, and uR denotes the reversal of u.

A Σ-labeled tree (with branching factor r ∈ N) is a function t where the range
of t is Σ and the domain of t, dom(t) for short, is a finite subset of {0, . . . , r−1}∗

where (i) dom(t) is prefix closed and (ii) if u.i ∈ dom(t), then u.j ∈ dom(t) for
all j < i. The elements of dom(t) are called nodes and λ ∈ dom(t) is called the
root. The node u.i ∈ dom(t) is a successor of u. A node is an inner node if it has
successors and is a leaf otherwise. The height of t is |t| = max({0}∪{|u|+1 |u ∈
dom(t)}). The depth of a node u ∈ dom(t) is the length of u.

A tree is complete if all its leaves have the same depth. The frontier of t
is the word front(t) ∈ Σ∗ where the ith letter is the label of the ith leaf in t
(from the left). ΣT∗ denotes the set of all binary Σ-labeled trees and ΣT+ is
ΣT∗ without the empty tree.

Nondeterministic Automata A nondeterministic word automaton (NWA)
A is a tuple (Σ, Q, q0, F, δ), where Σ is a nonempty finite alphabet, Q is a
nonempty finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is a set of
accepting states, and δ : Q × Σ → P(Q) is a transition function. A run of A
on a word w = a1 . . . an ∈ Σ∗ is a word π = s1 . . . sn+1 ∈ Q+ with s1 = q0 and
si+1 ∈ δ(si, ai) for 1 ≤ i ≤ n. π is accepting if sn+1 ∈ F . A word w is accepted
by A if there is an accepting run of A on w; L(A) denotes the set of accepted
words.

Nondeterministic (top-down, binary) tree automata (NTA) are defined ana-
logously: A is a tuple (Σ, Q, q0, F, δ), where Σ, Q, q0 and F are as before. The
transition function is δ : Q×Σ → P(Q×Q). A run of a NTA A on a tree t ∈ ΣT∗

is a tree π ∈ QT+, where dom(π) = {λ} ∪ {w.b | w ∈ dom(t) and b ∈ {0, 1}}.
Moreover, π(λ) = q0 and for w ∈ dom(t), (π(w.0), π(w.1)) ∈ δ(π(w), t(w)). The
run π is accepting if π(w) ∈ F for any leaf w ∈ dom(π). A tree t is accepted by
A if there is an accepting run of A on t; L(A) denotes the set of accepted trees.

Decision Procedures for Inductive Boolean Functions 173

NWAs and NTAs recognize the regular word and tree languages and are
effectively closed under intersection, union, complement and projection. For a
detailed account of regular word and tree languages see [11] and [4] respectively.

Alternating Automata Alternating automata for words were introduced in [2,
3] and for trees in [15]. We use the definition of alternating automata for words
from [17] and generalize it to trees. For this we need the notion of the positive
Boolean formulae: Let B+(V) be the set of Boolean formulae built from 0, 1,
v ∈ V , and the connectives ∨ and ∧.

An alternating word automaton (AWA) is of the form A = (Σ, Q, q0, F, δ)
where everything is as before, except for the transition function δ : Q × Σ →
B+(Q). The same holds for alternating tree automata (ATA) where the only
difference is the transition function δ : Q × Σ → B+(Q × {L, R}). We write qX

for (q, X) ∈ Q × {L, R}.
We will only define a run for an ATA; the restriction to AWA is straightfor-

ward. For an ATA, a run π of A on t ∈ ΣT∗ is a Q × {0, 1}∗-labeled tree, with
π(λ) = (q0, λ). Moreover, for each node w ∈ dom(π), with π(w) = (q, u), and for
all of the r ∈ N successor nodes of w:

{pL | π(w.k) = (p, u.0) for 0 ≤ k < r} ∪
{pR | π(w.k) = (p, u.1) for 0 ≤ k < r} |= δ(q, t(u)) .

π is accepting if for every leaf w in π, where π(w) = (p, u.k), u is leaf in t and
p ∈ F . The tree language accepted by A is L(A) = {t ∈ ΣT∗ | A accepts t}. If
there exists an accepting run of A′ = (Σ, Q, q, F, δ) for q ∈ Q on t, then we say
that A accepts t from q. We use the same terminology for AWAs.

It is straightforward to construct an alternating automaton from a nonde-
terministic automaton of the same size. Conversely, given an AWA one can con-
struct an equivalent NWA with at most exponentially more states [2,3,17]. The
states of the nondeterministic automaton are the interpretations of the Boolean
formulae of the alternating automaton’s transition function. This construction
can be generalized to tree automata. Hence alternation does not increase the
expressiveness of word and tree automata but, as we will see, it does enhance
their ability to model problems.

3 Linearly Inductive Boolean Functions

3.1 Definition of LIFs

We now define linearly inductive Boolean functions. Our definition differs slightly
from [6,7,8], however they are equivalent (see §5).

