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Abstract

A genetic algorithm based reactive scheduling method was
proposed in the previous research, in oder to modify and
improve a disturbed initial production schedule without
suspending the progress of manufacturing process. This 
paper proposes a new crossover method to improve the 
performance of the reactive scheduling method for total
tardiness minimization problems and total flow time
minimization problems. A multi-objective reactive
scheduling method is also proposed based on the reactive
scheduling method improved in this research. A prototype of
multi-objective reactive scheduling system is developed and
applied to computational experiments for job-shop type
scheduling problems. 

1 Introduction 

It is assumed, in the traditional scheduling researches, that
manufacturing environments are stable and controllable.
However, unscheduled disruptions, such as delays of
manufacturing operations, inputs of additional jobs and 
failures in manufacturing equipment, often occur in the agile 
manufacturing systems. If the disruptions occur during the
progress of manufacturing process, the initial production
schedule is disturbed and the manufacturing system cannot 
satisfy the predetermined constraints on the make-span and
the due dates. Therefore, a systematic scheduling method is
required to modify the disturbed initial production schedule 
to cope with the unforeseen disruptions in the agile
manufacturing systems.

Several scheduling methods have been proposed to cope 
with the disruptions in the manufacturing systems. The
proposed methods are basically classified into two types.
They are, real-time scheduling and reactive scheduling. Most 
of the existing researches on the real-time scheduling use the
heuristic rules, such as FCFS, SPT and MWKR, to select the
next job to be manufactured, when manufacturing equipment
finishes its present job in the manufacturing system [1]-[2].
There are still some remaining problems in the existing real-
time scheduling methods from the viewpoint of the
optimization of the production schedules. The reactive 
scheduling method modifies the predetermined initial
production schedule, when unscheduled disruptions occur in 
the manufacturing system [3]. The existing reactive

scheduling methods are not enough to generate optimal 
production schedules during the progress of manufacturing
process.

The previous research proposed a Genetic Algorithm 
(GA) based reactive scheduling method [4]. The proposed
reactive scheduling method can modify and improve the
disturbed initial production schedule without interrupting the
manufacturing processes, when unscheduled disruptions 
occur in the manufacturing system and the production
schedule cannot satisfy the given due-date of products.

This paper deals with a new crossover method to
improve the performance of the GA based reactive
scheduling method for the total tardiness minimization 
problems and the total flow time minimization problems. 
The multi-objective reactive scheduling method is also
proposed based on the reactive scheduling method improved 
in this research. A prototype of reactive scheduling system is
developed and applied to the multi-objective reactive
scheduling problem of the total tardiness minimization and
the total flow time minimization.

2 Reactive Scheduling Method Using GA 

2.1 Reactive Scheduling Concept

The reactive scheduling process is activated, only when 
unscheduled disruptions occur during the manufacturing
process. It is necessary to consider the progress of 
manufacturing process in the reactive scheduling process.

It is assumed in this research that the reactive scheduling
process improves the disturbed production schedule, without
suspending the progress of manufacturing process. Figure 1
shows the whole reactive scheduling process proposed in this
research. The reactive scheduling process is activated at the
present time T1, only when some unscheduled disruptions
occur and the predetermined production schedule does not 
satisfy the given constraint. It is assumed that the reactive
scheduling process takes computation time dt to generate
new feasible schedule. Therefore, the schedules of the 
operations starting before (T1 + dt) cannot be modified
through the reactive scheduling process.

A modified production schedule is applied to the
manufacturing system, if the modified production schedule is
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better than the current production schedule. When the newly 
generated production schedule does not satisfy the given
constraint, the reactive scheduling process is activated
continuously until new production schedule satisfies the
given constraints, or until all the manufacturing operations 
have already started.
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Fig. 1. Reactive scheduling process 

2.2 Basic Reactive Scheduling Method Using GA 

The proposed reactive scheduling method uses GA to
improve the disturbed initial production schedule [4]. The
GA is a probabilistic search technique based on the evolution
mechanism [5]. The algorithms start with a population of
parent individuals from which offspring are generated. Each 
individual has a chromosome, and it is evaluated based on a 
fitness value.

