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Cartan’s Criteria

How can one decide whether a complex Lie algebra is semisimple? Working
straight from the definition, one would have to test every single ideal for solv-
ability, seemingly a daunting task. In this chapter, we describe a practical way
to decide whether a Lie algebra is semisimple or, at the other extreme, solvable,
by looking at the traces of linear maps.

We have already seen examples of the usefulness of taking traces. For ex-
ample, we made an essential use of the trace map when proving the Invariance
Lemma (Lemma 5.5). An important identity satisfied by trace is

tr ([a, b]c) = tr (a[b, c])

for linear transformations a, b, c of a vector space. This holds because tr b(ac) =
tr(ac)b; we shall see its usefulness in the course of this chapter. Furthermore,
note that a nilpotent linear transformation has trace zero.

From now on, we work entirely over the complex numbers.

9.1 Jordan Decomposition

Working over the complex numbers allows us to consider the Jordan normal
form of linear transformations. We use this to define for each linear transforma-
tion x of a complex vector space V a unique Jordan decomposition. The Jordan
decomposition of x is the unique expression of x as a sum x = d + n where
d : V → V is diagonalisable, n : V → V is nilpotent, and d and n commute.
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78 9. Cartan’s Criteria

Very often, a diagonalisable linear map of a complex vector space is also said
to be semisimple.

We review the Jordan normal form and prove the existence and uniqueness
of the Jordan decomposition in Appendix A. The lemma below is also proved
in this Appendix; see §16.6.

Lemma 9.1

Let x be a linear transformation of the complex vector space V . Suppose that x

has Jordan decomposition x = d + n, where d is diagonalisable, n is nilpotent,
and d and n commute.

(a) There is a polynomial p(X) ∈ C[X] such that p(x) = d.

(b) Fix a basis of V in which d is diagonal. Let d̄ be the linear map whose
matrix with respect to this basis is the complex conjugate of the matrix
of d. There is a polynomial q(X) ∈ C[X] such that q(x) = d̄.

Using Jordan decomposition, we can give a concise reinterpretation of two
earlier results (see Exercise 1.17 and Lemma 5.1).

Exercise 9.1

Let V be a vector space, and suppose that x ∈ gl(V ) has Jordan decom-
position d+n. Show that adx : gl(V ) → gl(V ) has Jordan decomposition
ad d + adn.

9.2 Testing for Solvability

Let V be a complex vector space and let L be a Lie subalgebra of gl(V ). Why
might it be reasonable to expect solvability to be visible from the traces of the
elements of L? The following exercise (which repeats part of Exercise 6.5) gives
one indication.

Exercise 9.2

Suppose that L is solvable. Use Lie’s Theorem to show that there is a
basis of V in which every element of L′ is represented by a strictly upper
triangular matrix. Conclude that trxy = 0 for all x ∈ L and y ∈ L′.

Thus we have a necessary condition, in terms of traces, for L to be solvable.
Remarkably, this condition is also sufficient. Before proving this, we give a small
example.
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Example 9.2

Let L be the 2-dimensional non-abelian Lie algebra with basis x, y such that
[x, y] = x, which we constructed in §3.1. In this basis we have

adx =
(

0 1
0 0

)
, ad y =

(−1 0
0 0

)
.

As expected, tr ad x = 0.

Proposition 9.3

Let V be a complex vector space and let L be a Lie subalgebra of gl(V ). If
trxy = 0 for all x, y ∈ L, then L is solvable.

Proof

We shall show that every x ∈ L′ is a nilpotent linear map. It will then follow
from Engel’s Theorem (Theorem 6.1) that L′ is nilpotent, and so, by the ‘if’
part of Exercise 6.5(ii), L is solvable.

Let x ∈ L′ have Jordan decomposition x = d+n, where d is diagonalisable,
n is nilpotent, and d and n commute. We may fix a basis of V in which d is
diagonal and n is strictly upper triangular. Suppose that d has diagonal entries
λ1, . . . , λm. Since our aim is to show that d = 0, it will suffice to show that

m∑
i=1

λiλ̄i = 0.

The matrix of d̄ is diagonal, with diagonal entries λ̄i for 1 ≤ i ≤ m. A
simple computation shows that

tr d̄x =
m∑

i=1

λiλ̄i.

