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Abstract
A Multivariate Latent Stochastic Volatility Factor Model is introduced for the
estimation of volatility and optimal allocation of stocks portfolio in a Markowitz
type portfolio. Returns on a set of 5 banks among the best capitalized banks’
stocks traded on the Italian stock market (BIT) between 1 January 1986 and 31
August 2011 are modeled. Computational complexities arising in the estimation
step are dealt by simulation-based methods, introducing a Griddy Gibbs sampler.
The association structure among time-series is captured via a factor model, which
reduces the computational burden required in the estimation step.

Keywords
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1 Introduction

Volatility modelling plays an important role in the analysis of financial time
series. The persistence of volatility phenomenon is the most well-established effect
exhibited by financial time series. Indeed, the variance of returns exhibits high serial
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autocorrelation, which becomes evident by looking at periods of high volatility,
with large changes in assets returns being followed by large ones as well, and at
periods of low volatility in which small changes are followed by small ones. As this
observation obviously is of great interest, capturing this effect could be challenging.
This is the reason why stochastic volatility (SV) models have bee introduced and
undergone a lot of research during the last two decades. Since the seminal papers
by [14, 15], the univariate SV model has been widely used and several estimation
methods have been introduced (see e.g. [3, 10, 13]). Nevertheless, as pointed out
by e.g. [2], assets are linked together or influenced by common unobserved factors,
which render the univariate approach too restrictive. It is then crucial to extend the
univariate SV model to the multivariate case in order to capture the covariation
effect. Several alternatives can be considered to describe the time evolution of the
joint distribution of different assets (see e.g. [1, 7, 11]).

In this paper we aim at providing a multivariate SV model, based on a latent
structure, in which covariation is accounted for via a factor model. Appropriately
accounting for covariation is crucial in terms of portfolio diversification and asset
allocation. Indeed, the ultimate goal of this paper is to provide indications on
portfolio diversification with minimum risk, in a Markovitz framework.

Parameters estimation could be cumbersome and inference becomes therefore
hard. This has lead to a substantial development of sampling-based methods in order
to obtain parameter estimates, such as rejection sampling, Markov Chain Monte
Carlo and Monte Carlo integration (see e.g. [3, 8, 12]). To reduce the computational
burden often involved in sampling procedures, we adopt a nested Griddy Gibbs as
sampler. In this way, we avoid the need of simulated density that mimic the shape
of the preceding one and of guaranteeing the dominance (as imposed by [10]).

The proposed SV model is then applied to a subset of 5 banks among the best
capitalized banks’ stocks traded on the Italian stock market (BIT) between 1 January
1986 and 31 August 2011.

The paper is organized as follows. In Sect. 2 we introduce the model, while its
computational aspects are discussed in Sect. 3. Section 4 briefly introduces the data,
and the obtained results. Section “Conclusions” concludes.

2 Model Summary

In the following, we consider the SV parameterization introduced in [8,9]. Let rt D
.r

.1/
t ; : : : ; r

.n/
t / an array of n stock returns, in which r

.i/
t is the return for the i -th

asset at time t and at D a.1t ; : : : ; aKt/ the vector of K common factors at time t ,
t D 1; : : : ; T . The SV parameterization we consider sets

rt D �t C �at C et (1)

�
.i/
t D ˇ

.i/
0 C ˇ

.i/
1 r

.i/
t�1 C : : : C ˇ.i/

p r
.i/
t�p (2)
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e
.i/
t D

q
h

.i/
t �

.i/
t (3)

log.h
.i/
t / D ˛

.i/
0 C ˛

.i/
1 log.h

.i/
t�1/ C v.i/

t : (4)

In this factor model, the matrix � is a constant (n � K) matrix of factor
loading with K < n, �t D .�

.1/
t ; : : : ; �

.n/
t /0, the errors et � N.0; E/ are serially

and mutually independent of all other error terms. The errors �
.i/
t and v.i/

t , i D
1; : : : ; n are serially and mutually independent N.0; 1/ and N.0; �

2;.i/
v /, E.at / D 0,

Cov.at / D I . We have also j˛.i/
1 j < 1, so that the factor log-volatility processes are

stationary. Furthermore, ˇ.i/ D .ˇ
.i/
1 ; : : : ; ˇ

.i/
p / are fixed regression parameters.