A production schedule is represented as a chromosome
in the GA based scheduling method. The genes in the
chromosome represent the job names of the operations to be
completed. The job names are allocated to an array in the
order of the execution sequence of the operations, as shown 
in Figure 2. This array of the job names represents the
chromosome of the first individual. Other individuals in the
initial population are randomly created by changing the
positions of the genes of the first individual. The number of 
the individuals in the initial population equals to the 
population size s.
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Fig. 2. Generation of initial population using GA

A fitness value, such as the value of make-span, total
tardiness and total flow time, is evaluated for each individual.
Based on the fitness value, genetic operators, such as
selection, crossover and mutation, are applied to the 

individuals, in order to create new individuals representing
the modified production schedules. The current schedule of
the manufacturing system is replaced by the new schedule. If
the improved schedule does not satisfy the constraint on the
make-span, the genetic operators are applied to the
individuals. The reactive scheduling processes are repeated
until new production schedule satisfies the given constraints,
or until all the manufacturing operations have already started.

3 Advanced Crossover Method 

A new crossover method is proposed, in this research, to
generate suitable individuals faster than the basic reactive
scheduling method using the conventional crossover method. 
The conventional crossover method exchanges all the genes
between two crossover points, which are randomly selected 
in two parent individuals, and generates two offspring 
individuals. The new crossover method exchanges genes of
two individuals in consideration of the dominance and
recessiveness of genes from the viewpoint of the objective
functions, such as the total tardiness and the total flow time.

3.1 Evaluation of Genes for Tardiness Minimization

The total tardiness of jobs is calculated by using the
following equation. 
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Where,
Ci : completion time, which represents maximum value of 

the finishing time of the job Ji.
ddi : due date of the job Ji.
n : total number of jobs. 

When the k-th gene is decoded to the h-th operation of job Ji,
the lower bound of the finishing time of the operation is
estimated for the k-th gene of the individual by using the
following equation. 
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(h) : finishing time of the h-th operation of the job Ji.

If the value of Lbk is more than 0, it is impossible for the job
Ji to finish the remaining operations by its due date.
Therefore, the evaluation value for the recessiveness of
genes is defined for the tardiness minimization problem as
the following equation.
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3.2 Evaluation of Genes for Flow Time Minimization

The total flow time of jobs is defined by the following
equation.
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Fig. 3. Crossover process Where,
fti

(n) : finishing time of the last operation of the job Ji.
sti

(1) : starting time of the first operation of the job Ji.

The waiting time of the h-th operation of the job Ji is defined
by the following equation. 4 Multi-objective Reactive Scheduling 
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i ftstwt 4.1 Advanced Crossover for Multi-objective Problem

Where, More than one objective function is simultaneously
considered in the multi-objective scheduling problems. The
combination of the evaluation values for recessiveness of 
gene is discussed in this section for the multi-objective
reactive scheduling problems.

sti
(h) : starting time of the h-th operation of the job Ji.

fti
(h-1): finishing time of the (h-1)-th operation of the job Ji.

The decrease of the waiting time makes the flow time of the
job short in the production schedule. Therefore, the waiting
time of each operation is compared with the average waiting
time of operations for all the jobs, in order to evaluate the
recessiveness of gene in the individual. When the k-th gene
is decoded to the h-th operation of job J , the evaluation
value for the recessiveness of genes is defined as the
following equation for flow time minimization problems,

If p kinds of objective functions are considered in the
reactive scheduling problems, each gene has p evaluation 
values for recessiveness of gene. The advanced crossover
method changes the recessive genes, which have more than
one evaluation value of 1, and inherits the dominant genes,
which have all the evaluation value of 0, to offspring
individuals.
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In case of the combination of the total tardiness and the
total flow time, the genes whose job names are same as the
job name of the allele are searched from the front of the 
former crossover point as the candidate of the gene to be
exchanged. The position of the gene is exchanged with the
one of the genes selected from the candidate. 

Where,
wtave : average waiting time of operations of all the jobs. 4.2 Multi-objective Reactive Scheduling Process

3.3 Exchange of Genes in Crossover Process The multi-objective reactive scheduling processes consist of
the following five steps.

Two crossover points are randomly selected in two parent
individuals. The individuals exchange the genes between the
crossover points with each other. The advanced crossover 
method proposed in this research changes only the recessive
genes, which have the evaluation value of 0. The rest of
genes are inherited to offspring individuals as the dominant
genes, which have the evaluation value of 1. 

Step 1: Setting up of present time Ti 
The present time Ti (i=1, 2, ... ) is set up.

Step 2: Estimation of computation time dt 
The computation time dt is the time in which GA creates a
new generation of the populations representing the modified
production schedules. The time dt is estimated based on the
time needed to generate a new population in the GA based
initial production scheduling process, and it is modified
based on the time for creating the modified production
schedules through Step 3 to Step 5.