Now, as x ∈ L′, we may express x as a linear combination of commutators
[y, z] with y, z ∈ L, so we need to show that tr(d̄[y, z]) = 0. By the identity
mentioned at the start of this chapter, this is equivalent to

tr([d̄, y]z) = 0.

This will hold by our hypothesis, provided we can show that [d̄, y] ∈ L. In other
words, we must show that ad d̄ maps L into L.

By Exercise 9.1, the Jordan decomposition of adx is ad d + adn. There-
fore, by part (b) of Lemma 9.1, there is a polynomial p(X) ∈ C[X] such that
p(adx) = ad d = ad d̄. Now ad x maps L into itself, so p(adx) does also.
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To apply this proposition to an abstract Lie algebra L, we need a way to
regard L as a subalgebra of some gl(V ). The adjoint representation of L is
well-suited to this purpose, as L is solvable if and only if adL is solvable.

Theorem 9.4

Let L be a complex Lie algebra. Then L is solvable if and only if tr(adx◦ad y) =
0 for all x ∈ L and all y ∈ L′.

Proof

Suppose that L is solvable. Then adL ⊆ gl(L) is a solvable subalgebra of gl(L),
so the result now follows from Exercise 9.2.

Conversely, if tr(adx ◦ ad y) = 0 for all x ∈ L and all y ∈ L′, then Propo-
sition 9.3 implies that adL′ is solvable. So L′ is solvable, and hence L is solv-
able.

9.3 The Killing Form

Definition 9.5

Let L be a complex Lie algebra. The Killing form on L is the symmetric bilinear
form defined by

κ(x, y) := tr(adx ◦ ad y) for x, y ∈ L.

The Killing form is bilinear because ad is linear, the composition of maps
is bilinear, and tr is linear. (The reader may wish to write out a more careful
proof of this.) It is symmetric because tr ab = tr ba for linear maps a and b.
Another very important property of the Killing form is its associativity, which
states that for all x, y, z ∈ L we have

κ([x, y], z) = κ(x, [y, z]).

This follows from the identity for trace mentioned at the start of this chapter.
Using the Killing form, we can state Theorem 9.4 as follows.

Theorem 9.6 (Cartan’s First Criterion)

The complex Lie algebra L is solvable if and only if κ(x, y) = 0 for all x ∈ L

and y ∈ L′. �
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Example 9.7

Let L be the 2-dimensional non-abelian Lie algebra with basis x, y such that
[x, y] = x. The matrices computed in Example 9.2 show that κ(x, x) = κ(x, y) =
κ(y, x) = 0 and κ(y, y) = 1. The matrix of κ in the basis x, y is therefore(

0 0
0 1

)
.

The Killing form is compatible with restriction to ideals. Suppose that L is
a Lie algebra and I is an ideal of L. We write κ for the Killing form on L and
κI for the Killing form on I, considered as a Lie algebra in its own right.

Lemma 9.8

If x, y ∈ I, then κI(x, y) = κ(x, y).

Proof

Take a basis for I and extend it to a basis of L. If x ∈ I, then adx maps L into
I, so the matrix of adx in this basis is of the form(

Ax Bx

0 0

)
,

where Ax is the matrix of adx restricted to I.
If y ∈ I, then adx ◦ ad y has matrix(

AxAy AxBy

0 0

)
,

where Ax ◦ Ay is the matrix of adx ◦ ad y restricted to I. Only the block AxAy

contributes to the trace of this matrix, so

κ(x, y) = tr(AxBx) = κI(x, y).

9.4 Testing for Semisimplicity

Recall that a Lie algebra is said to be semisimple if its radical is zero; that is, if
it has no non-zero solvable ideals. Since we can detect solvability by using the
Killing form, it is perhaps not too surprising that we can also use the Killing
form to decide whether or not a Lie algebra is semisimple.
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We begin by recalling a small part of the general theory of bilinear forms;
for more details, see Appendix A. Let β be a symmetric bilinear form on a
finite-dimensional complex vector space V . If S is a subset of V , we define the
perpendicular space to S by

S⊥ = {x ∈ V : β(x, s) = 0 for all s ∈ S}.

This is a vector subspace of V . We say that β is non-degenerate if V ⊥ = 0;
that is, there is no non-zero vector v ∈ V such that β(v, x) = 0 for all x ∈ V .