Syntax Let the two sets V = {v1, . . . , vr} and F = {f1, . . . , fs} be fixed for the
remainder of this paper.

174 A. Ayari, D. Basin, and F. Klaedtke

A LIF formula (over V and F) is a pair (α, β), with α ∈ B(V) and β ∈
B(V] F). The formulae α and β formalize the base and step case of a recursive
definition. A LIF system (over V and F) is a pair (F, η) where F is a set of LIF
formulae over V and F and η : F → F. That is, η assigns each f ∈ F a LIF
formula (α, β) ∈ F. We will write (αf , βf) for η(f) = (α, β) and omit V and F
when they are clear from the context.

Semantics Let S be a LIF system. An evaluation of S on w = b1 . . . bn ∈ (Br)+

is a word d1 . . . dn ∈ (Bs)+ such that for bi = (ai
1, . . . , a

i
r), di = (ci

1, . . . , c
i
s), and

1 ≤ k ≤ s:

c1
k = 1 iff {vl | a1

l = 1, for 1 ≤ l ≤ r} |= αfk
,

and for all i, 1 < i ≤ n,

ci
k = 1 iff {vl | ai

l = 1, for 1 ≤ l ≤ r} ∪
{fl | ci−1

l = 1, for 1 ≤ l ≤ s} |= βfk
.

An easy induction over the length of w shows:

Lemma 1. For S a LIF system and w ∈ (Br)+, the evaluation of S on w is
uniquely defined.

Hence fk ∈ F together with S determine a function fS
k : (Br)+ → B. Namely,

for w ∈ (Br)+, fS
k (w) = c

|w|
k . We call fS

k the LIF of S and fk. When S is clear
from the context, we omit it.

Examples We present three simple examples. First, for V = {x} and F =
{serial parity}, the following LIF system S1 formalizes the family of linear parity
circuits given in the introduction.

αserial parity = x βserial parity = x ⊕ serial parity

In particular, serial parityS1 applied to b1 . . . bn ∈ B
+ equals parityn(b1, . . . , bn).

The second LIF system S2 over V = {a, b, cin} and F = {sum, carry} for-
malizes a family of ripple-carry adders.

αsum = (a ⊕ b) ⊕ cin βsum = (a ⊕ b) ⊕ carry
αcarry = (a ∧ b) ∨ ((a ∨ b) ∧ cin) βcarry = (a ∧ b) ∨ ((a ∨ b) ∧ carry)

Here sumS2 [respectively carryS2] represents the adder’s nth output bit [respec-
tively carry bit].

The third example shows how to describe a sequential circuit by a LIF system.
The LIF system S3 over V = {e} and F = {Y1, Y2, Y3} describes a 3-bit counter
with an enable bit.

αY1 = 0 βY1 = (e ∧ ¬Y1) ∨ (¬e ∧ Y1)
αY2 = 0 βY2 = (e ∧ (Y1 ⊕ Y2)) ∨ (¬e ∧ Y2)
αY3 = 0 βY3 = (e ∧ ((Y1 ∧ Y2) ⊕ Y3)) ∨ (¬e ∧ Y3).

Decision Procedures for Inductive Boolean Functions 175

Y S3
i (w), with w ∈ B

+, is the value of the ith output bit at time |w| of the 3-bit
counter, where w encodes the enable input signals.

3.2 Equivalence of LIF Systems and AWAs

A function g : (Br)+ → B is LIF-representable if there exists a LIF system S
and a f ∈ F , where g(w) = fS(w) for all w ∈ (Br)+. A language L ⊆ (Br)+

is LIF-representable if its characteristic function, g(w) = 1 iff w ∈ L, is LIF-
representable. Gupta and Fisher have shown in [6,9] that any LIF-representable
language is regular. They prove that their data-structure for representing a LIF
system corresponds to a minimal deterministic automaton that accepts the lan-
guage {wR | fS(w) = 1, for w ∈ (Br)+}.

We present here a simpler proof of regularity by showing that LIF systems
directly correspond to AWAs. We also prove a weakened form of the converse:
almost all regular languages are LIF-representable. The weakening though is
trivial and concerns the empty word, and if we consider languages without the
empty word we have an equivalence.1 Hence, for the remainder of this secction,
we consider only automata (languages) that do not accept (include) the empty
word λ.

For technical reasons we will work with LIF systems in a kind of negation
normal form. A Boolean formula β ∈ B(X) is positive in Y ⊆ X if negations
occur only directly in front of the Boolean variables v ∈ X \Y and, furthermore,
the only connectives allowed are ¬, ∧ and ∨. A LIF system S is in normal form
if βf is positive in F , for each f ∈ F .

