
8
Representations of sl(2,C)

In this chapter, we study the finite-dimensional irreducible representations of
sl(2,C). In doing this, we shall see, in a stripped-down form, many of the ideas
needed to study representations of an arbitrary semisimple Lie algebra. Later
we will see that representations of sl(2,C) control a large part of the structure
of all semisimple Lie algebras.

We shall use the basis of sl(2,C) introduced in Exercise 1.12 throughout
this chapter. Recall that we set

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

8.1 The Modules Vd

We begin by constructing a family of irreducible representations of sl(2,C).
Consider the vector space C[X, Y ] of polynomials in two variables X, Y

with complex coefficients. For each integer d ≥ 0, let Vd be the subspace of
homogeneous polynomials in X and Y of degree d. So V0 is the 1-dimensional
vector space of constant polynomials, and for d ≥ 1, the space Vd has as a
basis the monomials Xd, Xd−1Y, . . . , XY d−1, Y d. This basis shows that Vd has
dimension d + 1 as a C-vector space.

We now make Vd into an sl(2,C)-module by specifying a Lie algebra ho-
momorphism ϕ : sl(2,C) → gl(Vd). Since sl(2,C) is linearly spanned by the
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68 8. Representations of sl(2,C)

matrices e, f , h, the map ϕ will be determined once we have specified ϕ(e),
ϕ(f), ϕ(h).

We let
ϕ(e) := X

∂

∂Y
;

that is, ϕ(e) is the linear map which first differentiates a polynomial with
respect to Y and then multiplies it with X. This preserves the degrees of
polynomials and so maps Vd into Vd. Similarly, we let

ϕ(f) := Y
∂

∂X
.

Finally, we let

ϕ(h) := X
∂

∂X
− Y

∂

∂Y
.

Notice that
ϕ(h)(XaY b) = (a − b)XaY b,

so h acts diagonally on Vd with respect to our chosen basis.

Theorem 8.1

With these definitions, ϕ is a representation of sl(2,C).

Proof

By construction, ϕ is linear. Thus, all we have to check is that ϕ preserves
Lie brackets. By linearity, it is enough to check this on the basis elements of
sl(2,C), so there are just three equations we need to verify.

(1) We begin by showing [ϕ(e), ϕ(f)] = ϕ([e, f ]) = ϕ(h). If we apply the left-
hand side to a basis vector XaY b with a, b ≥ 1 and a + b = d, we get

[ϕ(e), ϕ(f)](XaY b) = ϕ(e)
(
ϕ(f)(XaY b)

)− ϕ(f)
(
ϕ(e)(XaY b)

)
= ϕ(e)

(
aXa−1Y b+1)− ϕ(f)

(
bXa+1Y b−1)

= a(b + 1)XaY b − b(a + 1)XaY b

= (a − b)XaY b.

This is the same as ϕ(h)(XaY b). We check separately the action on Xd,

[ϕ(e), ϕ(f)](Xd) = ϕ(e)
(
ϕ(f)(Xd)

)− ϕ(f)
(
ϕ(e)(Xd)

)
= ϕ(e)

(
dXd−1Y

)− ϕ(f)(0) = dXd,

which is the same as ϕ(h)(Xd). Similarly, one checks the action on Y d, so
[ϕ(e), ϕ(f)] and ϕ(h) agree on a basis of Vd and so are the same linear map.
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(2) We also need [ϕ(h), ϕ(e)] = ϕ([h, e]) = ϕ(2e) = 2ϕ(e). Again we can prove
this by applying the maps to basis vectors of Vd. For b ≥ 1, we get

[ϕ(h), ϕ(e)](XaY b) = ϕ(h)
(
ϕ(e)(XaY b)

)− ϕ(e)
(
ϕ(h)(XaY b)

)
= ϕ(h)

(
bXa+1Y b−1)− ϕ(e)

(
(a − b)XaY b

)
= b ((a + 1) − (b − 1))Xa+1Y b−1 − (a − b)bXa+1Y b−1

= 2bXa+1Y b−1.

This is the same as 2ϕ(e)(XaY b). If b = 0 and a = d, then a separate
verification is needed. We leave this to the reader.

(3) Similarly, one can check that [ϕ(h), ϕ(f)] = −2ϕ(f). Again, we leave this
to the reader.

