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Abstract

In this paper we propose a spatial latent factor model to deal with multivariate
geostatistical skew-normal data. In this model we assume that the unobserved
latent structure, responsible for the correlation among different variables as well
as for the spatial autocorrelation among different sites is Gaussian, and that
the observed variables are skew-normal. For this model we provide some of
its properties like its spatial autocorrelation structure and its finite dimensional
marginal distributions. Estimation of the unknown parameters of the model is
carried out by employing a Monte Carlo Expectation Maximization algorithm,
whereas prediction at unobserved sites is performed by using closed form
formulas and Markov chain Monte Carlo algorithms. Simulation studies have

been performed to evaluate the soundness of the proposed procedures.

Keywords

Closed skew-normal distribution ¢ Factor model ¢ Geostatistics * Monte Carlo

EM e Spatial process

L. Bagnato (P<)
Universita Cattolica del Sacro Cuore, Milano, Italy
e-mail: luca.bagnato@unicatt.it

M. Minozzo (<)

Dipartimento di Scienze Economiche, Universita degli Studi di Verona, Via dell’ Artigliere 19,
37129 Verona, Italy

e-mail: marco.minozzo@univr.it

© Springer-Verlag Berlin Heidelberg 2014 113

M. Carpita et al. (eds.), Advances in Latent Variables, Studies in Theoretical
and Applied Statistics, DOI 10.1007/10104_2014_14, Published online: 28 October 2014


mailto:luca.bagnato@unicatt.it
mailto:marco.minozzo@univr.it

114 L. Bagnato and M. Minozzo

1 Introduction

Although a large variety of spatial data sets (on radioactive contamination, rainfalls,
winds, etc.) contain measurements with a considerable amount of skewness,
its modelling still remains an issue. For instance, with regard to radiological
monitoring, in [5], disregarding any physically-based modelling approach, it is
argued on the necessity of developing mapping algorithms for emergency detection
taking into consideration the skewness in the data. A boost to these developments
came from the Spatial Interpolation Comparison (SIC) 2004 (see [11]) in which,
whereas the routine scenario could easily be modelled using a Gaussian random
field, the emergency scenario, which mimics an accidental release of radioactivity,
needs to be modelled taking properly into account that, due to the presence of
extreme measurements, the data are positively skewed. Just to cite a few works,
to deal with skewed measurements coming from radioactive monitoring, [18]
and [15] propose copula-based geostatistical approaches, whereas [9] argues that
the structuring of extreme values can be faced in a coherent manner by using
the class of Hermitian isofactorial models. Moreover, [4] proposes a Gaussian
anamorphosis transformation to deal with skewed data coming from contaminated
facilities, and [19] argues in favor of a Bayesian approach pointing out that both the
Gaussian copula and the non-Gaussian y2-copula models are inappropriate to model
strongly skewed radioactivity measurements. Other works dealing with skewed
radiological measurements are [27], which is concerned with the estimation of the
variogram and the development of optimal sampling plans, [7], which proposes a
dynamic spatial Bayesian model for non-Gaussian measurements from radioactivity
deposition, as well as the works in [22,28] and [32]. On the other hand, a general
approach developed to cope with some types of univariate non-Gaussian spatial data
(including skew data) has been proposed in [8] by defining a family of transformed
Gaussian random fields that provides an alternative to trans-Gaussian kriging.

Whereas in the univariate case, that is, in presence of just one regionalized
variable, spatial modelling and prediction have been extensively studied for different
types of non-Gaussian data, in particular skew data, in a multivariate non-Gaussian
context only a limited number of works have been published. Among these, [26]
and [25] extend to multivariate geostatistical non-Gaussian data the modelling
approach of [10], whereas [6] proposes a hierarchical Bayesian approach to
model Gaussian, count, and ordinal variables, by designing a Gibbs sampler with
Metropolis-Hastings steps. Other works dealing with multivariate spatial data are
those in [33], which explores the use of the Bayesian Maximum Entropy approach
in presence of both continuous and categorical regionalized variables, and in [31],
which uses Markov chain Monte Carlo methods for the Bayesian modelling of
multivariate counts.
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In this paper, to model skewness in a multivariate (that is, in presence of more
than one regionalized variable) geostatistical context, we propose an alternative
approach based on the use of the skew-normal distribution. Our modelling approach,
which extends some of the ideas in [24] (see also [35]), is based on the skew-normal
distribution [2, 3] and on a latent Gaussian factor structure. Just to give some
examples, this approach might prove useful in the modelling of the radiological
data in [16] or the data related to the Fukushima disaster (data are available from
TEPCO at http://www.tepco.co.jp) where more than one radiological measurement
has been collected for each sampling site. Apart from providing a much greater
flexibility with respect to the traditional Gaussian random fields, it is possible to
show that our model has all its finite-dimensional marginal distributions belonging
to the family of the closed skew-normal distribution [13, 14]. It must be mentioned
that the modelling construction proposed here is substantially different from some
of the most popular constructions based on the skew-normal distribution that have
recently appeared in the literature to model univariate skewed spatial data, like those,
for instance, of [1, 20] and [17] (for a critical discussion on these constructions
see [24]).