It follows from this model that the marginal distribution of the returns is
multivariate Gaussian with mean —t and covariance �Ht �

0 C E, where Ht D
diag.h

.1/
t ; : : : ; h

.n/
t /. Of course, it should also be noted that more complicated

dynamics could be introduced in the latent SV process and for our purpose there
is no need to estimate at .

Jacquier et al. [9] proposed to use MCMC methods to estimate model parameters.
However, the method has not been implemented for a multivariate financial
portfolio. In the following we provide computational details to obtain parameter
estimates.

3 Computational Details

Let us denote with !.i/ D .�
2;.i/
v ; ˛

.i/
0 ; ˛

.i/
1 /0 and h.i/ D .h

.i/
1 ; : : : ; h

.i/
T /, r.i/ D

.r
.i/
1 ; : : : ; r

.i/
T /, i D 1; : : : ; n. The likelihood function can be written as:

f .r.i/ j ˇ.i/; !.i// D
Z

RT

f .r.i/ j X.i/; ˇ.i/; h.i//f .h.i/ j !.i//dh.i/: (5)

To tackle this estimation problem we use the MCMC method as in [8].
Let’s describe the steps of the algorithm that implements the MCMC method.

First step: for each return i the optimal lag p of the Eq. (2) is selected, independently
from the other returns, according to the AIC criterion, fixing v.i/

t D 0.
Second step: for each return i the following likelihood function, related to the
Eqs. (1)–(4) with v.i/

t D 0, is maximized to find the MLE parameters as in [6]:

� L.ˇ.i/; !.i// D T �1

nX
tD1

a
.i/
t = Qh.i/

t C log. Qh.i/
t / (6)

where

a
.i/
t D r

.i/
t � �

.i/
tQh.i/

t D log.h
.i/
t / D ˛

.i/
0 C ˛

.i/
1

Qh.i/
t�1

(7)
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These parameter estimations are chosen as the initial values for the conditional
posterior distributions used by the MCMC iterations.
Third step: Steps 1,2 are repeated for each intrinsic values i corresponding to the
return i , given by P=E.i/ � EPS.i/, where P=E.i/ is the Price to Earnings ratio and
EPS.i/ is the Earning per share.

As the intrinsic value is considered to give indication on the return, the obtained
parameter estimates are chosen as the prior distribution parameters used to define
the conditional posterior distributions needed by the MCMC iterations.

Let’s call these prior parameters as follow:
ˇ0;.i/ D .ˇ

0;.i/
1 ; : : : ; ˇ

0;.i/
p /0 and their variances A0;.i/ D diag.�2

ˇ
0;.i/
1

; : : : ; �2
�0;.i/ / for

the mean parameters, !0;.i/ D .�
2;0;.i/
v ; ˛

0;.i/
0 ; ˛

0;.i/
1 /0 and C 0;.i/ D diag.�2

˛
0;.i/
0

; �2

˛
0;.i/
1

/

for the volatility parameters.
Moreover the prior distributions are hypothesized multivariate normal for ˇ.i/ �

N.ˇ0;.i/; A0;.i// and ˛.i/ � N.˛0;.i/; C 0;.i//, inverted Chi squared for �
2;.i/
v , that’s to

say T �=�
2;.i/
v � �2

T , with � a scale parameter.
Fourth step: We consider simulation-based methods. The MCMC Gibbs sampling
estimation of the model (1)–(4), after combining the prior distributions with the
likelihood using the Bayes’ rule, consists in drawing random samples from the
conditional posterior distributions

f .ˇ.i/jr.i/; x.i/; h.i// � N.ˇ�;.i /; A�;.i //

f .h
.i/
t jr.i/; x.i/; h.i/; ˇ.i/; !.i//

f .˛.i/jh.i/; �
2;.i/
v / � N.˛�;.i /; C �;.i //

f .d=�
2;.i/
v jh.i/; ˛.i// � �2

2T �1

(8)

in a sequence from initial value of the conditioning variables, with step by step
substitutions of the new sampled values to the previous ones, until a number of
iteration g is reached.