Lemma 2. Let S be a LIF system over V and F . Then there is a LIF system
S ′ over V and F ′ = F] {f | f ∈ F} in normal form where, for all f ∈ F and

w ∈ (Br)+, fS′
(w) = fS(w) and f

S′
(w) = 1 iff fS(w) = 0,

Proof. Without loss of generality, we assume that for β ∈ B(X) only the connec-
tives ¬, ∨, and ∧ occur. The other connectives can be eliminated as standard,
which may lead to exponentially larger formulae. By nnf(β) we denote the ne-
gation normal form of β ∈ B(X).

By using the same idea as [3], it is easy to construct a LIF system S ′ by in-
troducing for each f ∈ F a new variable f that “simulates” ¬f . Let S = (F, η).
For f ∈ F , with η(f) = (α, β), the mapping η′ of the LIF system S ′ is defined
by η′(f) = (α, γ) and η′(f) = (¬α, γ) where γ and γ are obtained from nnf(β),
respectively nnf(¬β), by replacing the sub-formulae ¬fi by f i. �

We now prove that LIF-representable languages and (λ-free) regular langu-
ages coincide.
1 We can easily redefine LIFs to define functions over (Br)∗. However, following Gupta

and Fisher we avoid this as the degenerate base case (0 length input) is ill-suited
for modeling parametric circuits. Ignoring the empty word is immaterial for our
complexity and algorithmic analysis.

176 A. Ayari, D. Basin, and F. Klaedtke

Theorem 1. LIF systems are equivalent to AWAs. In particular:

i) Given an AWA A = (Br, Q, q0, F, δ), there is a LIF system S over V =
{v1, . . . , vr} and Q in normal form such that for all w ∈ (Br)+ and q ∈ Q,

qS(w) = 1 iff A accepts wR from q .

ii) Given a LIF system S in normal form over V and F , there exists an AWA
A with states F] {qbase, qstep} such that for all w ∈ (Br)+ and f ∈ F ,

A accepts w from f iff fS(wR) = 1 .

Proof. (i) We encode each b ∈ B
r by a formula γb ∈ B(V). For example,

(0, 1, 1, 0) ∈ B
4 is encoded as the Boolean formula γ(0,1,1,0) = ¬v1 ∧v2 ∧v3 ∧¬v4.

The LIF formula for q in S is

αq =
∨

b∈Br

(
γb ∧ B(q, b)

)
βq =

∨
b∈Br

(
γb ∧ δ(q, b)

)
with B(q, b) = 1 iff F |= δ(q, b). Here, the Boolean formula βq simulates the
transition from the state q on a non-final letter of the input word. The final
state set F is simulated by the Boolean formula αq, i.e., F |= δ(q, b) iff {vi | bi =
1} |= αq.

We prove (i) by induction over the length of w ∈ (Br)+. If |w| = 1, then the
equivalence follows from the definition of αq, for any q ∈ Q. Assume (i) is true
for the word w, i.e., for each qk ∈ Q, A accepts wR from qk iff qS

k (w) = 1. Let
u.d be an evaluation of S on w with d = (c1, . . . , c|Q|). It holds that qS

k (w) = 1
iff ck = 1. We prove (i) for w.b with b = (a1, . . . , ar). As defined, for each q ∈ Q
we have qS(w.b) = 1 iff

{vl | al = 1, for 1 ≤ l ≤ r} ∪ {ql | cl = 1, for 1 ≤ l ≤ |Q|} |=
∨

b′∈Br

(
γb′ ∧ δ(q, b′)

)
.

By the induction hypothesis, we obtain {ql | A accepts wR from ql, for 1 ≤ l ≤
|Q|} |= δ(qk, b). From this we can easily construct an accepting run of A from q
on (w.b)R. The other direction holds by definition of an accepting run.

(ii) For an arbitrary g ∈ F , let A = (Br, F] {qbase, qstep}, g, {qbase}, δ) with
δ(qbase, b) = 0, δ(qstep, b) = qbase ∨ qstep, and for f ∈ F

δ(f, (b1, . . . , br)) =
(
qstep ∧ βf [b1/v1, . . . , br/vr]

) ∨
{

qbase if {vi | bi = 1} |= αf

0 otherwise

Intuitively when A is in state f ∈ F and reads (b1, . . . , br) ∈ B
r it guesses

if the base case is reached. When this is the case, the next state is qbase iff
{vi | bi = 1} |= αf . Otherwise, if the base case is not reached, the AWA proceeds
according to the step case given by the Boolean formula βf of the LIF system.
The equivalence is proved in a similar way to (i). �

Decision Procedures for Inductive Boolean Functions 177

Note that if a LIF formula only uses the connectives ¬, ∧ and ∨, then,
following the proof of Lemma 2, a normal form can be obtained in polynomial
time. Moreover, if V is fixed the size, the AWA A of Theorem 1(ii) can be
constructed in polynomial time, since the size of the alphabet B

r is a constant.
However, if we allow V to vary, then the size of the AWA constructed can be
exponentially larger than the size of the LIF system, i.e. |V |+ |F |+∑

f∈F (|αf |+
|βf |), since the input alphabet of A is of size 2|V |.