The paper is organized as follows. The model and its properties are presented
in Sect. 2 and in Sect. 3, respectively. In Sect. 4 we present the estimation and
prediction procedures and some simulation results, and in section “Conclusions” we
make some final comments. More technical results are presented in the Appendix.

2 A Multivariate Closed Skew-Normal Geostatistical Model

In the following we define a model for geostatistical multivariate skewed data
exploiting the ideas in [24] and in [25], by building the model on an unobserved
latent Gaussian spatial factor structure. Let y; (x¢), i = 1,....m, k = 1,..., K,
be a set of geo-referenced data measurements relative to m regionalized variables,
gathered at K spatial locations Xy. Each of these m measured variables can be
viewed as a partial realization of a particular stochastic process Y; (x),i = 1,...,m,
x € R2. We assume that these stochastic processes are given by

YixX)=8+Z xX)+wSi(x), i=1,...,m, (1)

where f; and w; are unknown constants, representing, respectively, an intercept
and a scale parameter, and Z; (x) and S; (x) are latent processes. In particular, for
everyi = 1,...,m, Z; (X) is a mean zero stationary Gaussian process, whereas for
everyi = 1,...,m, and foreach x € R2, S; (x) is an independent random variable
distributed as a skew-normal [2], that is, S; (x) ~ SN (0, 1, ¢;), which means that,
for every x € R2, the density of S;(x) is given by fs,(s) = 2¢1(s; 1)@(a;s), for
—00 < § < 00, where o; € R, ¢(+; 1) is the scalar normal density function with
zero mean and unit variance, and @(-) is the scalar N(0, 1) distribution function.
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Let us note that, for eachi = 1,...,m, and for every x € R2, conditionally on
Z; (x), the random variable Y; (x) has a skew-normal distribution, that is,

Y, (x)|Z; (x) ~ SN (B + Zi (x) .07, ), )

which means that we can write its density as

o
Fi®)zi(x) =2 ¢ (yi(x) — i — 21(x); 07) D (w—l (yi(x) = Bi —z (X))) ,
where ¢, ( - ;02) is the scalar normal density function with zero mean and positive

variance o2. Moreover, for eachi = 1,...,m, and for every X € R2, the (scalar)
random variable Y; (x) has a (marginal) skew-normal distribution, that is,

n®~ﬂ(m§+¢mw/gﬂumﬂ+w) (3)

where ¢? = Var[Z; (x)].

A similar result holds also for the other marginal distributions of the process.
Indeed, with some algebra it is possible to show that all finite dimensional marginal
distributions of the (weakly and strongly stationary) multivariate spatial process
Yi®),....Y, (x))T, for x € R2, are closed skew-normal (CSN). This implies,
for instance, that, for eachi = 1,...,m, the univariate spatial process Y; (x), for
x € R?, has all its finite-dimensional marginal distributions belonging to the CSN
family (see the Appendix), and that, for any fixed spatial location x € R?, the
random vector (Y] (x),..., Y, (x))T has a multivariate CSN distribution [13, 14].
In principle, these results make the approach very appealing since they allow, due
to the stationarity of the processes, to empirically check some of the distributional
properties of the model. For instance, for a given set of observations, the empirical
distribution of y; (x¢),k = 1,..., K, for any giveni = 1,...,m, can be compared
with the marginal skew-normal distribution in (3).