That’s is to say, at the MCMC Gibbs iteration j with j D 1; : : : ; g:

1. we draw a random sample Œj 	ˇ
.i/ from: f .ˇ.i/jr.i/; x.i/;Œj �1	 h.i//

2. we draw a random sample Œj 	h
.i/
t from: f .h

.i/
t jr.i/; x.i/;Œj �1	 h

.i/
�t ;Œj 	 ˇ.i/;Œj �1	 !.i//

3. we draw a random sample Œj 	˛
.i/ from: f .˛.i/jŒj 	h

.i/;Œj �1	 �
2;.i/
v /

4. we draw a random sample Œj 	�
2;.i/
v from: f .d=�

2;.i/
v jŒj 	h

.i/;Œj 	 ˛.i//

This completes a MCMC Gibbs iteration and current parameters values are

.Œj 	ˇ
.i/;Œj 	 h

.i/
1;:::;t ;Œj 	 ˛.i/;Œj 	 �2;.i/

v /

In this way we obtain random samples fŒj 	ˇ
.i/gj Dg0;:::;g ,fŒj 	h

.i/gj Dg0;:::;g

fŒj 	˛
.i/gj Dg0;:::;g , fŒj 	�

2;.i/
v gj Dg0;:::;g that can be used to make inference.
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Our estimations are the point estimation sample means of the previous random
samples after eliminating the first g0 � 1 values, that’s to say

Ǒ.i/ D 1
g�g0

P
j Dg0;:::;g Œj 	 ˇ.i/

Oh.i/
t D 1

g�g0

P
j Dg0;:::;g Œj 	 h

.i/
t

Ǫ .i/ D 1
g�g0

P
j Dg0;:::;g Œj 	 ˛.i/

O�2;.i/
v D 1

g�g0

P
j Dg0;:::;g Œj 	 �

2;.i/
v

The value of g0 is chosen so that the estimation . Ǒ.i/; Oh.i/; Ǫ .i/; O�2;.i/
v / of the

parameters .ˇ.i/; h.i/; ˛.i/; �
2;.i/
v / is stable in the sense that after g0 the means

obtained by adding one by one the successive random sample of the Gibbs are
almost identical.

In the Eq. (8) the Bayes’ rule gives A�;.i / D
�PT

tD1 x
.i/
0;t x

.i/0

0;t C .A0;.i//�1
��1

,

x
.i/
0;t D x

.i/
t =

q
h

.i/
t

ˇ�;.i / D A�;.i /
�PT

tD1 x
.i/
0;t r

.i/
0;t C .A0;.i//�1ˇ0;.i/

�
, r

.i/
0;t D r

.i/
t =

q
h

.i/
t ,

C �;.i / D
�PT

tD2 y
.i/
t y

.i/0

t =�
2;.i/
v C .C 0;.i//�1

��1

, y
.i/
t D .1; ln.h

.i/
t //0

˛�;.i / D C �;.i /
�PT

tD2 y
.i/
t ln.h

.i/
t /=�

2;.i/
v C .C 0;.i//�1˛0;.i/

�

d D T � C PT
tD2 v2;.i/

t , r
.i/
t is the compound return,x.i/

j;t is its lagged value.

The posterior distribution f .h
.i/
t jr.i/; x.i/; h.i/; ˇ.i/; !.i// is a non standard one

even if its density is known up to a normalizing constant [8].
Therefore a nested Gibbs sampler of type Griddy is implemented in the following

way:

1. a grid of values for h
.i/
t is selected, say, h

.i/
t;1 � h

.i/
t;2 � : : : � h

.i/
t;m;

its posterior distribution is evaluated on this values to obtain ws D
f .h

.i/
t;s jr.i/; x.i/; h

.i/
�t ; ˇ.i/; !.i//, s D 1; : : : ; m.

2. The ws are used to obtain an approximation of the inverse cumulative distribution
function of f .h

.i/
t;s jr.i/; x.i/; h

.i/
�t ; ˇ.i/; !.i//.

3. A uniform random variable between 0 and 1 is drawn and transformed via the
preceding step 2 to obtain a random drawn for h

.i/
t .

