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Abstract
We propose a sparse orthogonal factor analysis (SOFA) procedure in which
the optimal loadings and unique variances are estimated subject to additional
constraint which directly requires some factor loadings to be exact zeros. More
precisely, the constraint specifies the required number of zero factor loadings
without any restriction on their locations. Such loadings are called sparse which
gives the name of the method. SOFA solutions are obtained by minimizing a
FA loss function under the sparseness constraint making use of an alternate
least squares algorithm. We further present a sparseness selection procedure in
which SOFA is performed repeatedly by setting the sparseness at each of a set
of feasible integers. Then, the SOFA solution with the optimal sparseness can
be chosen using an index for model selection. This procedure allows us to find
the optimal orthogonal confirmatory factor analysis model among all possible
models. SOFA and the sparseness selection procedure are assessed by simulation
and illustrated with well known data sets.
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1 Introduction

Factor analysis (FA) is a model that aims to explain the interrelationships among
observed variables by a small number of latent variables called common factors.
The relationships of the factors to observed variables are described by a factor
loading matrix. FA is classified as exploratory (EFA) or confirmatory (CFA). In
EFA, the loading matrix is unconstrained and has rotational freedom which is
exploited to rotate the matrix so that some of its elements approximate zero. In CFA,
some loadings are constrained to be zero and the loading matrix has no rotational
freedom [9].

One refers to a loading matrix with a number of exactly zero elements as being
sparse, which is an indispensable property for loadings to be interpretable. In EFA,
a loading matrix is rotated toward a sparse matrix, but the literal sparseness is not
attained, since rotated loadings cannot exactly be equal to zero. Thus, the user must
decide which of them can be viewed as approximately zeros. On the other hand,
some loadings are fixed exactly to zero in CFA. However, the problem in CFA is
that the number of zero loadings and their locations must be chosen by users. That
is, the users’ subjective decision is needed in both EFA and CFA.

In order to overcome these difficulties, we propose a new FA procedure, which is
neither EFA nor CFA. The optimal orthogonal factor solution is estimated such that
it has a sparse loading matrix with a suitable number of zero elements. Note that,
their locations are also estimated in an optimal way. The procedure to be proposed
consists of the following two stages:

(a) The optimal solution is obtained for a specified number of zero loadings.
(b) The optimal number of zero loadings is selected among possible numbers.

Stages (a) and (b) would be described in Sects. 2–4, respectively.
In the area of principal component analysis (PCA), many procedures, called

sparse PCA, have been proposed in the last decade (e.g. [8, 13, 16]). As in our FA
procedure, they obtain sparse loadings. However, besides the difference between
PCA and FA, our approach does not rely on penalty functions, which is the standard
way to induce sparseness in the existing sparse PCA.

2 Sparse Factor Problem

The main goal of FA is to estimate the p-variables �m-factors matrix ƒ containing
loadings and the p � p diagonal matrix ‰2 including unique variances from the
n-observation �p-variables .n > p/ column-centered data matrix X. For this goal,
FA can be formulated by a number of different objective functions, among which
we choose the least squares function

f D jjX � Fƒ0 � U‰jj2 (1)
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recently utilized in several works [1,4,14,15]. Here, F is the n�mmatrix containing
common factor scores and U is the n � p matrix of unique factor scores. The factor
score matrices are constrained to satisfy

n�1F0F D Im; n�1U0U D Ip; and F0U D mOp (2)

with Im the m �m identity matrix and mOp the m � p matrix of zeros.
We propose to minimize (1) over F;U;ƒ, and ‰ subject to (2) and

SP.ƒ/ D q; (3)

where SP.ƒ/ expresses the sparseness of ƒ, i.e., the number of its elements being
zero, and q is a specified integer.

The reason for our choosing loss function (1) is that we can define

A D n�1X0F (4)

to decompose (1) as

f D jjX�FA0 �U‰ � .Fƒ0 �FA0/jj2 D jjX�FA0 �U‰jj2Cnjjƒ�Ajj2: (10)

This equality is derived from the fact that .X � FA0 � U‰/0.Fƒ0 � FA0/ D nAƒ0 �
nAA0 � nAƒ0 C nAA0 D pOp is given using (2) and (4). In (10) only a simple
function jjƒ�Ajj2 is relevant to ƒ and thus can be easily minimized over ƒ subject
to (3) as seen in the next section. It is difficult for other objective functions of FA to
be rewritten into simple forms as (10). For example, the likelihood function for FA
includes the determinant of a function of ƒ which is difficult to handle.