For the latent part of the model, that is, for the stationary Gaussian processes
Z; (x),i =1,...,m, we assume that

P
Zi(x) =Y apF,(x). €5

p=l1
where a;, are m x P real coefficients, and F,(x), p = 1,...,P, are
P < m non-observable spatial processes (common factors) responsible for the
cross-correlations in the model. The processes F, (x), p = 1,..., P, are assumed

zero mean, stationary, and Gaussian with covariance function
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ph)., p=gq.
COV[FP(X),Fq (X+h)] o vta.
where h € R? and p(h) is a real spatial autocorrelation function common to all
factors with p(0) = 1 and p(h) — 0, as ||h|| — oco. Similarly to the classical linear
factor model, this latent linear structure is responsible for a specific correlation
structure among the processes Z;(x). In particular, for each i = 1,...,m, the
covariance functions are given by Cov[Z; (x),Z; (x+h)] = Z§=la§,p(h),
whereas the cross-covariance functions are given by Cov [Z,- x),Z; (x+ h)] =

Z;):lai,,aj,,p(h). Taking l; = 0, we find that Var[Z; (x)] = Z;;la;, and
Cov[Zi (x),Z; (®)] =3 ,_; apajp.

3 Variograms and Cross-Variograms

Let us consider here the correlation structure of the observable processes, induced by
the latent factor model. For the observable stochastic processes ¥; (x),i = 1,...,m,
we can show that

E[Y (0] = i + i, (;) o Varll ] = 62+ 0 [1 - %8?} :

where §; = «;/+/1 + ociz, and, for h # 0,

Cii(h) = Cov[Y; (x),Y; (x + )] = ¢/p(h). &)

Note that if p(h) = p(—h) we have that C;(h) = C;;(—h). Furthermore, C;;(c0) =
0and C;;(0) # C;;(0") = ¢, that s, the covariance function C;(h) is discontinuous
at the origin.

On the other hand, for h # 0, the variogram of the observable Y; (x) takes the
form

1 2
i (h) = ZVar[Yi (x+h) = ¥; ()] = ] [1 - ;8?} +eill—pm],  (©
which is, similarly to the covariance function, discontinuous in zero. In fact, we

have that Yii (0) = 0 and Yii (0+) = (1)12[1 — (Z/N)(Slz] Note that Yii (OO) = C”(O)
To visually asses Formula (6), Fig. 1 shows the form taken by the variogram y;; (h)



118 L. Bagnato and M. Minozzo

1.0 12

00 02 04 06 08

00 05 10 15 20 25 3.0 00 05 10 15 20 25 3.0 00 05 10 15 20 25 30
distance distance distance

Fig. 1 The graphs show the shape of the theoretical variogram y;; (h) given in Formula (6), for a
Cauchy autocorrelation function with both parameters equal to 1, and for different values of the
other parameters: (left) ® = 0.5, ¢ = 1; (middle) « = 2, ¢ = 1; (right) « = 2, ® = 0.5. The
solid line in the three graphs corresponds to the same set of parameter values. The /ine in the first
graph corresponding to = 0 gives the variogram in the case of a Gaussian process

for different values of the parameters, in the case of a Cauchy spatial autocorrelation
function p(h) = [1 =+ (||h]| /y)z]_n, with y = 1 and n = 1. As we can see, the
nugget of the variogram decreases for decreasing values of @ and for values of the
skewness parameter o departing from zero.

For any two stochastic processes Y; (x) and Y; (x), withi # j, itis easy to show
that

Cj(h) =Cov|[Y; (x).Y; (x+h)] =Cov[Z (x),Z; (x+h)| =gyp(h), (7)
where ¢; = Z§=1 apaj, = Cov [Z,- x),Z; (x)]. Note that Cj; (h) = Cj; (h) and

that if p(h) = p(=h), then C;; (h) = C;; (-h).
For the cross-variogram between Y; (x) and Y; (x), with i # j, we obtain

1
vi () = ZCov[¥; (x+h) = ¥; (%), ¥; (x + h) = ¥; ()] = g5 [1 = p(h)].
(8)