If β is non-degenerate and W is a vector subspace of V , then

dimW + dimW⊥ = dimV.

Note that even if β is non-degenerate it is possible that W ∩ W⊥ �= 0. For
example, if κ is the Killing form of sl(2,C), then κ(e, e) = 0. (You are asked to
compute the Killing form of sl(2,C) in Exercise 9.4 below.)

Now we specialise to the case where L is a Lie algebra and κ is its Killing
form, so perpendicular spaces are taken with respect to κ. We begin with a
simple observation which requires the associativity of κ.

Exercise 9.3

Suppose that I is an ideal of L. Show that I⊥ is an ideal of L.

By this exercise, L⊥ is an ideal of L. If x ∈ L⊥ and y ∈ (
L⊥)′, then, as

in particular y ∈ L, we have κ(x, y) = 0. Hence it follows from Cartan’s First
Criterion that L⊥ is a solvable ideal of L. Therefore, if L is semisimple, then
L⊥ = 0 and κ is non-degenerate.

Again the converse also holds.

Theorem 9.9 (Cartan’s Second Criterion)

The complex Lie algebra L is semisimple if and only if the Killing form κ of L

is non-degenerate.

Proof

We have just proved the “only if” direction. Suppose that L is not semisimple,
so rad L is non-zero. By Exercise 4.6, L has a non-zero abelian ideal, say A.
Take a non-zero element a ∈ A, and let x ∈ L. The composite map

ad a ◦ adx ◦ ad a

sends L to zero, as the image of ad x ◦ ad a is contained in the abelian ideal A.
Hence (ad a ◦ adx)2 = 0. Nilpotent maps have trace 0, so κ(a, x) = 0. This
holds for all x ∈ L, so a is a non-zero element in L⊥. Thus κ is degenerate.
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It is possible that L⊥ is properly contained in radL. For example, Exer-
cise 9.2 shows that this is the case if L is the 2-dimensional non-abelian Lie
algebra.

Cartan’s Second Criterion is an extremely powerful characterisation of
semisimplicity. In our first application, we shall show that a semisimple Lie
algebra is a direct sum of simple Lie algebras; this finally justifies the name
semisimple which we have been using. The following lemma contains the main
idea needed.

Lemma 9.10

If I is a non-trivial proper ideal in a complex semisimple Lie algebra L, then
L = I ⊕ I⊥. The ideal I is a semisimple Lie algebra in its own right.

Proof

As usual, let κ denote the Killing form on L. The restriction of κ to I ∩ I⊥

is identically 0, so by Cartan’s First Criterion, I ∩ I⊥ = 0. It now follows by
dimension counting that L = I ⊕ I⊥.

We shall show that I is semisimple using Cartan’s Second Criterion. Suppose
that I has a non-zero solvable ideal. By the “only if” direction of Cartan’s
Second Criterion, the Killing form on I is degenerate. We have seen that the
Killing form on I is given by restricting the Killing form on L, so there exists
a ∈ I such that κ(a, x) = 0 for all x ∈ I. But as a ∈ I, κ(a, y) = 0 for all y ∈ I⊥

as well. Since L = I ⊕ I⊥, this shows that κ is degenerate, a contradiction.

We can now prove the following theorem.

Theorem 9.11

Let L be a complex Lie algebra. Then L is semisimple if and only if there are
simple ideals L1, . . . , Lr of L such that L = L1 ⊕ L2 ⊕ . . . ⊕ Lr.

Proof

We begin with the “only if” direction, working by induction on dimL. Let I be
an ideal in L of the smallest possible non-zero dimension. If I = L, we are done.
Otherwise I is a proper simple ideal of L. (It cannot be abelian as by hypothesis
L has no non-zero abelian ideals.) By the preceding lemma, L = I ⊕I⊥, where,
as an ideal of L, I⊥ is a semisimple Lie algebra of smaller dimension than L.
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So, by induction, I⊥ is a direct sum of simple ideals,

I⊥ = L2 ⊕ . . . ⊕ Lr.

Each Li is also an ideal of L, as [I, Li] ⊆ I ∩ I⊥ = 0, so putting L1 = I we get
the required decomposition.