3 Algorithm

For minimizing (1) subject to (2) and (3), we consider alternately iterating the update
of each parameter matrix.

First, let us consider updating ƒ so that (1) or (10) is minimized subject to (3)
while F;U, and ‰ are kept fixed. This amounts to minimizing g.ƒ/ D jjƒ � Ajj2
under (3), since of (10). Using ƒ D .�ij/ and A D .aij/, we can rewrite g.ƒ/ as

g.ƒ/ D
X

.i;j /2N

a2ij C
X

.i;j /2N?

.�ij � aij/
2 �

X

.i;j /2N

a2ij; (5)

where N denotes the set of the q pairs of (i; j / for the loadings �ij to be zero and
N? is the complement to N. The inequality in (5) shows that g.ƒ/ attains its lower
limit †.i;j /2Na2ij when the loading �ij with (i; j / 2 N? is set equal to aij. Further,
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the limit †.i;j /2Na2ij is minimal when N contains the (i; j / for the q smallest a2ij
among all squared elements of A. The optimal ƒ D .�ij/ is thus given by

�ij D
(
0 iff a2ij � a2Œq�
aij otherwise

(6)

with a2Œq� the q-th smallest value among all a2ij.
Next, let us consider the update of the diagonal matrix ‰. Substituting (2) in (1)

simplifies the objective function to

f D ntrS C ntrƒƒ0 C ntr‰2 � 2ntrX0Fƒ0 � 2trX0U‰ (100)

with S D n�1=2X0X the sample covariance matrix. Since (100) can further be
rewritten as jjn1=2‰ � n�1=2diag.X0U/jj2 C c with c a constant irrelevant to ‰ ,
the minimizer is found to be given by

‰ D diag.n�1X0U/; (7)

when F;U, and ƒ are considered fixed.
Finally, let us consider minimizing (1) over n � .m C p/ block matrix [F;U]

subject to (2) with ‰ and ƒ kept fixed. We note that (100) is rewritten as f D
c� � 2ntrB0X0ŒF;U� with B D Œƒ;U� an p � .m C p/ matrix and c� a constant
irrelevant to [F;U]. As proved in Appendix 1, f is minimized for

n�1X0ŒF;U� D B0CQ�Q0; (8)

where B0C is the Moore-Penrose inverse of B0 and Q�Q0 is obtained through the
eigenvalue decomposition (EVD) of B0SB:

B0SB D Q�2Q0; (9)

with Q0Q D Ip and �2 the positive definite diagonal matrix. Rewriting (8) as
Œn�1X0F; n�1X0U� D B0CQ�Q0 and comparing it with (4) and (7), one finds:

A D B0CQ�Q0Hm (40)

‰ D diag.B0CQ�Q0Hp/ (70)

where Hm D ŒIm; mOp�
0 and Hp D ŒpOm; Ip�0.

The above equations show that ƒ and ‰ can be updated if only the sample
covariance matrix S.D n�1X0X/ is available. In other words, the updating of
[F;U] can be avoided when the original data matrix X is not given, That is, the
decomposition (9) gives the matrices Q and � needed in (40) and (70), with (40) being
used for (6). Further, the resulting loss function value can be computed without the
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use of X W (6) implies ƒ0A D ƒ0ƒ, and substituting this, (4), and B D Œƒ;U� into
(100) leads to f D ntrS C ntrƒƒ0 � 2ntrƒ0A � ntr‰2 D nftrS � tr.ƒƒ0 C ‰2/g D
n.trS � trBB0/. Then, the standardized loss function value

fS.B/ D 1 � trBB0=trS; (10)

which takes a value within [0,1], can be used for convenience instead of f .
The optimal B D Œƒ; ‰ � is thus given by the following algorithm:

Step 1. Initialize ƒ and ‰ .
Step 2. Set B D Œƒ; ‰ � to perform EVD (9).
Step 3. Obtain A by (40) to update ƒ with (6).
Step 4. Update ‰ with (70).
Step 5. Finish if convergence is reached; otherwise, go back to Step 2.