4 Estimation and Prediction

Assuming to know the number P of common factors and the spatial autocorrelation

function p(h), the model depends on the parameter vector #* = (8,A, w,a),
where B = (B1.....Bn) . A = (ay,....a,)" witha; = (a;1,...,ap), @ =
(w1, ... ,a)m)T, and @ = (oy,... ,am)T. Note that, similarly to the classical factor

model, our model is not identifiable. Indeed, there are two groups of orthogonal
transformations of the matrix A, given by permutation matrices and by some special
reflection matrices, that leave the model unchanged [30]. However, this is the only
indeterminacy in the model and can easily be faced.
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In the following, we will further assume to know the parameters @ and «. In
this case, by resorting to Markov chain Monte Carlo (MCMC), and in particular
to the Metropolis-Hasting algorithm, a likelihood based estimation procedure for
the parameter # = (B,A) can be developed by exploiting the Monte Carlo
Expectation Maximization (MCEM) algorithm. Let F = (Fy,... ,FP)T, where
F, = (Fp(xl),...,Fp(xK))T, p=1,...,P andlety = (yi,...,ym)!, where
yi = (0i(x1), ..., (XK))T, i = 1,...,m. Whereas the marginal log-likelihood
[(#) = In f(y; #) is not available due to the presence of multidimensional integrals
in the derivation of the marginal density f(y; #), the complete log-likelihood based
on the joint distribution f(y, F; #) is easily given by

le(@) =In f(y.F;#) = In (f(IF: 9)- f(F))

m K
= 1n§ (1‘[ [1/0w z,-k,/m) )

i=lk=1

m K
= ln{(l_[ l_[ 2¢1(yi—Bi —Zu; w}) @ (% Yie—Bi _Zik))) : (

i=1k=1

[femb

)

€))

where y; = y; (Xx) and Zy = Z;(Xx). In this situation, the marginal log-likelihood
[(#) = In f(y; #) can be maximized by resorting to the Monte Carlo Expectation
Maximization (MCEM) algorithm (see, for instance, [23] and [12]).

At the sth iteration, the MCEM algorithm involves three steps: S-step, E-step
and M-step. In the first step (S-step), R, samples F), r = 1,... Ry, are
drawn from the (filtered) conditional distribution f(F|y; #,—1), where #,_; is the
guess of the parameter @ after the (s — 1)th iteration. These samples can be
collected by using some Markov chain Monte Carlo (MCMC) procedure based
on the Metropolis-Hustings algorithm. In the second step (E-step) the following
approximation of the conditional expectation of the complete log-likelihood is
computed

~ 1 Ry
0. (0. #,-1) = Elln f(y. F:9)ly] = == Y In f (v. F": 9).
=1

The last step (M-step) supplies as the new guess # ; the value of # which maximizes
Qs (0, 951).

Although convergence results for this algorithm are not available, it is neverthe-
less possible to show that the “average” complete likelihood which is maximized
in the M-step of the MCEM algorithm is concave and admits a unique local
(and global) maximum. This result allows to safely implement standard numerical
maximization techniques.
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Assuming as known all parameters of the model, prediction of the observable
processes Y; (x) at an unobserved spatial location (or at an unobserved set of spatial
locations) can be carried out either by exploiting some of the properties of the CSN
distribution, or by implementing some MCMC algorithm. On the other hand, for the
prediction of the unobserved common factors F, (x), we need to resort to MCMC
algorithms. In the case in which we are interested in predicting a common factor on
a large set of spatial locations (maybe on a grid), instead of carring out an MCMC
run at each spatial location, we can carry out an MCMC run only at the sampling
points (that is, only at those points for which we gathered observations), and then
exploit a linear property similar to Kriging, and also similar to that found by [34] in
a univariate framework, to obtain predictions at all other spatial locations.

To asses the goodness of the MCEM estimation procedure we performed some
simulation studies. To give some examples, in Fig.2 we show the results of some
simulation analyses. For these analyses we considered m = 2 and P = 1,
that is, two observable variables and one latent common factor F (x). In the first
two simulation experiments we considered a powered exponential (stable) spatial
autocorrelation function p(h) = exp[ — (y [h|)"], with y = 107> and n =
1.5, whereas in the last two experiments we considered a Cauchy autocorrelation
function with y = 7,000 and n = 1. For any given set of parameter values #* and
a given spatial autocorrelation function p(h), we simulated 50 realizations from the
model over K = 25 equally spaced fixed sampling points located on the nodes of
a grid. For each simulated realization, we run the MCEM estimation algorithm,
assuming as unknown only the parameters a;j, az;, f; and B,. Each time, we
considered 800 iterations of the MCEM algorithm, and at each step of the algorithm
we considered 800 MCMC samples (of which 400 burn-in). As shown in Fig.2,
despite some possible distortion (which could be due to the modest sample size),
the sampling distributions look quite reasonable. However, though our simulation
experiments gave us reassuring results, we feel that more efforts should be made
to fully investigate the theoretical inferential properties of the proposed inferential
procedure.