Now for the “if” direction. Suppose that L = L1 ⊕ . . . ⊕ Lr, where the Lr

are simple ideals. Let I = radL; our aim is to show that I = 0. For each ideal
Li, [I, Li] ⊆ I ∩ Li is a solvable ideal of Li. But the Li are simple, so

[I, L] ⊆ [I, L1] ⊕ . . . ⊕ [I, Lr] = 0.

This shows that I is contained in Z(L). But by Exercise 2.6(ii)

Z(L) = Z(L1) ⊕ . . . ⊕ Z(Lr).

We know that Z(L1) = . . . = Z(Lr) = 0 as the Li are simple ideals, so Z(L) = 0
and I = 0.

Using very similar ideas, we can prove the following.

Lemma 9.12

If L is a semisimple Lie algebra and I is an ideal of L, then L/I is semisimple.

Proof

We have seen that L = I ⊕ I⊥, so L/I is isomorphic to I⊥, which we have seen
is a semisimple Lie algebra in its own right.

9.5 Derivations of Semisimple Lie Algebras

In our next application of Cartan’s Second Criterion, we show that the only
derivations of a complex semisimple Lie algebra are those of the form adx for
x ∈ L. More precisely, we have the following.

Proposition 9.13

If L is a finite-dimensional complex semisimple Lie algebra, then ad L = Der L.
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Proof

We showed in Example 1.2 that for each x ∈ L the linear map adx is a deriva-
tion of L, so ad is a Lie algebra homomorphism from L to Der L. Moreover, if
δ is a derivation of L and x, y ∈ L, then

[δ, adx]y = δ[x, y] − adx(δy)

= [δx, y] + [x, δy] − [x, δy]

= ad(δx)y.

Thus the image of ad : L → Der L is an ideal of DerL. This much is true for
any Lie algebra.

Now we bring in our assumption that L is complex and semisimple. First,
note that ad : L → Der L is one-to-one, as ker ad = Z(L) = 0, so the Lie
algebra M := adL is isomorphic to L and therefore it is semisimple as well.

To show that M = Der L, we exploit the Killing form on the Lie algebra
Der L. If M is properly contained in DerL then M⊥ �= 0, so it is sufficient to
prove that M⊥ = 0. As M is an ideal of DerL, the Killing form κM of M is
the restriction of the Killing form on DerL. By Cartan’s Second Criterion, κM

is non-degenerate, so M⊥ ∩ M = 0 and hence [M⊥, M ] = 0. Thus, if δ ∈ M⊥

and adx ∈ M , then [δ, adx] = 0. But we saw above that

[δ, adx] = ad(δx),

so, for all x ∈ L, we have δ(x) = 0; in other words, δ = 0.

In Exercise 9.17, this proposition is used to give an alternative proof that a
semisimple Lie algebra is a direct sum of simple Lie algebras. Another important
application occurs in the following section.

9.6 Abstract Jordan Decomposition

Given a representation ϕ : L → gl(V ) of a Lie algebra L, we may consider the
Jordan decomposition of the linear maps ϕ(x) for x ∈ L.

For a general Lie algebra there is not much that can be said about this
decomposition without knowing more about the representation ϕ. For example,
if L is the 1-dimensional abelian Lie algebra, spanned, say by x, then we may
define a representation of L on a vector space V by mapping x to any element
of gl(V ). So the Jordan decomposition of ϕ(x) is essentially arbitrary.
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However, representations of a complex semisimple Lie algebra are much
better behaved. To demonstrate this, we use derivations to define a Jordan
decomposition for elements of an arbitrary complex semisimple Lie algebra.
We need the following proposition.

Proposition 9.14

Let L be a complex Lie algebra. Suppose that δ is a derivation of L with Jordan
decomposition δ = σ + ν, where σ is diagonalisable and ν is nilpotent. Then σ

and ν are also derivations of L.

Proof

For λ ∈ C, let

Lλ = {x ∈ L : (δ − λ1L)mx = 0 for some m ≥ 1}
be the generalised eigenspace of δ corresponding to λ. Note that if λ is not
an eigenvalue of δ, then Lλ = 0. By the Primary Decomposition Theorem, L

decomposes as a direct sum of generalised eigenspaces, L =
⊕

λ Lλ, where the
sum runs over the eigenvalues of δ. In Exercise 9.8 below, you are asked to
show that

[Lλ, Lμ] ⊆ Lλ+μ.