3.3 Deciding LIF Equality

Given LIF systems S over V and F , and T over V and G, and function symbols
fk ∈ F and gl ∈ G, the equality problem for LIFs is to decide whether fS

k (w) =
gT

l (w), for all w ∈ (Br)+. We first show that this problem is PSPACE-complete
and afterwards show how, using BDDs, the construction in Theorem 1 provides
the basis for an efficient implementation.

Theorem 2. The equality problem for LIFs is PSPACE-complete.

Proof. We reduce the emptiness problem for AWAs, which is PSPACE-hard [12,
17], to the equality problem for LIFs. Given an AWA A with initial state q0,
by Theorem 1(i) we can construct an equivalent LIF system S in polynomial
time. Let the LIF system T be given by the formulae αg = 0 and βg = 0. Then
qS
0 = gT iff L(A) = ∅.

Theorem 1(ii) cannot be used to show that the problem is in PSPACE be-
cause, as explained in the previous section, both the normal form and the size of
the two constructed AWAs can be exponentially larger than the size of the LIF
instances. Hence, we instead give a direct proof. The following Turing machine
M accepts a problem instance in PSPACE iff a word w = b1 . . . bn ∈ (Br)+

exists with fS
k (w) 6= gT

l (w). Let d1 . . . dn ∈ (B|F |)+ be the evaluation of S on w
and d′

1 . . . d′
n ∈ (B|G|)+ be the evaluation of T on w. M guesses in the ith step

bi ∈ B
r and calculates di = (c1, . . . , c|F |) and d′

i = (c′
1, . . . , c

′
|G|) of the evaluati-

ons. If ck 6= c′
l then M accepts the instance and otherwise M continues with the

(i + 1)th step. Note that for the ith step only di−1 and d′
i−1 and bi are required

to calculate di and d′
i. Hence M runs in polynomial space, since in the ith step

the space |V | is required to store bi and the space 2(|F | + |G|) to store di−1, di,
d′

i−1, and d′
i. M needs linear time in the size of the LIF formulae of S and T to

calculate di and d′
i from bi, di−1 and d′

i−1. Since PSPACE is closed under nonde-
terminism and complementation, the equality problem for LIFs is in PSPACE. �

Although the machinery of alternating automata may appear a bit heavy, it
leads to simple translations as there is a direct correspondence between function
symbols in a LIF system and states in the corresponding AWA. This would not
be possible using nondeterministic automata. Because the emptiness problem for
NWAs is LOGSPACE-complete and the equality problem for LIFs is PSPACE-
complete, a translation of a LIF system to a nondeterministic automata must,
in general, lead to an exponential blow-up in the state space.

178 A. Ayari, D. Basin, and F. Klaedtke

Input: AWA A = (Σ, Q, q0, F, δ)
Output: returns true iff L(A) = ∅

Current := {{q0}};
Processed := ∅;
while Current 6= ∅ do begin

if Current ∩ P(F) 6= ∅ then return false;
else begin

Processed := Processed ∪ Current;
Current := {T ′ ⊆ Q |T ′ |= ∧

q∈T δ(q, a) for T ∈ Current, a ∈ Σ}\Processed;
end;

end;
return true;

Fig. 1. Decision procedure for the emptiness problem for AWAs.

Implementation In the proof of Theorem 2 we did not use the mapping from
LIFs to AWAs given by Theorem 1(ii) due to the possible exponential blow-
up when normalizing the LIF system, and the certain exponential blow-up in
representing the AWA’s alphabet. We describe here how these blow-ups can
sometimes be avoided by using BDDs.

The reduction of LIF equality to the emptiness problem for AWAs is straight-
forward. From the LIF systems S over V and F , and T over V and G we con-
struct the LIF system S̃ over V and {f̃}]F]G with the additional LIF formula
αf̃ = ¬(αf ↔ αg) and βf̃ = ¬(βf ↔ βg). We then normalize S̃ and use Theorem

1(ii) to construct the AWA A with the initial state f̃ . By construction, L(A) 6= ∅
iff f̃ S̃(w) = 1 for some w ∈ (Br)+ iff fS 6= gT .

To decide if an AWA A = (Σ, Q, q0, F, δ) accepts the empty language, we
construct “on-the-fly” the equivalent NWA B = (Σ,P(Q), {q0},P(F), δ′) with

δ′(T, a) = {T ′ ⊆ Q | T ′ |=
∧
q∈T

δ(q, a)},

and search for a path from the initial state {q0} of B to a final state. We do
this with a parallel breadth-first search in the state space of B as described in
Figure 1.