The genes whose job names are same as the job name of
the allele are searched from the front of the former crossover
point as the candidate of the gene to be exchanged, since the
jobs allocated former in the individual are executed earlier
than the ones allocated latter. The position of the gene is
exchanged with the one of the genes selected from the
candidate, as shown in Fig. 3. 
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Step 3: Creation of initial population Step 4-2: Application of selection operator 
Two cases are considered in the creation of the initial
population constituted of the individuals. 

Based on the rank, the selection operator is applied to the
individuals of the population created in Step 3. All of the
individual having rank 1 are selected and inherited to the
next population.Step 3-1: First activation of the reactive scheduling process 

In case of the first activation of the reactive scheduling
process at time T1, the reactive scheduling system has only 
the initial production schedule. Therefore, the reactive
scheduling process generates the initial population based on
the initial production schedule as shown in Figure 2. The
first individual is generated by allocating the job names of
the operations starting after (T1 + dt) to an array. Other
individuals in the initial population are randomly created by
changing the positions of the job names of the first 
individual.

Step 4-3: Application of crossover operator 
The crossover operator is applied to the individuals, in order
to create new individuals. Based on the rank, two individuals
are selected by using the roulette selection. Two crossover
points are randomly selected in the individuals. If the gene
between the crossover points in an individual has more than
one evaluation value of 1, the position of gene is changed
with the one of gene whose job name is same as the job
name of the allele in the other individual. The rest of genes
are inherited to offspring individuals in the next population.

Step 3-2: Second or later activations of the reactive
scheduling process Step 4-4: Application of mutation operator 

In case of the second or later activations of the reactive
scheduling process at time T2 or later, the reactive scheduling
process can inherit the population created in the previous
reactive scheduling process. In other words, the last 
population of the previous reactive scheduling process can
be the initial population. Two cases are considered for the
inheritance process of the population as shown in the
followings.

The mutation operator inverts the positions of genes between
two points selected randomly in the individual.

Step 5: Evaluation of modified production schedule

Step 5-1: Selection of most suitable production schedule
The most suitable production schedule is selected in the new
individuals created in Step 4, in order to exchange it for the
current production schedule. The value of each objective
function is firstly normalized by using the following
equation. This equation makes it lie between 0 and 1. 

Case-A: No operations start between Ti and (Ti + dt)
If no operations start between Ti and (Ti + dt), all the
individuals of the last population of the previous reactive
scheduling process are inherited to a new reactive scheduling
process between Ti and (Ti + dt).

pp

pp
p OfOf

OfOf
fO

minmax
min

 (7) 
Case-B: Some operations start between Ti and (Ti + dt)
If some operations start between Ti and (Ti + dt), the
production schedules of these operations should be fixed.
Therefore, a new reactive scheduling process can inherit
only the individuals, which are consistent with the schedules
of the fixed operations, from the last population created in
the previous reactive scheduling process. The other
individuals are deleted, and new individuals are randomly
created from the inherited ones.

Where,
Of’p : normalized value of the objective function fp.
Ofp : value of the objective function fp.
minOfp : minimum value of the objective function fp.
maxOfp : maximum value of the objective function fp.

All the normalized objective functions are secondly
combined as an integrated objective function by using the
following equation. Each individual is provided with an
integrated objective function as a criterion for the selection
of the most suitable production schedule in the new
individuals.

Step 4: Creation of next population
All the individuals in the population created in Step 3 are
evaluated, and applied the genetic operators, such as
selection, crossover and mutation, in order to create new
individuals of the next population.

 (8) 
r

p
pp fOwOF

1Step 4-1: Pareto rankings 
The pareto ranking method proposed by Goldberg [6] is used
to provide the rank for the individuals in the population. All 
non-dominated individuals have same rank, which represents
equal probability of being selected. Non-dominated
individuals in the population are firstly assigned rank 1 in the 
ranking process. Then, the individuals having rank 1 are
removed from a set of candidates of individuals. The ranking
method gives rank 2 to non-dominated individuals in the
remaining individuals and removes them from the candidates.
This ranking process is repeated, until all the individuals in
the population are assigned the rank.

 (9) 1
1

r

p
pw

Where,
wp : weight for the objective function fp.

Step 5-2: Exchange of current production schedule
If the most suitable production schedule in the new
individuals makes one of the objective functions, such as the
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total tardiness and total flow time, shorter than the one of the
current production schedule, the new production schedule is
substituted for the current production schedule. If all the
objective functions of the new production schedule are
shorter than the constraint on the objective functions, the
reactive scheduling process is terminated.
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All the steps from Step 1 to Step 5 are repeated, until the
created production schedule satisfies the given constraint on
all the objective functions or all the manufacturing
operations have started in the manufacturing system.