We shall use this to show that σ and ν are derivations.
As σ acts diagonalisably, the λ-eigenspace of σ is Lλ. Take x ∈ Lλ and

y ∈ Lμ. Then, by the above, [x, y] ∈ Lλ+μ, so

σ([x, y]) = (λ + μ)[x, y],

which is the same as

[σ(x), y] + [x, σ(y)] = [λx, y] + [x, μy].

Thus σ is a derivation, and so δ − σ = ν is also a derivation.

Theorem 9.15

Let L be a complex semisimple Lie algebra. Each x ∈ L can be written uniquely
as x = d + n, where d, n ∈ L are such that ad d is diagonalisable, adn is
nilpotent, and [d, n] = 0. Furthermore, if y ∈ L commutes with x, then [d, y] = 0
and [n, y] = 0.
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Proof

Let ad x = σ + ν where σ ∈ gl(L) is diagonalisable, ν ∈ gl(L) is nilpotent, and
[σ, ν] = 0. By Proposition 9.14, we know that σ and ν are derivations of the
semisimple Lie algebra L. In Proposition 9.13, we saw that adL = DerL, so
there exist d, n ∈ L such that ad d = σ and adn = ν. As ad is injective and

adx = σ + ν = ad d + adn = ad(d + n),

we get that x = d + n. Moreover, ad[d, n] = [ad d, adn] = 0 so [d, n] = 0. The
uniqueness of d and n follows from the uniqueness of the Jordan decomposition
of adx.

Suppose that y ∈ L and that (adx)y = 0. By Lemma 9.1, σ and ν may be
expressed as polynomials in adx. Let

ν = c01L + c1 adx + . . . + cr(adx)r.

Applying ν to y, we see that ν(y) = c0y. But ν is nilpotent and ν(x) = c0x, so
c0 = 0. Thus ν(y) = 0 and so σ(y) = (adx − ν)y = 0 also.

We say that x has abstract Jordan decomposition x = d + n. If n = 0, then
we say that x is semisimple.

There is a potential ambiguity in the terms “Jordan decomposition” and
“semisimple” which arises when L ⊆ gl(V ) is a semisimple Lie algebra. In this
case, as well as the abstract Jordan decomposition just defined, we may also
consider the usual Jordan decomposition, given by taking an element of L and
regarding it as a linear map on V . It is an important property of the abstract
Jordan decomposition that the two decompositions agree; in particular, an
element of L is diagonalisable if and only if it is semisimple.

Take x ∈ L. Suppose that the usual Jordan decomposition of x, as an
element of gl(V ), is d + n. By Exercise 9.1, the Jordan decomposition of the
map ad x : L → L is ad d + adn, so by definition d + n is also the abstract
Jordan decomposition of x.

We are now ready to prove the main result about the abstract Jordan
decomposition.

Theorem 9.16

Let L be a semisimple Lie algebra and let θ : L → gl(V ) be a representation
of L. Suppose that x ∈ L has abstract Jordan decomposition x = d + n. Then
the Jordan decomposition of θ(x) ∈ gl(V ) is θ(x) = θ(d) + θ(n).
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Proof

By Lemma 9.12, im θ ∼= L/ ker θ is a semisimple Lie algebra. It therefore makes
sense to talk about the abstract Jordan decomposition of elements of im θ.

Let x ∈ L have abstract Jordan decomposition d + n. It follows from Exer-
cise 9.16 below that the abstract Jordan decomposition of θ(x), considered as
an element of im θ, is θ(d)+θ(n). By the remarks above, this is also the Jordan
decomposition of θ(x), considered as an element of gl(V ).

The last theorem is a very powerful result, which we shall apply several
times in the next chapter. For another application, see Exercise 9.15 below.

EXERCISES

9.4.† (i) Compute the Killing form of sl(2,C). This is a symmetric bilin-
ear form on a 3-dimensional vector space, so you should expect
it to be described by a symmetric 3 × 3 matrix. Check that the
Killing form is non-degenerate.

(ii) Is the Killing form of gl(2,C) non-degenerate?

