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Abstract

In order to improve the contouring accuracy in machine tool
control, using the contour errors, which is defined as
tracking error component orthogonal to desired contour 
curves, as feedback signals is known to be effective. This
paper presents a new contouring control method for multi-
axis feed drive systems. The method is applicable to any
smooth contour curves and achieves better control 
performance with small control input variance compared to
the conventional methods. The effectiveness of the proposed
method is demonstrated by experimental results with the 
circular and non-circular contour curves.

1 Introduction 

Feed drive systems are used in most of machine tool systems,
and positional errors are generally defined with respect to
each axis of the feed drive systems (tracking errors) in their
control systems. From the viewpoint of machining, however,
error components orthogonal to desired contour curves are 
rather important than the errors with respect to the feed drive
axes. The orthogonal error components to the contour curves
are called contour errors.
There have been many researches focusing on the reduction
of the contour errors. Koren proposed a cross-coupling
controller that uses the contour errors as feedback signals [1].
Kulkarni and Srinivasan developed an optimal cross-coupled
controller based on a linear quadratic regulator (LQR) [2].
Chiu and Tomizuka presented a controller based on the
technique of integrator backstepping, though implicit 
representation of the contour curve is needed for the
controller design [3]. McNab and Tsao formulated the
contour tracking as a receding horizon LQ problem with
variable state weighting matrices. They proved the stability
for linear trajectory case [4].
Since both the contour errors and the tracking errors are used
to calculate control inputs in these methods, there may be
degradation of contour tracking performance. Considering
both the tracking and the contour errors simultaneously 
brings some difficulties in adjusting controller parameters.
In order to overcome this problem, Lo and Chung proposed a
contouring control method based on a coordinate
transformation for biaxial feed drive systems [5], in which
tracking errors are transformed into the errors with 
orthogonal and tangential components to the desired contour

curves. They proved the stability of their method only for
straight-line trajectory motion. Since, in their method, two 
decoupled single-input single-output systems with respect to
the orthogonal and tangential directions are obtained,
controllers for both directions can be designed independently,
and hence controller parameters are adjusted rather easier.
Their method, however, is effective only for the case that the
mismatch of the dynamics of both feed drive axes is enough
small. The case is practically impossible since one-axial feed
drive system reposes on the other in most of biaxial feed 
drive systems.
In this paper, we propose a new contouring control method 
based on a complete coordinate transformation of the
tracking errors. The proposed method allows the feed drive
systems to have the dynamics mismatch between each axis.
And also, the stability of control systems is guaranteed to
any smooth contour curves. The effectiveness of the
proposed method is demonstrated by experimental results 
with circular and non-circular contour curves.

2 Problem Formulation 

2.1 Definition of Contour Errors

In this paper, we consider the 3 dimensional case as shown
in Fig. 1, where the curve c is the desired contour of a point
of the feed drive system. The symbol  is a fixed
coordinate frame whose axes correspond to the feed drive
axes. The symbol r r is a desired position of the

feed drive system at time t , and defined with respect to

w

1 2r 3
Tr

w .
The actual position of the feed drive system is assumed at

1 2 3
Tx x x x

l

. We further define a local coordinate frame

whose origin is at r and three axes are l i  in 
the figure. The axis l is in the tangential direction of c  at 

. The direction of l  is perpendicular to and in the
tangential plane of the machined surface at r . The direction
of  is perpendicular to both  and l as shown in Fig. 1.
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The tracking error vector e , which consists of tracking 
errors of each feed drive axis, is defined as follows:

w

(2.1)1 2 3 .T
w w w we e e e r x



N. Uchiyama, S. Sano, S. Takagi and K. Yamazaki 

This error vector can be transformed into that with respect to
 as follows: 

(2.2)
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Fig. 1. Definition of tracking errors
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where  is a 3 rotation matrix that transforms a position
with respect to  into that to .