To analyze the complexity, observe that the while-loop is traversed maxi-
mally 2|Q|-times and the calculation in each iteration requires O(2|Q||Σ|)-time.
Hence the worst-case running time is O(22|Q||Σ|). We need two vectors of the
length 2|Q| to represent the sets Current and Processed. Hence the required space
is the maximum of O(2|Q|) and the size of the representation of the AWA A.

It is possible to use BDDs in two places to sometimes achieve an exponential
savings in space. First, the sets Current,Processed ⊆ P(Q) can be encoded as
BDDs where a BDD represents the characteristic function of the set. Second,
since the size of A’s alphabet (Br) is exponential in |V |, we use the same idea
that Gupta and Fisher employed for their representation of LIFs: we need not

Decision Procedures for Inductive Boolean Functions 179

q1 q2q0

q1
q1 q1

q2

0 1

a a a

no yesno
state

final?

BDD

initial state

Fig. 2. Representation of an AWA.

explicitly represent the exponentially large alphabet and we can use BDDs to re-
present the transition function. For example, Figure 2 depicts the representation
of the AWA A = (B, {q0, q1, q2}, q0, {q2}, δ) with the transition function

δ(q0, 0) = q1 ∧ q2 δ(q0, 1) = q1

δ(q1, 0) = q1 ∧ q2 δ(q1, 1) = q1 ∨ q2

δ(q2, 0) = 1 δ(q2, 1) = q1.

The solid [respectively dashed] lines correspond to the variable assignment 1
[respectively 0]. For example, the state q0 has a pointer to a BDD, where the first
node (labeled a) encodes the alphabet; the solid line from this node points to a
BDD representing δ(q0, 1) = q1 and the dashed line points to a BDD representing
δ(q0, 0) = q1 ∧ q2.

We have implemented the emptiness test for AWAs using the CUDD package
[16] and have begun preliminary testing and comparison. For the examples given
in §3.1, building AWAs for the descriptions given and testing them for emptiness
or equivalence with alternative descriptions is very fast: it takes a fraction of a
second and most of the time is spent with I/O. We can carry out more ambitious
tests by scaling up the sequential 3-bit counter example, namely performing tests
on an n-bit counter for different values of n. This example is also interesting
as it demonstrates the worst-case performance of our decision procedure since
exponential many states of the NWA must be constructed to decide if the AWA
describes the empty language.

Table 1 gives empirical results of the required space and time for the emp-
tiness test for the resulting AWAs on a SUN Sparc Ultra with 250MHz. In the
rightmost column are the running times on a SUN Sparc Ultra with 300MHz
for building the canonical representation in Gupta and Fisher’s approach. For
large values of n, our approach yields significantly better results, although in
both cases the algorithms require exponential time and space. Note that some

180 A. Ayari, D. Basin, and F. Klaedtke

n # BDD nodes of peak of # BDD nodes of AWA LIF
transition function Current/Processed CPU time CPU time

2 21 10 / 11 0.1s 0.0s
4 59 34 / 42 0.1s 0.0s
8 189 318 / 717 1.0s 4.0s
10 269 971 / 3063 8.2s 81.0s
12 371 3438 / 13037 71.7s 15241.5s

Table 1. Empirical results of the emptiness test for a n-bit counter

care must be taken in comparing these results: we have not included the time
taken in constructing the AWA from the LIF system (it is linear) as this was
done by hand. Further, Gupta and Fisher build a canonical representation of the
LIF and they have used the older BDD package from David Long.

4 Exponentially Inductive Boolean Functions

The structure of this section parallels that of §3. After defining EIFs, we show
how their equality problem can be decided using tree automata. The decision
procedure however is not as direct as it is for LIFs. One problem is that inputs
to EIFs are words not trees. We solve this by labeling the interior nodes of trees
with a dummy symbol. However, the main problem is that the words must be
of length 2n. This restriction cannot be checked by tree automata and we solve
this by deciding separately if a tree automaton accepts a complete tree.

4.1 Definitions of EIFs

Syntax An EIF formula (over V and F) is a pair (α, β), with α ∈ B(V)
and β ∈ B(F × {L, R}). We write fL [respectively fR] for the variable (f, L)
[respectively (f, R)] in F × {L, R}. An EIF system (over V and F) is a pair
(F, η), where F and η are defined as for a LIF system. Similarly to LIF systems,
we write (αf , βf) for η(f) = (α, β).

Semantics Let S be an EIF system over V and F . An evaluation of S on
a word w = b1 . . . b2n ∈ (Br)+ is a complete binary B

s-labeled tree τ with
front(τ) = d1 . . . d2n ∈ (Bs)+ and for 1 ≤ k ≤ s:

i) For bi = (ai
1, . . . , a

i
r) and di = (ci

1, . . . , c
i
s), with 1 ≤ i ≤ 2n,

ci
k = 1 iff {vl | ai

l = 1, for 1 ≤ l ≤ r} |= αfk
.

ii) For each inner node u ∈ dom(τ) with τ(u.0) = (c′
1, . . . , c

′
s), τ(u.1) =

(c′′
1 , . . . , c′′

s), and τ(u) = (c1, . . . , cs):

ck = 1 iff {fL
i | c′

l = 1, for 1 ≤ l ≤ s} ∪
{fR

i | c′′
l = 1, for 1 ≤ l ≤ s} |= βfk

.