As far as the computational load of our estimation procedure is concerned,
implementing our algorithm with the help of the OpenBUGS software [21] using
the package R2ZWinBUGS in R [29], and using standard commercial personal
computers, the computing times are still demanding. Just to give an example,
with 25 observations on a grid simulated assuming the powered exponential
autocorrelation function and the value of the parameters used to obtain the simulated
distributions in the second row of Fig. 2, one iteration of the MCEM algorithm
(with an MCMC sample size of 800) took 41s. Increasing the size of the grid
to 49 observations, the computing time increases to 102s. Let us note that much
of the time is needed for the maximization step of the MCEM algorithm. In the
former case, the time needed to generate the MCMC sample was less than 1 second,
whereas the time needed by the maximization step was 40s. Thus, to obtain one
MCEM estimate, using 800 iterations of the MCEM, takes more than 9h, and to
obtain a simulated distribution, based on 50 replicates, of the MCEM estimator (that
is, one row of Fig. 2) takes several days.
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Fig. 2 The histograms show the simulated univariate marginal sampling distributions of the
MCEM estimator of the parameters a;y, dz;, B and B, (from left to right) in a model with
m = 2 and P = 1 obtained in four simulation experiments (from top to bottom). The vertical
solid lines represent the true parameter values, whereas the vertical dashed lines represent the
empirical means over the 50 simulated realizations. For the spatial autocorrelation function p(h)
we chose a powered exponential model with y = 0.00001 and n = 1.5 in the first two simulation
experiments (first two rows), and a Cauchy model with y = 7,000 and n = 1 in the last two
simulation experiments (last two rows). The parameters «; and o, were fixed equal to: —1 and 1
(first row); 2 and 2 (second row); —1 and 1 (third row); 2 and 2 (fourth row). For all four simulation
experiments, the other parameters where equal to: a;; = 2,a,, = —0.7, 81 =1, =2,0; =1,
wy = 1
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Conclusion

In this work we have proposed and studied a model for the analysis of multi-
variate geostatistical data showing some degree of skewness. Our geostatistical
model based on latent factors can be considered as an extension to skewed non-
Gaussian data of the classical geostatistical proportional covariance model.

By framing our model in a hierarchical context, that is, by extending to
the multivariate case the model-based geostatistical approach in [10], it would
be possible to extend the present work to deal with regionalized variables of
different kind. Instead of assuming that the conditional distributions of ¥; (x)
given Z; (x) are all skew-normal, we might assume, for different values of
i =1,...,m,that they are of different type. For instance, [25] considers a model
in Wthh some of the (conditional) distributions, of the observable regionalized
variables, are Poisson whereas some others are Gamma. In this way, we could
obtain a model for non-Gaussian data flexible enough to account for observable
regionalized variables showing different departures from normality.

On the other hand, a generalization in a different direction might involve the
introduction of more spatial scales as in the classical linear model of coregion-
alization. This would supply a more flexible spatial autocorrelation structure in
which the latent processes Z; (x), which are behind the level of the observable
regionalized variables Y;(x), are not constrained to have proportional covariance
and cross-covariance functions. However, the high level of complexity of this
generalization would require a large amount of data to be detected and would
pose serious inferential problems.

As regard to the model presented in this work, we presented a computationally
intensive likelihood based inferential procedure, exploiting the capabilities of
the MCEM algorithm. It must be noted that with this procedure we estimated
just some of the parameters of the model, assuming the others as known. In
particular, we assumed as known the parameters @ = (wy,... ,wm)T and
a=(a,... ,am)T that characterize the shape of the skew-normal (conditional)
distributions. In this way we avoided many of the well known inferential
problems posed by the estimation of the parameters of the skew-normal distri-
bution. Although in this work we did not discuss any inferential procedure for
these parameters, these can nevertheless be calibrated comparing the theoretical
marginal distributions and the theoretical variograms with the corresponding
empirical counterparts. From a computational perspective, although we checked
the feasibility of our estimation procedure for reasonable sample sizes and for
different parameter values, it must be remarked that in more complex situations
the computational burthen might increase considerably.
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Appendix