8.1.1 Matrix Interpretation

It can be useful to know the matrices that correspond to the action of e, f, h

on Vd; these give the matrix representation corresponding to ϕ.
As usual, we take the basis Xd, Xd−1Y, . . . , Y d of Vd. The calculations in

the proof of Theorem 8.1 show that the matrix of ϕ(e) with respect to this
basis is ⎛

⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . d

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ ,

the matrix of ϕ(f) is ⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
d 0 . . . 0 0
0 d − 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠ ,

and ϕ(h) is diagonal: ⎛
⎜⎜⎜⎜⎜⎝

d 0 . . . 0 0
0 d − 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . −d + 2 0
0 0 . . . 0 −d

⎞
⎟⎟⎟⎟⎟⎠
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where the diagonal entries are the numbers d − 2k, where k = 0, 1, . . . , d. By
explicitly computing the commutators of these matrices, we can give another
(but equivalent) way to prove that ϕ is a representation of sl(2,C).

Another way to represent the action of h, e, f is to draw a diagram like

•
d

��

0

��

−d

•
d−1

��

1

��

−d+2

2

�� . . .

3
�� •

2
��

d−2

��

d−4

•
1

��

d−1

��

d−2

•
0

��

d

��

d

Y d XY d−1 . . . Xd−2Y Xd−1Y Xd

where loops represent the action of h, arrows to the right represent the action
of e, and arrows to the left represent the action of f .

8.1.2 Irreducibility

One virtue of the diagram above is that it makes it almost obvious that the
sl(2,C)-submodule of Vd generated by any particular basis element XaY b con-
tains all the basis elements and so is all of Vd.

Exercise 8.1

Check this assertion.

A possible disadvantage of our diagram is that it may blind us to the exis-
tence of the many other vectors in Vd, which, while linear combinations of the
basis vectors, are not basis vectors themselves.

Theorem 8.2

The sl(2,C)-module Vd is irreducible.

Proof

Suppose U is a non-zero sl(2,C)-submodule of Vd. Then h ·u ∈ U for all u ∈ U .
Since h acts diagonalisably on Vd, it also acts diagonalisably on U , so there
is an eigenvector of h which lies in U . We have seen that all eigenspaces of h

on Vd are one-dimensional, and each eigenspace is spanned by some monomial
XaY b, so the submodule U must contain some monomial, and by the exercise
above, U contains a basis for Vd. Hence U = Vd.
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8.2 Classifying the Irreducible sl(2, C)-Modules

It is clear that for different d the sl(2,C)-modules Vd cannot be isomorphic,
as they have different dimensions. In this section, we prove that any finite-
dimensional irreducible sl(2,C)-module is isomorphic to one of the Vd. Our
strategy will be to look at the eigenvectors and eigenvalues of h. For brevity,
we shall write e2 · v rather than e · (e · v), and so on.

Lemma 8.3

Suppose that V is an sl(2,C)-module and v ∈ V is an eigenvector of h with
eigenvalue λ.

(i) Either e · v = 0 or e · v is an eigenvector of h with eigenvalue λ + 2.

(ii) Either f · v = 0 or f · v is an eigenvector of h with eigenvalue λ − 2.

Proof

As V is a representation of sl(2,C), we have

h · (e · v) = e · (h · v) + [h, e] · v = e · (λv) + 2e · v = (λ + 2)e · v.

The calculation for f · v is similar.

Lemma 8.4

Let V be a finite-dimensional sl(2,C)-module. Then V contains an eigenvec-
tor w for h such that e · w = 0.

Proof

As we work over C, the linear map h : V → V has at least one eigenvalue and
so at least one eigenvector. Let h · v = λv. Consider the vectors

v, e · v, e2 · v, . . . .

If they are non-zero, then by Lemma 8.3 they form an infinite sequence of h-
eigenvectors with distinct eigenvalues. Eigenvectors with different eigenvalues
are linearly independent, so V would contain infinitely many linearly indepen-
dent vectors, a contradiction.

Therefore there exists k ≥ 0 such that ek · v �= 0 and ek+1 · v = 0. If we set
w = ek · v, then h · w = (λ + 2k)w and e · w = 0.
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We are now ready to prove our main result.

Theorem 8.5

If V is a finite-dimensional irreducible sl(2,C)-module, then V is isomorphic
to one of the Vd.