Decision Procedures for Inductive Boolean Functions 181

Let Σ2+ = {w ∈ Σ∗ | |w| = 2n, for some n ∈ N}. As with LIFs, the eva-
luation τ is uniquely defined; hence fk ∈ F and S together define a function
fS

k : (Br)2+ → B. Namely fS
k (w) = ck, where τ is the unique evaluation of S

on w and τ(λ) = (c1, . . . , cs). EIF-representable is defined analogously to LIF-
representable.

For example, the tree implementation of the parameterized parity circuit
from the introduction is described by the EIF system S over V = {x} and
F = {tree parity} with the EIF formula:

αtree parity = x βtree parity = tree parityL ⊕ tree parityR.

Here the value of the EIF tree parityS applied to a word w = b1 . . . b2n ∈ B
+ is

the value of the function parity2n

applied to (b1, . . . , b2n).

4.2 Equivalence of EIF Systems and ATAs

Using ATAs we can characterize the EIF-representable functions. To interpret
a word in the domain of an EIF as a tree, we identify a word b1 . . . b2n ∈ Σ∗

with the complete tree t ∈ (Σ]{#})T∗, where front(t) = b1 . . . b2n and all inner
nodes are labeled with the dummy symbol #. In the following, Σ# stands for
Σ]{#}. We call a tree t ∈ ΣT∗

a Σ-leaf-labeled tree when (i) if w is a leaf, then
t(w) ∈ Σ and (ii) if w is an inner node, then t(w) = #.

Normal forms for EIF systems can be defined and obtained as for LIF systems
and the proof of Theorem 1 can, with minor modifications, be generalized to
EIFs.

Theorem 3. EIF systems are equivalent to ATAs if the input trees are restricted
to complete, leaf-labeled trees. In particular:

i) Let A = (Br
#, Q, q0, F, δ) be an ATA. There is a normal form EIF system

S over V = {v1, . . . , vr} and Q, such that for all q ∈ Q and any complete
B

r-leaf-labeled tree t ∈ (Br
#)T+,

qS(front(t)) = 1 iff A accepts t from q .

ii) Let S be a normal form EIF system over V and F . There is an ATA A
with the state set F] {qbase, qstep}, such that A accepts from f ∈ F only
B

r-leaf-labeled trees, and for any complete B
r-leaf-labeled tree t ∈ (Br

#)T+,

A accepts t from f iff fS(front(t)) = 1 .

4.3 Deciding EIF Equality

The equality problem for EIFs and the size of an instance are defined similarly
to LIFs. We cannot generalize the decision procedure from §3.3 to EIFs since
we are only interested in trees of a restricted form: complete leaf-labeled binary
trees. Unfortunately completeness is not a regular property, i.e. one recognizable

182 A. Ayari, D. Basin, and F. Klaedtke

by tree automata, and hence we cannot reduce the problem to an emptiness pro-
blem. Instead, we reduce the problem to the complete-tree-containment problem
(CTCP) for NTAs, which is to decide whether a given NTA accepts a complete
tree.

Theorem 4. The equality problem for EIFs is in EXPSPACE.

Proof. Let S over V and F , and T over V and G be EIF systems, and let f ∈ F
and g ∈ G be given. Let S̃ be the EIF system over V and {f̃}] F] G with the
additional EIF formula αf̃ = ¬(αf ↔ αg) and βf̃ = ¬(βf ↔ βg). We normalize

S̃, and by Theorem 3(ii) construct an ATA A with the initial state f̃ , such that
fS 6= gT iff A accepts a complete tree. A has 2|{f̃}]F]G|+2 states and the size
of the alphabet B

|V |
is 2|V | + 1. From A we can construct an equivalent NTA B

that has at most O(22|F |+|G|) many states. Hence we have reduced the equality
problem for EIFs to CTCP for NTAs. The required space for the reduction is
O(2|V |22|F |+|G|).

We now show that CTCP for NTAs is in PSPACE. For the NTA A =
(Σ, Q, q0, F, δ) we construct the AWA A′ = ({1}, Q, q0, F, δ′) with δ′(q, 1) =∨

a∈Σ

∨
(p,p′)∈δ(q,a)(p ∧ p′). It is easy to prove that A accepts a complete tree of

height h iff A′ accepts a word of length h. From this follows that CTCP for NTAs
is in PSPACE because the emptiness problem for AWAs is in PSPACE [12,17]. �

In [13], it is proved that the equality problem for EIFs and CTCP for ATAs
(to decide if an ATA accepts a complete tree) are both EXPSPACE-hard. We
omit the proof, which is quite technical, due to space limitations.