The convergence of the updated parameters in Step 5 is defined as the decrease
of (10) being less than 0.17. To avoid missing the global minimum, we run the
algorithm multiple times with random start in Step 1. The procedure for selection of
the optimal solution is described in Appendix 2. We denote the resulting solution of
B as OBq D Œ Oƒq; O‰q�, where the subscript q indicates the particular number of zeros
used in (3).

4 Sparseness Selection

Sparseness can be restated as parsimony: the greater SP.ƒ/ implies that fewer
parameters are to be estimated and the resulting loss function value is greater. Thus,
the sparseness selection means to choose a FA model with the optimal combination
of the attained loss function value and parsimony. For such model selection, we
can use the information criteria [10] which are defined using maximum likelihood
(ML) estimates. Although ML method is not used in our algorithm, we assume
that OBq D Œ Oƒq , O‰q] is equivalent to the ML-CFA solution which maximizes log
likelihood L.ƒ;‰/ D �0:5nflog jƒƒ0 C ‰2j C trS.ƒƒ0 C ‰2/�1g with the
locations of the zero loadings constrained to be those of Oƒq . This assumption would
be validated empirically in the next section. Under this assumption, we propose
to use an information criterion BIC [10] for choosing the optimal q. BIC can be
expressed as

BIC.q/ D �2L. Oƒq; O‰q/ � q lognC c# (11)

for OBq with c# a constant irrelevant to q. The optimal sparseness is thus defined as

Oq D arg min
qmin�q�qmax

BIC.q/ (12)
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and OB Oq is chosen as the final solution OB. Here, we set qmin D m.m�1)/2, since it
prevents ƒ from rotational indeterminacy if q goes below it. On the other hand, we
set qmax D p.m�1), since it prevents ƒ from having an empty column if q were
greater than the limit.

5 Simulation Study

We performed a simulation study to assess the proposed procedure with respect to
(1) identifying the true sparseness and the locations of zero loadings; (2) goodness
of the recovery of parameter values; (3) sensitivity to local minima; (4) whether
SOFA solutions are equivalent to the solutions of the ML-CFA procedure with the
locations of the zero elements in ƒ set to those obtained by SOFA.

We used the five types of the true ƒ shown in Table 1, which are desired to be
possessed by FA solutions. The first three types have simple structure, while the
remaining two have bi-factor simple structure as defined by [6]. For each type, we
generated 40 sets of fƒ; ‰ ; Sg by the following steps: (1) each diagonal element
of ‰ was set to u.0:11=2; 0:71=2/, where u.˛; ˇ/ denotes a value drawn from the
uniform distribution of the range [˛, ˇ]. (2) A nonzero value in ƒ was set to u(0.4,
1), while an element denoted by “r” in Table 1 was randomly set to zero or u(0.4, 1).
(3) ƒ was normalized so as to satisfy diag(ƒƒ0 C ‰2/ D Ip . (4) Setting n D 200p,
we sampled each row of X from the centered p-variate normal distribution with its
covariance matrix ƒƒ0 C ‰2. (5) Inter-variable correlation matrix S was obtained
from X. For the resulting data sets, we carried out SOFA: its algorithm was run
multiple times for each of q D qmin; : : :; qmax until the two equivalently optimal

Table 1 Three loading matrices of simple structure (left) and two ones of bi-factor structure
(right), with nonzero and zero elements denoted by # and blank cells, respectively

# r # r # r r # # # #

# r # # r r # # # #

# # # r r # # # #

# # # r r # r # r

r # r # r # r # r # r r

r # r # r # r # r # #

# r # r # r # # # #

# r # r # r # # # #

r r # r r # # # # r

r # r r # # r # r r

r # r r # # r # #

r # r r # # r # #

r r # # #

r r # # r

r r # # r r

r r #



Sparse Orthogonal Factor Analysis 233

Table 2 Percentiles of index values for assessing the SOFA solutions

(B) Rate
(C) Difference to
the true value

(D) Difference to
ML-CFA

Percentile (A) BES R00 R## ƒ ‰2 ƒ ‰2

5 �0.133 0.843 0.972 0.013 0.023 0.002 0.004

25 �0.031 0.968 1.000 0.017 0.032 0.003 0.005

50 0.000 1.000 1.000 0.021 0.038 0.004 0.006

75 0.000 1.000 1.000 0.026 0.046 0.006 0.008

95 0.000 1.000 1.000 0.040 0.056 0.009 0.011

solutions are found by the procedure in Appendix 2. As done there, we use Lq for
the number of runs necessitated.