9.5. Suppose that L is a nilpotent Lie algebra over a field F . Show by
using the ideals Lm, or otherwise, that the Killing form of L is iden-
tically zero. Does the converse hold? (The following exercise may be
helpful.)

9.6.† For each of the 3-dimensional complex Lie algebras studied in Chap-
ter 3, find its Killing form with respect to a convenient basis.

9.7. Let L = gl(n,C). Show that the Killing form of L is given by

κ(a, b) = 2n tr(ab) − 2(tr a)(tr b).

For instance, start with (ad b)ers, apply ad a, and then express the
result in terms of the basis and find the coefficient of ers. Hence
prove that if n ≥ 2 then sl(n,C) is semisimple.

9.8. Let δ be a derivation of a Lie algebra L. Show that if λ, μ ∈ C and
x, y ∈ L, then

(δ − (λ + μ)1L)n[x, y] =
n∑

k=0

(
n

k

)[
(δ − λ1L)kx, (δ − μ1L)n−ky

]
.

Hence show that if the primary decomposition of L with respect to δ

is L =
⊕

λ Lλ (as in the proof of Proposition 9.14), then

[Lλ, Lμ] ⊆ Lλ+μ.
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9.9. (i) Show that if L is a semisimple Lie algebra then L′ = L.

(ii) Suppose that L is the direct sum of simple ideals L = L1 ⊕
L2 ⊕ . . . ⊕ Lk. Show that if I is a simple ideal of L, then I is
equal to one of the Li. Hint : Consider the ideal [I, L].

(iii)� If L′ = L, must L be semisimple?

9.10. Suppose that L is a Lie algebra over C and that β is a symmetric,
associative bilinear form of L. Show that β induces a linear map

θ : L → L∗, θ(x) = β(x,−),

where by β(x,−) we mean the map y �→ β(x, y). Viewing both L and
L� as L-modules, show that θ is an L-module homomorphism. (The
L-module structure of L� is given by Exercise 7.12.) Deduce that if
β is non-degenerate, then L and L∗ are isomorphic as L-modules.

9.11.† Let L be a simple Lie algebra over C with Killing form κ. Use Ex-
ercise 9.10 to show that if β is any other symmetric, associative,
non-degenerate bilinear form on L, then there exists 0 �= λ ∈ C such
that κ = λβ.

9.12. Assuming that sl(n,C) is simple, use Exercise 9.11 to show that

κ(x, y) = 2n tr(xy), x, y ∈ sl(n,C).

To identify the scalar λ, it might be useful to take as a standard
basis for the Lie algebra; {eij : i �= j} ∪ {eii − ei+1,i+1 : 1 ≤ i < n}.

9.13. Give an example to show that the condition [d, n] = 0 in the Jordan
decomposition is necessary. That is, find a matrix x which can be
written as x = d+n with d diagonalisable and n nilpotent but where
this is not the Jordan decomposition of x.

9.14.† Let L be a complex semisimple Lie algebra. Suppose L has a faithful
representation in which x ∈ L acts diagonalisably. Show that x is a
semisimple element of L (in the sense of the abstract Jordan decom-
position) and hence that x acts diagonalisably in any representation
of L.

9.15.†� Suppose that M is an sl(2,C)-module. Use the abstract Jordan
decomposition to show that M decomposes as a direct sum of h-
eigenspaces. Hence use Exercise 8.6 to show that M is completely
reducible.



90 9. Cartan’s Criteria

9.16.† Suppose that L1 and L2 are complex semisimple Lie algebras and
that θ : L1 → L2 is a surjective homomorphism. Show that if x ∈ L1

has abstract Jordan decomposition x = d + n, then θ(x) ∈ L2 has
abstract Jordan decomposition θ(x) = θ(d)+θ(n). Hint : Exercise 2.8
is relevant.

9.17. Use Exercise 2.13 and Proposition 9.13 (that if L is a complex
semisimple Lie algebra, then ad L = DerL) to give an alternative
proof of Theorem 9.11 (that a complex semisimple Lie algebra is a
direct sum of simple ideals).

9.18.� Some small-dimensional examples suggest that if L is a Lie algebra
and I is an ideal of L, then one can always find a basis of I and
extend it to a basis of L in such a way that the Killing form of L

has a matrix of the form (
κI 0
0 �

)
.

Is this always the case?