Fifth step: the estimation .Ovi;i .T C 1j˝T //i2f1;:::;ng of the volatility matrix .vi;i .T C
1j˝T //i2f1;:::;ng, that’s to say vi;i .T C 1/ D h

.i/
T C1,will be obtained in the following

way, at the iteration j of the Gibbs sampler, j D g0; : : : ; g:

1. we draw a random sample v.i/
T C1 from N.0;Œj 	 �

2;.i/
v / and the Eq. (4) with Œj 	ˇ

.i/

is used to compute Œj 	h
.i/
T C1;
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2. we draw a random sample �
.i/
T C1 from N.0; 1/ to obtain e

.i/
T C1 D

q
Œj 	h

.i/
T C1�

.i/
T C1

and the Eq. (2) with Œj 	˛
.i/ is used to compute Œj 	r

.i/
T C1;

In this way we obtain a random sample fŒj 	h
.i/
T C1gj Dg0;:::;g and a random sample

fŒj 	r
.i/
T C1gj Dg0;:::;g that can be used to make inference.

Our estimation is the point forecast of the previous two random samples, that’s
to say Oh.i/

T C1 D 1
g�g0

P
j Dg0;:::;g Œj 	h

.i/
T C1 and Or.i/

T C1 D 1
g�g0

P
j Dg0;:::;g Œj 	r

.i/
T C1.

Sixth step: To estimate the off-diagonal elements of V , we consider the multivariate
Latent Factor model (see [4]).
Seventh step: The Markowitz problem can be foretasted at time T C 1 using the
preceding estimation of vi;j and r.i/ that we called Ovi;j .T C1/ and Or.i/

T C1, by solving
through a quadratic programming method, the following:

min�2Rf� 0 OV .T C 1/� W � 0 � 1 D 1; � 0 � OrT C1 D Rp; � � 0g (9)

where � D .�1; : : : ; �n/ and Rp 2 Œminfi WiD1;:::;ng Or.i/
T C1; maxfi WiD1;:::;ng Or.i/

T C1	.

4 Data and Results

The model is applied to a subset of the entire stocks’ universe among the series of
data regarding the best capitalized 5 banks’ stocks traded on the Italian stock market
(BIT) between 1 January 1986 and 31 August 2011. Data are shown in Fig. 1.

This figure shows the histograms and the fitted normal density. Even if the
empirical distributions of the returns are symmetry and uni-modal, the fitted normal
curves are not enough similar to the empirical counterparts in the tails. Tests of
Jarque–Bera for normality reject the null hypothesis H0 of normality at 95 %.

Moreover tests Ljung–Box for the squared of residuals e
.i/
t of Eqs. (1)–(2), reject

the null hypothesis H0 of no ARCH effects at 95 %. Therefore it is necessary
to include the Eqs. (3)–(4), that’s to say the SV model part, in order to obtain
an unconditional distribution of the residuals e

.i/
t that has heavier tails, an excess

of kurtosis with respect to a gaussian distribution. This is in agreement with the
financial data in hand.
With respect to the model (1)–(2) setting v.i/

t � 0,where r
.i/
t is the intrinsic value,

the explanatory variables x
.i/
j;t are the lagged values r

.i/
t�j and the exogenous variable

z.i/
t is the market index, we give the optimal lags in Table 1, which minimize the

AIC.
The posterior distribution parameters, calculated as means of the last g�g0 D100

iterations of sampling from the MCMC posterior conditional distribution are as
follows (Tables 2 and 3):

From Table 2 it can be seen that Ǒ.i/
0 ' 0 so there is no constant term in the mean

Eqs. (1)–(2). As Ǒ.i/

k ¤ 0; k > 0 it can be said that return is dependent on its past
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Fig. 1 Data description

Table 1 Optimal AIC lags

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Opt. lag

Unicredit �722:66 �722:05 �720:16 �719:8 �718:43 1

BPM 758:76 758:63 760:19 761:65 760:82 2

Credito Emiliano 530:94 531:82 533:74 535:72 536:67 1

Intesa 219:81 175:05 167:33 161:86 102:65 5

Mediobanca 606:37 607:66 599:84 588:03 580:52 5

Table 2 Ǒ�;.i/ D . Ǒ.i/
0 ; : : : ; Ǒ.i/

p /0 posterior distribution parameters (stock i )

i Ǒ.i/
0

Ǒ.i/
1

Ǒ.i/
2

Ǒ.i/
3

Ǒ.i/
5

Ǒ.i/
5

1 �0:0012 0:0322 0 0 0 0

2 �0:0039 �0:2394 �0.1512 0 0 0

3 �0:0018 �0:1528 0 0 0 0

4 �0:0026 �0:6606 �0.0108 �0.0783 0.1415 0.3238

5 0:0016 �0:0050 �0.0874 �0.1363 �0.1751 �0.2782

values. Moreover, from Table 3 it can be seen that the volatility is dependent from
its past as each Ǫ .i/