Proof

By Lemma 8.4, V has an h-eigenvector w such that e · w = 0. Suppose that
h · w = λw. Consider the sequence of vectors

w, f · w, f2 · w, . . . .

By the proof of Lemma 8.4, there exists d ≥ 0 such that fd · w �= 0 and
fd+1 · w = 0.

Step 1: We claim that the vectors w, f · w, . . . , fd · w form a basis for a
submodule of V . They are linearly independent because, by Lemma 8.3, they
are eigenvectors for h with distinct eigenvalues. By construction, the span of
w, f · w, . . . , fd · w is invariant under h and f . To show that it is invariant
under e, we shall prove by induction on k that

e · (fk · w) ∈ Span{f j · w : 0 ≤ j < k}.

If k = 0, then we know that e · w = 0. For the inductive step, note that

e · (fk · w) = (fe + h) · (fk−1 · w).

By the inductive hypothesis, e·(fk−1 ·w) is in the span of the f j ·w for j < k−1
and therefore fefk−1 ·w is in the span of all f j ·w for j < k. Moreover hfk−1 ·w
is a scalar multiple of fk−1 · w. This gives the inductive step.

Now, since V is irreducible, the submodule spanned by the fk · w for 0 ≤
k ≤ d is equal to V .

Step 2: In this step, we shall show that λ = d. The matrix of h with respect
to the basis w, f · w, . . . , fd · w of V is diagonal, with trace

λ + (λ − 2) + . . . + (λ − 2d) = (d + 1)λ − (d + 1)d.

Since [e, f ] = h, the matrix of h is equal to the commutator of the matrices of
e and f , so it has trace zero and λ = d.
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Step 3: To finish, we produce an explicit isomorphism V ∼= Vd. As we have
seen, V has basis {w, f · w, . . . , fd · w}. Furthermore, Vd has basis

{Xd, f · Xd, . . . , fd · Xd},

where fk ·Xd is a scalar multiple of Xd−kY k. Moreover, the eigenvalue of h on
fk · w is the same as the eigenvalue of h on fk · Xd. Clearly, to have a homo-
morphism, we must have a map which takes h-eigenvectors to h-eigenvectors
for the same eigenvalue. So we may set

ψ(w) = Xd

and then we must define ψ by

ψ(fk · w) := fk · Xd.

This defines a vector space isomorphism, which commutes with the actions of
f and h. To show that it also commutes with the action of e, we use induction
on k and a method similar to Step 1. Explicitly, for k = 0 we have ψ(e · w) = 0
and eψ(w) = e · Xd = 0. For the inductive step,

ψ(efk · w) = ψ((fe + h) · (fk−1 · w)) = f · ψ(efk−1 · w) + h · ψ(fk−1 · w)

using that ψ commutes with f and h. We use the inductive hypothesis to take
e out and obtain that the expression can be written as

(fe + h) · ψ(fk−1 · w) = ef · ψ(fk−1 · w) = e · ψ(fk · w).

Corollary 8.6

If V is a finite-dimensional representation of sl(2,C) and w ∈ V is an h-
eigenvector such that e ·w = 0, then h ·w = dw for some non-negative integer d

and the submodule of V generated by w is isomorphic to Vd.

Proof

Step 1 in the previous proof shows that for some d ≥ 0 the vectors w, f ·
w, . . . , fd ·w span a submodule of V . Now apply steps 2 and 3 to this submodule
to get the required conclusions.

A vector v of the type considered in this corollary is known as a highest-
weight vector. If d is the associated eigenvalue of h, then d is said to be a highest
weight. (See §15.1 for a more general setting.)
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8.3 Weyl’s Theorem

In Exercise 7.6, we gave an example of a module for a Lie algebra that was not
completely reducible; that is, it could not be written as a direct sum of irre-
ducible submodules. Finite-dimensional representations of complex semisimple
Lie algebras however are much better behaved.

Theorem 8.7 (Weyl’s Theorem)

Let L be a complex semisimple Lie algebra. Every finite-dimensional represen-
tation of L is completely reducible.

The proof of Weyl’s Theorem is fairly long, so we defer it to Appendix B.
Weyl’s Theorem tells us that to understand the finite-dimensional representa-
tions of a semisimple Lie algebra it is sufficient to understand its irreducible
representations. We give an introduction to this topic in §15.1.