To asses the sensitivity of SOFA to local minima, we counted Lq and averaged
it over q for each data set. The sensitivity is indicated by Lq as described in
Appendix 2. The quartiles of the averagedLq values over 200 data sets were 89, 120,
and 155: the second quartile 120 implies that the 120 � 2 D 118 solutions (except
two equivalently optimal solutions) are local minimizers among 120 solutions for a
half of data sets. This demonstrates high sensitivity to local minima. Nevertheless,
good performances of the proposed procedure are shown next.

For each of 200 data sets, we obtained some index values to assess the correctness
of the Oq selected by BIC and the corresponding optimal solution OB Oq D Œ Oƒ Oq , O‰ Oq].
The percentiles of the index values over the 200 cases are shown in Panels (A), (B),
and (C) of Table 2. The first index is BES D . Oq � q/=q which assesses the relative
bias of the estimated sparseness from the true q. The percentiles in Panel (A) show
that sparseness was satisfactorily estimated, though it tended to be underestimated.
The indices R00 andR##in Panel (B) are the rates of the zero and non-zero elements
in the true ƒ correctly identified by Oƒ. Panel (B) shows that non-zero elements
have been exactly identified. The indices in Panel (C) are mean absolute differences

jj Oƒ Oq � ƒjj1=.pm/ and jj O‰2

Oq � ‰2jj1=p, where jj � jj1 denotes the sum of the absolute
values of the elements of the argument. The percentiles of the differences show that
the parameter values were recovered very well.

For each data set, ML-CFA was also performed with the locations of the zero
loadings fixed at those in Oƒ Oq . For ML-CFA, we used the EM algorithm with [2]
formulas. Let ƒML and ‰ML denote the resulting ƒ and ‰ . Panel (D) in Table 2

shows the percentiles of jj Oƒ Oq � ƒMLjj1=.pm/ and jj O‰2

Oq � ‰2
MLjj1=p. There, we

find that the differences were small enough to be ignored, which validate the use of
ML-based BIC in SOFA.

6 Examples

We illustrate SOFA with two famous examples. The first one is a real data set known
as [6] twenty four psychological test data, which contain the scores of n D 145

students for p D 24 problems. The correlation matrix is available in [5], p. 124.
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Table 3 Solution for 24 psychological test data with empty cells standing for zero

Abilities ƒ

Variables (problems) 1 2 3 4  2
i

Spatial perception Visual perception 0.67 0.52

Cubes 0.43 0.79

Paper form board 0.52 �0:19 0.66

Flags 0.54 0.68

Verbal processing General information 0.56 0:59 0.31

Paragraph comprehension 0.58 0:58 0.31

Sentence completion 0.55 0:64 0.26

Word classification 0.62 0:35 0.47

Word meaning 0.59 0:60 0.26

Speed of performances Addition 0.26 0:16 0:80 0.25

Code 0.42 0:47 0.26 0.50

Counting dots 0.37 0:62 0.45

Straight-curved capitals 0.56 0:38 0.51

Memory Word recognition 0.36 0.46 0.64

Number recognition 0.34 0.45 0.67

Figure recognition 0.54 �0:15 0.35 0.55

Object-number 0.36 0:20 0.52 0.54

Number-figure 0.45 0:27 0.33 0.59

Figure-word 0.43 0.22 0.74

Mathematics Deduction 0.66 0.54

Numerical puzzles 0.58 0:30 0.55

Problem reasoning 0.65 0.56

Series completion 0.74 0.43

Arithmetic problems 0.54 0:21 0:40 0.49

From the EFA solution for the matrix, [7] found bi-factor structure using their
proposed bi-factor rotation with m D 4. We analyzed the correlation matrix by
SOFA with the same number of factors. The optimal SP.ƒ/ D 48 was found by
BIC. The solution is shown in Table 3. Its first column shows the abilities made
up by [5], p. 125, which are considered necessary for solving the corresponding
groups of problems. This grouping can be used to give clear interpretation of Oƒ: the
first, second, third, and fourth factors stand in turn for the general ability related
to all problems, the skill of verbal processing, the speed of performances, and
the accuracy of memory, respectively. It matches the bi-factor structure found by
[7]. However, our result allows us to interpret the factors simply by observing the
nonzero loadings, while [7] obtain reasonable interpretation only after considering
the loadings greater than or equal to 0.3 in magnitude. This choice is subjective and
likely to lead to suboptimal and misleading solutions.
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Table 4 Solution for the box
problem with empty cells
standing for zero