5 Comparisons and Related Work

Our work was motivated by that of Gupta and Fisher [6,7,8] and we begin by
comparing our LIFs and EIFs with theirs, which we will call LIF0 and EIF0.

For each n ≥ 1, a LIF0 f is given by a Boolean function, called the n-instance
of f and denoted by fn, where f1 : B

r → B and fn : B
r+s → B for n > 1 (r is

the number of n-instance inputs and s is the number of (n−1)-instance function
inputs). Further it must hold that for all m, n > 1 the m-instance and the n-
instance of f are equal, i.e. fm = fn. By means of the parity function we explain
how the value of a LIF0 is calculated. The n-instances of serial parityn (using
their notation) are:

serial parity1 = b1,

serial parityn = bn ⊕ serial parityn−1 for n > 1.

The value of the LIF0 serial parity on the word b1 . . . bn ∈ (Br)+, written as
serial parity(b1, . . . , bn), is the value of the 1-instance serial parity1 applied to
b1 for n = 1. For n > 1, it is the value of the n-instance serial parityn applied
to bn and serial parity(b1, . . . , bn−1).

Decision Procedures for Inductive Boolean Functions 183

The definitions of a “LIF formula” and a “LIF system” correspond to the
definition of a “LIF0”. Moreover, the way the “value” of a LIF0 is calculated cor-
responds to our definition of “evaluation”. Hence both formalisms are equivalent.
However, the algorithms, data-structures, and complexity of our approaches are
completely different!

Gupta and Fisher formalize LIF0s using a data-structure based on BDDs
where terminal nodes are not just the constants 0 and 1, but also pointers to
other BDDs. They then prove that each LIF system has a canonical represen-
tation that can be obtained in O(22|F |

2|V | + (22|F |
)2) time and space in the

worst-case. In contrast, we have given a decision procedure (Theorem 2) that
requires polynomial space, which is a doubly exponential improvement in space
and an exponential improvement in time. Despite its worse space complexity, our
algorithm based on BDD-represented AWAs may give better results in practice
than our PSPACE decision procedure. This depends on whether the BDDs used
require polynomial or exponential space. If the space required is polynomial,
then the resulting AWA and its emptiness test require only polynomial space.
In the exponential case, as there are only 2|F | + 2 states, the emptiness test
requires O(2|V |+2|F |) time and space. This case also represents an exponential
improvement over Gupta and Fisher’s results, both in time and space.

An EIF0 f has, like a LIF0, for each n ≥ 0, a n-instance function f2n

, where
f1 : B

r → B and, for n > 0, f2n

is a Boolean combination of three EIF0s, e, g
and h, i.e. f2n

: B
3 → B. Further it must hold that f2m

= f2n

for all m, n > 0.
The value of the EIF0 f on the word b1 . . . b2n ∈ (Br)+, written as f(b1, . . . , b2n),
is the value of the 0-instance f1 applied to b1 if n = 0. For n > 0, it is the value
of the n-instance f2n

applied to the value of the EIF0 e of the left half of the
word, i.e. e(b1, . . . , b2n−1), and to the values of the EIF0s g and h of the right
half of the word, i.e. g(b2n−1+1, . . . , b2n) and h(b2n−1+1, . . . , b2n).

EIF0s are strictly less expressive than EIFs. Indeed, since not every Boolean
function for the n-instance function of an EIF0 (for n > 0) is allowed, even
simple functions cannot be described by an EIF0, e.g., F : B

2+ → B with
F (w) = 1 iff w = 0000 or w = 1100 or w = 1011. The reason is similar to
why deterministic top-down tree automata are weaker than nondeterministic
top-down tree automata; the restrictions of the n-instance function of an EIF0
stems from the data-structure proposed for EIF0s in [6,7] in order to have a
canonical representation. On the other hand, it is easy to see that F is EIF-
representable.

Our results on the complexity of the equality problem for EIFs are, to our
knowledge, the first such results given in the literature. Neither we nor Gupta
and Fisher have implemented a decision procedure for the equality problem for
EIFs or EIF0s.

We have seen that LIFs and EIFs can be reduced to word and tree automata.
Gupta and Fisher also give in [6,7] an extension of their data-structure for LIF0s
and EIF0s that handles more than one induction parameter with the restriction
that the induction parameters must be mutually independent. We conjecture
that it may be possible to develop similar models in our setting based on 2-

184 A. Ayari, D. Basin, and F. Klaedtke

dimensional word automata (as described in [5]) and their extension to trees.
However, this remains as future work.