 Fig. 5. Experimental results of total flow time5 Computational Experiments for Multi-
objective Scheduling Problems Ten cases of computational experiments were carried out

based on the same initial production schedule. Different
operations were randomly selected on each experiment and
their processing time was enlarged. Figure 6 summarizes
experimental results of the previous reactive scheduling
method and the new reactive scheduling method. The
vertical axis shows the decrease rate of the increased total
tardiness and the decrease rate of the increased total flow
time. This figure shows that the new reactive scheduling
method improves the disturbed production schedule better
than the previous method from the viewpoint of the
minimization of the total tardiness and the total flow time.

A prototype of multi-objective reactive scheduling system
has been implemented and applied to the computational
experiments for job-shop type scheduling problems. The 
experimental results of the new reactive scheduling method
with the advanced crossover method were compared with the
ones of the previous reactive scheduling method with the
conventional crossover method. Numbers of jobs, 
manufacturing equipment and operations considered in the
experiments were 50, 10 and 500, respectively. Parameters
of GA, such as population size, crossover rate and mutation
rate, were 30, 0.8 and 0.2, respectively. These parameter
values were estimated based on preliminary case studies of 
job-shop type production scheduling problems.
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Operations were randomly selected and their processing
time was enlarged to less than five times. The prototype
system automatically started reactive scheduling, in order to
modify the disturbed production schedule. Figures 4 and 5
show experimental results of the previous reactive
scheduling method and the new reactive scheduling method.
The horizontal axis shows the time for reactive scheduling
process and manufacturing process. The vertical axis shows
the total tardiness and the total flow time of the modified
production schedule in Figs. 4 and 5, respectively. These 
figures show that the new reactive scheduling method
improves the disturbed production schedule faster than the
previous method from the viewpoint of the minimization of
the total tardiness and the total flow time.

 Fig. 6. Ten cases of experimental results 

Figures 7 and 8 show the variations of individuals of all the
populations generated in the previous reactive scheduling
method and the new reactive scheduling method,
respectively. The horizontal axis shows the total tardiness.
The vertical axis shows the total flow time. Through the
analysis of the variations of individuals, the new reactive
scheduling method generates more various individuals for
searching feasible production schedules than the previous
reactive scheduling method.
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Fig. 4. Experimental results of total tardiness
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Fig. 7. Variations of individuals in previous method

Fig. 8. Variations of individuals in new method

6 Conclusions 

This paper proposed a new crossover method to improve the 
performance of the GA based reactive scheduling method for 
the total tardiness minimization problems and the total flow
time minimization problems. The new crossover method
exchanges genes of two individuals in consideration of the
dominance and the recessiveness of genes, in order to
improve the production schedule faster than the conventional 
method. The multi-objective reactive scheduling method was 
also proposed based on the improved reactive scheduling
method in this research. The combination of the evaluation
value for recessiveness of genes was discussed for the multi-
objective reactive scheduling problems of the total tardiness
minimization and the total flow time minimization. A
prototype of multi-objective reactive scheduling system was
developed and applied to the multi-objective reactive
scheduling problems for the total tardiness minimization and
the total flow time minimization. The experimental results
have shown that the new reactive scheduling method is

superior to the previous reactive scheduling method from the 
viewpoint of the minimization of the total tardiness and the
total flow time.

7 References

[1] Shin H, Kuroda M, (1996) An autonomous job shop 
scheduling system under dynamic production
environment considering machine breakdowns.
Advances in production management systems,
Chapman & Hall: 399-410 

[2] Sugimura N, Tanimizu Y, Iwamura K, (2004) A study
on real-time scheduling for holonic manufacturing
system. CIRP journal of manufacturing systems, 33, 5: 
467-475

[3] Smith SF, (1995) Reactive scheduling systems.
Intelligent scheduling systems, Kluwer academic: 155-
192

[4] Tanimizu Y, Sugimura N, (2002) A study on reactive
scheduling based on genetic algorithm. Proc. of the
35th CIRP international seminar on manufacturing
systems: 219-224

[5] Hollanad JH, (1975) Adaptation in natural and
artificial systems. University of Michigan press

[6] Goldberg DE, (1989) Genetic algorithm in search,
optimization and machine learning. Addison Wesley,
Reading, Massachusetts