ƒ

Variables x y z  2
i

x2 0.95 0.08

y2 0.96 0.08

z2 0.94 0.09

xy 0.67 0.61 0.17

xz 0.64 0.64 0.17

yz 0.66 0.63 0.15

.x2 C y2/1=2 0.69 0.64 0.10

.x2 C z2/1=2 0.68 0.64 0.12

.y2 C z2/1=2 0.66 0.67 0.11

2x C 2y 0.68 0.67 0.08

2x C 2z 0.67 0.68 0.08

2y C 2z 0.66 0.68 0.09

log x 0.89 0.19

logy 0.87 0.23

log z 0.88 0.21

xyz 0.47 0.49 0.54 0.22

.x2 C y2 C z2/1=2 0.57 0.52 0.54 0.10

ex 0.71 0.48

ey 0.68 0.52

ez 0.71 0.49

The second example considers [12] box problem which gives simulated data
traditionally used as a benchmark for testing FA procedures. As described in
Appendix 3, we followed [12] to generate 20 variables using functions of 3 � 1
common factor vector [x; y; z�0, with the functions defined as in the first column
of Table 4. Those procedures gave the correlation matrix (Table 5) to be analyzed.
The ideal solution for this problem is the one such that variables load the factor(s)
used for defining the variables: for example, the fourth variable should ideally load
x and y. The SOFA solution with SP.ƒ/ D 27 selected by BIC is shown in Table 4,
where we find that the ideal loadings were obtained.
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7 Discussions

In this paper, we proposed a new FA procedure named SOFA (sparse orthogonal
factor analysis), which is neither EFA nor CFA. In SOFA, FA loss function (1)
is minimized over loadings and unique variances subject to the direct sparseness
constraint on loadings. This minimization algorithm alternately estimates the
locations of the zero loadings and the values of the nonzero ones. Further, the best
sparseness is selected using BIC. The simulation study demonstrated that the true
sparseness and parameter values are recovered well by SOFA, and the examples
illustrated that SOFA produces reasonable sparse solutions.

As stated already, a weakness of the rotation methods in EFA is that the user must
decide which rotated loadings can be viewed as potential zeros. Another weakness
of the rotation methods is that they do not involve the original data, because the
rotation criteria are functions of the loading matrix only [3]. Thus, the rotated
loadings may possess structure which is not relevant to the true loadings of the
underlying data. In contrast, SOFA minimizes (1) so that the FA model is optimally
fitted to the data set under the sparseness constraint, and thus can find the loadings
underlying the data set with a suitable sparseness.

Our proposed procedure of SOFA with the sparseness selection by BIC allows us
to find an optimal orthogonal solution with the best sparseness. If one tries to find
that optimal solution by CFA without any prior knowledge about the solution, CFA
must be performed over all possible models, i.e., over all possible locations of q
zero loadings with changing q from qmin to qmax. That is, the number of the models
to be tested is so enormous that it is unfeasible. An optimal model can, however,
be found by our procedure. It is thus regarded as an automatic finder of an optimal
orthogonal CFA model.

A drawback of SOFA is that its solutions are restricted to the orthogonal ones
without inter-factor correlations. It thus remains for future studies to develop a
sparse oblique FA procedure with the correlations included in parameters.

Acknowledgements The works were partially supported by Grant #4387 by The Great Britain
Sasakawa Foundation.

Appendix 1: Update of n�1X 0 [F,U]

We prove that c� � trB0X0ŒF;U� is minimized, or equivalently, trB0X0ŒF;U� is
maximized, for (8) subject to (2), supposing that the rank of XB is p. First, let
us consider maximizing trB0X0ŒF;U� under the constrains in (2) summarized in
n�1ŒF;U�0ŒF;U� D ImCp . The maximizer is given by

ŒF;U� D n1=2PQ0 C n1=2P?Q0? (13)
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through the singular value decomposition of n � .mC p/ matrix n�1=2XB;

n�1=2XB D ŒP;P?�
�

�

mOm

� �
Q0

Q0?