In this appendix we report some distributional results regarding the observable
processes Y; (x). Let us first recall some definitions. Following, for instance, [2],
we say that a random vector Y = (Yq,..., Yn)T has an extended skew-normal
distribution with parameters g, X', & and 7, and we write Y ~ ESN, (¢, X', o, 7),
if it has probability density function of the form

O =¢u(y—p:X) Do+ o' D7 (y—p))/P(r), for yeR",  (10)

where w € R" is a vector of location parameters, ¢,( - ;%) is the
n-dimensional normal density function with zero mean vector and (positive-
definite) variance-covariance matrix X having elements o;;, @(*) is the scalar N(0,1)
distribution function, D = diag(oy;. ..., 0,,)"/? is the diagonal matrix formed with
the standard deviations of the scale matrix X', « € R” is a vector of skewness
parameters, and 7 € R is an additional parameter. Moreover, op = (1 + ocTRa)l/ 2
where R is the correlation matrix associated to ¥, thatis, R =D~ ¥ D! Clearly,
this distribution extends the multivariate normal distribution through the parameter
vector oz, and for &« = 0 it reduces to the latter. When t = 0, also ¢p = 0 and (10)
reduces to

f)=2-¢(y—p: X)- @@’ D '(y—p)), for yeR" (11)

In this case we simply say that Y has a skew-normal distribution and we write, more
concisely, Y ~ SN, (1, X', @).

According to [13] and [14], we say that the n-dimensional random vector Y =
(Y1,...,Y,)T has a multivariate closed skew-normal distribution, and we write Y ~
CSN, m(p, 2 ,D., v, A), if it has probability density function of the form

1
®,(0;v. A + DI XD,)

u(y: . X)- P (Dl (y—p):v, A), for y e R",
(12)

fy) =

where: m is an integer greater than 0; u € R"; ¥ € R™" is a positive-definite
matrix; D, € R™™ is an n x m matrix; v € R™ is a vector; A € R"™ " js a
positive-definite matrix; and ¢,( - ; ¢, X) and @,( - ; u, X') are the probability
density function and the cumulative distribution function, respectively, of the
n-dimensional normal distribution with mean vector g and variance-covariance
matrix X'.
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Though, as we have already noticed, the multivariate finite-dimensional marginal
distributions of the multivariate spatial process (Y} (x),..., Yy x)7, forx € R?,
are not skew-normal (in the sense of [2]), it is possible to show that they are
closed skew-normal, according to the definition of [13]. This implies that, for
any given i = 1,...,m, each univariate spatial process Y; (x) has all its finite-
dimensional marginal distributions that are closed skew-normal. To see this (see also
[24]), consider n spatial locations Xxi, . . ., X,, and the corresponding n-dimensional
random vector Y = (¥;(xy). ..., Y;(x,))”. Recalling that for any given x € R? we
can write Y; (X) = f; + Z; (x) + w; S; (X), the vector Y can be writtenas Y = 8,1, +
Z+D,S=W+V,where W =81,+Z,V=D,S,Z = (Z;(x1),...,Z;(x:))7,
S = (Si(x)).....Si(x,))T and D, is the n x n diagonal matrix with ; on
the diagonal. Now, since S;(x), for x € R2, are independently and identically
distributed as CSNy1(0, 1, «;, 0, 1), according to Theorem 3 of [14], we have that
S ~ CSN,,,(0,1,,D,,0,1,), where D, is the n x n diagonal matrix with ¢«; on
the diagonal. On the other hand, since Z follows a multivariate normal distribution
with mean O and covariance matrix ¥ z with entries given by COV[Z i(X), Z;(x +
h)] = ¢?p(h), we also have that Z ~ CSN,, 1(0, ¥ z,0,0, 1). Moreover, being W
distributed as a multivariate normal with mean §;1,, and covariance matrix X 7, we
can write that W ~ CSN,, 1(B;1,,, X 2,0, 0, 1), and using Theorem 1 of [14] we can
also write that V ~ CSN,, ,(0,D,2,Dq/,0,1,), where D, is the n x n diagonal
matrix with wiz on the diagonal, and Dy, is the n xn diagonal matrix with o; /w; on
the diagonal. Thus, considering that Y = W4V, we can conclude, using Theorem 4
of [14], that Y ~ CSN,, ,+1(Bi1,, ¥ z + ©?1,,D*,0, A*), for some matrices D*
and A*.
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