1 ¤ 0 in the Eq. (4). Lastly O�2;.i/
v > 0 is not negligible so the

SV model, which introduces v.i/
t , is capable to improve a pure ARCH model for the

volatility.
The estimated variance-covariance (risk) matrix is given in Table 4.
As expected, it can be seen in Table 4 that 0:47 < Ovi;j < 0:70; i ¤ j , so there are

positive correlations among the series. Indeed the series belong to the same sector.
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Table 3 O!.i/ D .O�2;.i/
v ; Ǫ .i/

0 ; Ǫ .i/
1 /0 posterior distribution parameters (stock i )

i O�2;.i/
v Ǫ .i/

0 Ǫ .i/
1

1 2.3661 �0.00023698 0.98773

2 3.1517 �0.0063111 0.9798

3 2.2379 �0.0028054 0.99625

4 1.6529 �0.044743 0.86632

5 2.1015 �0.077245 0.7201

Table 4 Covariance risk matrix estimation

0
BB@

Ov1;1 � � � Ov1;n

:
:
:

: : :
:
:
:

Ovn;1 � � � Ovn;n

1
CCA

T C1j˝T

D

2:3211 0:6257 0:59352 0:69577 0:6879

0:6257 1:6836 0:47016 0:55623 0:54937

0:59352 0:47016 1:7268 0:56166 0:60608

0:69577 0:55623 0:56166 1:6892 0:6187

0:6879 0:54937 0:60608 0:6187 1:6936

Table 5 Latent factor loadings estimates

Series O�1
O�2

Unicredit 0.8176 0.33716

BPM 0.65679 0.26308

Credito Emiliano 0.37386 0.85376

Intesa 0.70746 0.34807

Mediobanca 0.66952 0.41672

It can be seen that the variances dominate the covariances which are all positive.
Thus, it is possible to find portfolios that have lower risk than either single asset.
Among those ones we choose the minimum risk portfolio.

In order to provide further insights on the association structure we may look
at the estimated latent factors (Table 5). The first latent factor can be associated
with Unicredit, BPM and Intesa San Paolo, whilst the second one is mainly related
to Credito Emiliano. This can be seen in Fig. 2, where we call Component i the
O�i ; i D 1; 2 and the numbers are the stocks in the same order of Table 5.

The possible double clustering suggested by the Fig. 2 could drive another
portfolio diversification in order to take into consideration the different dependency
(loading) each stock’s return has of the common latent factors.

Of course, as a central issue, we have to solve the quadratic programming of
Markowitz in order to optimize our portfolio. We propose the following optimal
(with minimum risk) fractions to invest in each stock as the numerical solution of
the optimization problem given in the Eq. (9) (Table 6).

By depicting the optimal fractions in Fig. 3, it can be seen that a good
diversification among the stocks is obtained.

The optimal fractions O�.i/ give a risk of 0.90724 and a monthly portfolio return
of 0.035194. Different portfolio choice are possible that can get greater return or
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Fig. 2 Latent factor loadings

Table 6 O�.i/ optimal (with minimum risk) fractions

Series Unicredit BPM Credito Emiliano Intesa Mediobanca

O�.i/ 0.10474 0.2493 0.23337 0.21036 0.20222

Fig. 3 Optimal fractions

better latent shocks warranty at the expense of a greater risk. Thus in a risk averse
view, an investor should choose the minimum risk portfolio suggested.
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Conclusions

We have conducted an empirical investigation of stochastic volatility of major
Italian banks, by introducing a computational feasible algorithm based on simu-
lation techniques. The proposed estimation methodology is easily implementable
and this is an important step forward on multivariate volatility estimation, since
the likelihood function of stochastic volatility models is not easily calculable. The
procedure proposed in this work attempts to combine the simplicity of the factor
model with the sophistication of stochastic volatility procedures. Open problems
remain, primarily in the modelling of multivariate heavy-tailed or skewed error
distributions, as well as the computational burden required in the estimation
step in the modelling of high dimensional data. In time, further significant
developments can be achieved by introducing a time-varying latent structure such
as parsimonious hidden Markov models, which are able to reduce the curse of
dimensionality of the considered problem and account for well-know stylized
facts arising in the stock returns modelling.
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