�
D P�Q0: (14)

Here, [P;P?] and [Q;Q?] are n� .pCm/ and p� .pCm/ orthonormal matrices,
respectively, whose blocks P and Q consist of p columns, and � is a p�p diagonal
matrix [11]. Next, let us note that the rank of XB being p implies B being of full-
row rank, which leads to BBC D Ip . Using this fact in (14) we have n�1X D
n�1=2P�Q0BC, which is transposed and post-multiplied by (13) to give (8), since
of P0P? D pOp�m. Further, (8) is obtained with (9) followed from (14).

Appendix 2: Multiple Runs Procedure

The initial ƒ and ‰ in the SOFA algorithm (Sect. 3) are chosen randomly. Each
diagonal element of ‰ is initialized at u.0:11=2, 0:71=2/ with u.˛; ˇ/ a value drawn
from the uniform distribution of the range Œ˛; ˇ�. Each loading of ƒ D .�ij/ is set
to u.0:3; 1/, and the value �2Œq� is obtained that is the q-th smallest among all �2ij,

which is followed by transforming the loadings with �2ij � �2Œq� into zeros. Further,

the initial ƒ is normalized so as to satisfy diag(ƒƒ0 C ‰2/ D Ip .
Let Bql D Œƒql; ‰ql] denote the solution of B resulting from the l-th run of

the SOFA algorithm for SP.ƒ/ set at a specified q, with l D 1; : : :; Lq . We regard
Bql� D Œƒql�; ‰ql�� with l� D arg min1�l�Lq fS.Bql/ as the optimal solution OBq ,
and define Bql being a local minimizer as�.Bql; Bql�/ D 0:5.jjƒql �ƒql�jj1=mpC
jj‰ql � ‰ql�jj1=p/ > 0:13, with jj � jj1 denoting the sum of the absolute values of
the elements of the argument. Here, the suitable Lq (number of runs) is unknown
beforehand. We thus employ a strategy in which Lq is initialized at an integer and
increased until fBqlI l D 1; : : :; Lqg include the two equivalently optimal solutions
Bql� and Bql# satisfying �.Bql�; Bql#/ � 0:13 and l� D argmin1�l�Lf .‚l / with
l# ¤ l�. This procedure is formally stated as follows:

1. Set Lq D 50 and obtain l� D arg min1�l�Lq fS .Bql/

2. Go to 6, if �.Bql�, Bql#/ � 0:13 is satisfied for l� ¤ l#; otherwise, go to 3.
3. Set Lq WD Lq C 1, and let Bql# be the output from another run.
4. Exchange Bql� for Bql# if fS.Bql#/ < fS.Bql�/.
5. Go to 6 if �.Bql�, Bql#/ � 0:13 or Lq D 200; otherwise, go back to 3.

6. Finish with OBq set at Bql�.

In this procedure, except Bql� and Bql# , the rest Lq � 2 solutions are local
minimizers, thus the Lq value clearly indicates the sensitivity to local minima.
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Appendix 3: Box Problem Data

In the box problem, the 3�1 common factor score vector f D Œx; y; z�0 is supposed
to yield 20 � 1 observation vector x with x D �.x; y; z/ C ‰u, where �.x; y; z/
is the vector function with its 20 elements defined as in the first column of Table 4.
The original [12] box data matrix is 20� 20, whose rows are 20 realizations of x0 D
�0.x; y; z/ without unique factor ‰u. Here, x; y; z was set to the lengths, widths,
and heights of boxes, from which the name of the problem originates. However, the
20 � 20 data matrix does not suit the cases of n > p considered in this paper. We
thus simulated the 400 � 20 X based on x D �.x; y; z/ C ‰u with the following
steps: First, we set x; y, and z at u.1; 10/ to have 400 � 20ˆ whose rows are the
realizations of �0.x; y; z/. Second, we sampled each element of u from the standard
normal distribution to have 400�20U with its rows u0 and set the diagonal elements
of ‰ to 0:11=2. Third, we standardized the columns of ˆ so that their average and
variance were zero and one, and had X D ˆ CU‰ whose inter-column correlations
are shown in Table 5.
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