R 3
l w

From the viewpoint of machining, error components
orthogonal to the desired contour curve are rather important
than the tacking errors of feed drive axes. Hence we propose 
a controller design that allows us to adjust the control
performance with respect to three axes of  independently
each other. In the design, we can set the controller gain for
reducing the error along l to smaller value than that for the
other axes from the reason that the tangential error
component to the contour curve is less important than the
orthogonal ones. It also should be noted that the error
components  and are just approximate values of 
contour errors, because even if they are reduced to zero by
some controllers, the position 

l

1

32le le

x̂ in Fig. 1 moved from x  is 
not still on the curve c . It is, however, difficult to calculate
actual contour errors online because we need to solve
nonlinear equations if the contour curve is not a simple one.
For this reason, the control objective of the proposed system
is to reduce the error components e  and . They may be
good approximations of contour errors if the error
component  is small.
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where 0 , 0 , 0 ,i i iJ D K i  and are the motor
inertia, the motor viscous friction coefficient, the torque-
voltage conversion ratio, the torque for driving the feed drive
system Eq. (2.3) and the motor input voltage of the i th axis,
respectively.

iV

2.2 Plant Dynamics The relation among the force , torque iF i , position ix ,
angle i and pitch of the ball screw P  are represented as
follows:

iIn this paper, we consider the feed drive system driven by
servo motor systems, which are commonly used as industrial 
applications. The feed drive dynamics is generally
represented by the following decoupled second order system: 2 , .

2
i

i i
i

PF x
P

i i  (2.5)
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  (2.3) 3 Controller Design 

We assume the followings on the controller design:

The desired trajectory r , and its derivatives r  and 
are available.

i i irwhere 0 , 0i iM C and are the mass of load, the
viscous friction coefficient and the driving force on the i th
drive axis, respectively. The symbol

iF

diag iA  is a diagonal

matrix with the element iA  at the th row. Nonlinear
frictions such as Coulomb frictions are not explicitly
considered in this dynamics.

i
The rotation matrix R , and its derivatives R  and R

are available.

The position of the feed drive system x  and its
derivative x  are measurable.

The dynamics of the motors for driving the feed drive
systems is described as follows: The plant parameters , , , ,M C J D K and are all

available.
iP s

Since the matrix R  is a function of the desired trajectory, we
can calculate it and its derivatives beforehand. Hence the
second assumption is not a strict one.
We propose the following control:
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where vlK  and plK are the so-called velocity and position
feedback gain matrices, and we assume that they are also the
diagonal matrices with all positive elements. Considering
Eqs. (2.1)-(2.5) and (3.1), we have the following relation:

0.l vl l pl lHR e K e K e (3.2)

Since andH R  are nonsingular matrices, we have

. (3.3)0l vl l pl le K e K e

From the above equation, it is concluded that by
appropriately assigning the feedback gain matrices vlK  and 

plK in Eq. (3.1), we can achieve as t . And also
we can independently adjust the error convergence speed
along each axis of in Fig. 1 since the matrices

0le

l vlK  and 

plK are both diagonal. Setting the feedback gains with

respect to e  and larger than that for , we may reduce
the contour errors faster than the tracking error tangential to
the desired contour curve.

2l 3le 1le

In order to comparatively see the effectiveness of the
proposed design, we consider the following non-contouring
control using the error signals on :w

,vw w pw wV H r K e K e Ex  (3.4) 

where vwK  and pwK  are the velocity and position

feedback gain matrices on . The matrices are assumed
also to be diagonal with positive elements. Then we can have
the following error dynamics on :

3 3

w

w

0.w vw w pw we K e K e  (3.5)

Both in Eqs. (3.3) and (3.5), we can have decoupled systems
and assign control system poles to any places on the complex
plane. For symplifying the analysis, we consider the case
that the desired contour is a straight-line (i.e., ) and 
some gains are increased for reducing the contour errors. It is
possible to assign greater values only to the second and third
diagonal elements in

0R R

vlK  and plK in Eq. (3.3) from the
reason that they directly relate to the contour errors. This
assignment is not possible in Eq. (3.5), because the relation
between the controller gains and their effect to the contour

errors is not obvious. The dynamics Eq. (3.3) can be 
transformed into the following  one on  with Eq. (2.2):w

pl R e

vwK
T

pwK

.

2 sinL

c

L

0.T T
w vl w we RK R e RK  (3.6) 

Note that only the feedback gain matrices are different in 
Eqs. (3.5) and (3.6). Assuming that the first diagonal
elements of vlK  and plK , which relates only to e , are set

smaller than the others in
1l

vlK , plK ,  and pwK , we can

make the Frobenius norms of vlRK R and T
plRK R  in Eq.

(3.6) smaller than those of vwK  and in Eq. (3.5). This
means that the proposed design may achieve the similar 
contouring control performance with smaller feedback gains
on w , which may provide a wider stability margin.