In the main part of this book, we shall only need to apply Weyl’s Theorem
to representations of sl(2,C), in which case a somewhat easier proof, exploiting
properties of highest-weight vectors, is possible. Exercise 8.6 in this chapter
does the groundwork, and the proof is finished in Exercise 9.15. (Both of these
exercises have solutions in Appendix E.)

EXERCISES

8.2. Find explicit isomorphisms between

(i) the trivial representation of sl(2,C) and V0;

(ii) the natural representation of sl(2,C) and V1;

(iii) the adjoint representation of sl(2,C) and V2.

8.3. Show that the subalgebra of sl(3,C) consisting of matrices of the
form ⎛

⎝� � 0
� � 0
0 0 0

⎞
⎠

is isomorphic to sl(2,C). We may therefore regard sl(3,C) as a mod-
ule for sl(2,C), with the action given by x · y = [x, y] for x ∈ sl(2,C)
and y ∈ sl(3,C). Show that as an sl(2,C)-module

sl(3,C) ∼= V2 ⊕ V1 ⊕ V1 ⊕ V0.



Exercises 75

8.4. Suppose that V is a finite-dimensional module for sl(2,C). Show, by
using Weyl’s Theorem and the classification of irreducible represen-
tations in this chapter, that V is determined up to isomorphism by
the eigenvalues of h. In particular, prove that if V is the direct sum
of k irreducible modules, then

k = dimW0 + dimW1,

where Wr = {v ∈ V : h · v = rv}.

8.5. Let V be an sl(2,C)-module, not necessarily finite-dimensional. Sup-
pose w ∈ V is a highest-weight vector of weight λ; that is, e · w = 0
and h · w = λw for some λ ∈ C, and w �= 0. Show that

(i) for k = 1, 2, . . . we have e · (fk · w) = k(λ − k + 1)fk−1 · w, and

(ii) ekfk · w = (k!)2
(
λ
k

)
w.

Deduce that if
(
λ
k

) �= 0 then the set of all f j · w for 0 ≤ j ≤ k

is linearly independent. Hence show that if V is finite-dimensional,
then λ must be a non-negative integer.

8.6.† Let M be a finite-dimensional sl(2,C)-module. Define a linear map
c : M −→ M by

c(v) =
(

ef + fe +
1
2
h2
)

· v for v ∈ M.

(i) Show that c is a homomorphism of sl(2,C)-modules. Hint : For
example, to show that c commutes with the action of e, show
that (efe + fe2 + 1

2h2e) · v and (e2f + efe + 1
2eh2) · v are both

equal to (2efe + 1
2heh) · v.

(ii) By Schur’s Lemma, c must act as a scalar, say λd, on the ir-
reducible module Vd. Show that λd = 1

2d(d + 2), and deduce
that d is determined by λd.

(iii) Let λ1, . . . , λr be the distinct eigenvalues of c acting on M . Let
the primary decomposition of M be

M =
r⊕

i=1

ker(c − λi1M )mi .

Show that the summands are sl(2,C)-submodules.

So, to express the module as a direct sum of simple modules, we
therefore may assume that M has just one generalised eigenspace,
where c has, say, eigenvalue λ.
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(iv) Let U be an irreducible submodule of M . Suppose that U is
isomorphic to Vd. Show by considering the action of c on Vd

that λ = 1
2d(d + 2) and hence that any irreducible submodule

of M is isomorphic to Vd.

(v) Show more generally that if N is a submodule of M , then any
irreducible submodule of M/N is isomorphic to Vd.

The linear map c is known as the Casimir operator. The following
exercise gives an indication of how it was first discovered; it will
appear again in the proof of Weyl’s Theorem (see Appendix B).

8.7. Exercise 1.14 gives a way to embed the real Lie algebra R3
∧ into

sl(2,C). With the given solution, we would take

ψ(x) =
(

0 1/2
−1/2 0

)
, ψ(y) =

(
0 −i/2

−i/2 0

)
, ψ(z) =

(−i/2 0
0 i/2

)

Check that ψ(x)2 + ψ(y)2 + ψ(z)2 = −3/4I, where I is the 2 × 2
identity matrix. By expressing x, y, z in terms of e, f , h, recover the
description of the Casimir operator given above.

The interested reader might like to look up “angular momentum” or
“Pauli matrices” in a book on quantum mechanics to see the physical
interpretation of the Casimir operator.