There are also similarities between our work and the description of circuits by
equations of Brzozowski and Leiss in [2]. A system of equations S has the form
Xi =

⋃
a∈Σ{a}.Fi,a ∪ δi (for 1 ≤ i ≤ n) where the Fi,a are Boolean functions in

the variables Xi, and each δi is either {λ} or ∅. It is shown in [2] that a solution
to S is unique and regular, i.e., if each Xi is interpreted with Li ⊆ Σ∗ and the
Li satisfy the equations in S, then the Li are unique and regular. LIF systems
offer advantages in describing parameterized circuits. For example, with LIFs
one directly describes the “input ports” using the variables V . In contrast, a
system of equations must use the alphabet B

r and cannot “mix” input pins and
the signals of the internal wiring (and the same holds for outputs). Furthermore,
descriptions using LIFs cleanly separate the base and step cases of the circuit
family, which is not the case with [2].

Finally, note that the use of BDDs to represent word and tree automata,
without alternation, is explored in [10,14]. There, BDD-represented automata
are used to provide a decision procedures for monadic second-order logics on
words and trees. This decision procedure is implemented in the Mona system,
and Mona can be used to reason about LIF systems [1]: a LIF system is described
by a monadic second-order formula, which Mona translates into a deterministic
word automaton. Although this has the advantage of using an existing decision
procedure, the complexity can be considerably worse both in theory and in
practice. For example, for a 12-bit counter Mona (version 1.3) needs more than
an hour to build the automaton and the number of BDD nodes is an order of
magnitude larger than what is needed for our emptiness test for AWAs.

6 Conclusions

We have shown that LIFs and EIFs can be understood and analyzed using stan-
dard formalisms and results from automata theory. Not only is this conceptually
attractive, but we also obtain better results for the decision problem for LIFs
and the first complexity results for EIFs. The n-bit counter example in §3.3 in-
dicates that our approach, at least in some cases, is faster in practice. However,
an in depth experimental comparison of the procedures remains as future work.

Acknowledgments: The authors thank Aarti Gupta for helpful discussions
and kindly providing us with recent timings using her package. We also thank
the referees for their suggested improvements.

References

1. D. Basin and N. Klarlund. Automata based symbolic reasoning in hardware veri-
fication. The Journal of Formal Methods in Systems Design, 13(3):255–288, 1998.

2. J. Brzozowski and E. Leiss. On equations for regular languages, finite automata,
and sequential networks. TCS, 10(1):19–35, 1980.

Decision Procedures for Inductive Boolean Functions 185

3. A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the ACM,
28(1):114–133, 1981.

4. F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.
5. D. Giammarresi and A. Restivo. Two-dimensional languages. In A. Salomaa and

G. Rozenberg, editors, Handbook of Formal Languages, volume 3, Beyond Words,
chapter 4, pages 215–267. Springer-Verlag, 1997.

6. A. Gupta. Inductive Boolean Function Manipulation: A Hardware Verification
Methodology for Automatic Induction. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, 1994.

7. A. Gupta and A. Fisher. Parametric circuit representation using inductive boolean
functions. In CAV 93, volume 697 of LNCS, pages 15–28, 1993.

8. A. Gupta and A. Fisher. Representation and symbolic manipulation of linearly
inductive boolean functions. In Proc. of the IEEE Internation Conference on
Computer-Aided Design, pages 192–199. IEEE Computer Society, 1993.

9. A. Gupta and A. Fisher. Tradeoffs in canonical sequential representations. In Proc.
of the International Conference on Computer Design, pages 111–116, 1994.

10. J. Henriksen, J. Jensen, M. Jorgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In TACS 95, vo-
lume 1019 of LNCS, pages 89–110, 1996.

11. J. Hopcroft and J. Ullman. Formal Languages and their Relation to Automata.
Addison-Wesley, 1969.

12. T. Jiang and B. Ravikumar. A note on the space complexity of some decision
problems for finite automata. IPL, 40(1):25–31, 1991.

13. F. Klaedtke. Induktive boolesche Funktionen, endliche Automaten und monadi-
sche Logik zweiter Stufe. Master’s thesis, Institut für Informatik, Albert-Ludwigs-
Universität, Freiburg i. Br., 2000. in German.

14. N. Klarlund. Mona & Fido: The logic-automaton connection in practice. In CSL
97, volume 1414 of LNCS, pages 311–326, 1998.

15. G. Slutzki. Alternating tree automata. TCS, 41(2-3):305–318, 1985.
16. F. Somenzi. CUDD: CU Decision Diagram Package, Release 2.3.0. Department

of Electrical and Computer Engineering, University of Colorado at Boulder, 1998.
17. M. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for

Concurrency, volume 1043 of LNCS, pages 238–266, 1996.

	Introduction
	Background
	Linearly Inductive Boolean Functions
	Definition of LIFs
	Equivalence of LIF Systems and AWAs
	Deciding LIF Equality

	Exponentially Inductive Boolean Functions
	Definitions of EIFs
	Equivalence of EIF Systems and ATAs
	Deciding EIF Equality

	Comparisons and Related Work
	Conclusions