4 Experiment

We have designed both the control systems in Eqs. (3.3) and
(3.5) for an X-Y table, which is driven by DC servo motors
and ball screw drives as shown in Fig. 2, and experimentally
compared the control performances. All the 3-dimensional
vectors and matrices used in the previous sections are
reduced to 2-dimensional ones in the following design. The
2-dimensional definitions of error signals are shown in Fig. 3,
where the contour error is . In the 2 dimensional case, the
matrix

2le
R  in Eq. (2.2) is 

cos sin
sin cos

R  (4.1)

The nominal parameter values of the X-Y table are shown in 
Table 1. The position of the X-Y table is measured by linear
scales attached to each drive axis, and the sensor resolution
is 0.1 m . The velocities of each drive axis are computed
by the backward difference operation of the position
measurements.
In the experiment, the circular contour curve as shown in Fig. 
4 (a) is employed, namely,

1 cos , ,c cr L t r t  (4.2)

where 3 mm , 2 /5 rad/scL . The control time T

is 10 [s]. The actual contour error e can be calculated as
follows:

2 2
1 2ce x x .  (4.3)c

The closed loop poles of the dynamics for e  are set to1l

1 30lq [1/s] as repeated poles, while those for e  are
changed from q

2l

2 30l  to 70  by [1/s] as also the
repeated poles. Namely the following feedback gain matrices 
are used for the error dynamics Eq. (3.3).

20
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Table 1. Parameter Values 
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Parameters Values

1 2&P P 0.005 m

2
1 1 / 2M P : load inertia

moment of axis 1
21.30 kgm

2
2 2 / 2M P : load inertia

moment of axis 2
20.77 kgm

1 2&C C 0 Ns/m

1 2&J J 20.05 Kgm

1 2&D D 0.31 Nm/(rad/s)

1 2&K K 1.42 Nm/V
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Fig. 3. Definition of errors for the experimental system
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  (4.4)
proposed methods, respectively.
Comparing the results (a) and (d), and (b) and (e),
respectively, we can see that almost the same contour error
and control input profiles are obtained. However comparing
the results (c) and (f), we can confirm that the control input
variance for the system Eq. (3.3) is much smaller than that
for Eq. (3.5), and as a result, the size of the contour error in
(c) is greater than that in (b) and (f).

On the other hand, in the experiment with the system Eq.
(3.5), both the poles for the dynamics of e  and  are
changed from q q  to  by [1/s], and 
hence the following feedback gain matrices are used:

1w

2
2we

1 2 30w w 70 0

2 2
1 2 1 22 2 ,

TT
vw w w pw w wK q q K q q  (4.5) The stability of the control system with the proposed 

methods is guaranteed for any contour curve, though this is 
not possible in some existent methods. In order to verify the
effectiveness to non-linear and non-circular contour curves,
we have also applied both the control systems to the
following trajectory:

As mentioned above, only in the proposed method, we can
increase the controller gain for reducing the contour error as
in Eq. (4.4), because the relation between the controller gain
and the size of the contour error is obvious. Since the 
relation is not obvious in Eq. (3.5), we need to increase the
controller gains for reducing tracking errors in both feed 
drive axes as in Eq. (4.5). 1 2

1 2, sin
2n n

t tr L r L
T T T

,t  (4.6) 
The experimental results are shown in Fig. 5, where (a)-(c)
and  (d) - (f) are the  results  by  the  conventional  and  the
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proposed method achieves the better control performance
with smaller controller gain, because we can adjust the
controller gain for reducing the contour error independently
from the tracking error tangential to the contour curve.

where [mm] and T20nL 10 [s]. The desired contour
curve is shown in Fig. 4 (b). The actual contour error size is
calculated by solving the following minimization problem:

2
1 1 2 2min .c t

e r x r x 2  (4.7) 

5 Conclusions 
The control results are shown in Fig. 6, where (a)-(c) and
(d)-(f) are the results by the conventional and the proposed 
methods, respectively. Comparing (b) and (e), we can see 
that the variance of the control inputs is greater in (b). Also 
in the result (c), the variance of the control inputs is much
greater than that in (f), and as a result, the size of the contour
error in (c) is also greater than those in (b) and (f).

We have proposed a new contouring method for multi-axis
feed drive systems. The advantages are that the method can
be applied to any smooth contour curve and the stability of
the control systems is guaranteed if the plant dynamics is
known. We have experimentally confirmed the effectiveness
of the proposed method by comparisons with the
conventional controllers.  The proposed method achieves the From  these  experimental results,  we can conclude that the
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