
4
Solvable Lie Algebras and a Rough

Classification

Abelian Lie algebras are easily understood. There is a sense in which some of
the low-dimensional Lie algebras we studied in Chapter 3 are close to being
abelian. For example, the 3-dimensional Heisenberg algebra discussed in §3.2.1
has a 1-dimensional centre. The quotient algebra modulo this ideal is also
abelian. We ask when something similar might hold more generally. That is, to
what extent can we “approximate” a Lie algebra by abelian Lie algebras?

4.1 Solvable Lie Algebras

To start, we take an ideal I of a Lie algebra L and ask when the factor algebra
L/I is abelian. The following lemma provides the answer.

Lemma 4.1

Suppose that I is an ideal of L. Then L/I is abelian if and only if I contains
the derived algebra L′.
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28 4. Solvable Lie Algebras and a Rough Classification

Proof

The algebra L/I is abelian if and only if for all x, y ∈ L we have

[x + I, y + I] = [x, y] + I = I

or, equivalently, for all x, y ∈ L we have [x, y] ∈ I. Since I is a subspace of L,
this holds if and only if the space spanned by the brackets [x, y] is contained
in I; that is, L′ ⊆ I.

This lemma tells us that the derived algebra L′ is the smallest ideal of L

with an abelian quotient. By the same argument, the derived algebra L′ itself
has a smallest ideal whose quotient is abelian, namely the derived algebra of
L′, which we denote L(2), and so on. We define the derived series of L to be
the series with terms

L(1) = L′ and L(k) = [L(k−1), L(k−1)] for k ≥ 2.

Then L ⊇ L(1) ⊇ L(2) ⊇ . . ..
As the product of ideals is an ideal, L(k) is an ideal of L (and not just an

ideal of L(k−1)).

Definition 4.2

The Lie algebra L is said to be solvable if for some m ≥ 1 we have L(m) = 0.

The Heisenberg algebra is solvable. Similarly, the algebra of upper triangular
matrices is solvable (see Exercise 4.5 below). Furthermore, the classification of
2-dimensional Lie algebras in §3.1 shows that any 2-dimensional Lie algebra is
solvable. On the other hand, if L = sl(2,C), then we have seen in Exercise 2.2
that L = L′ and therefore L(m) = L for all m ≥ 1, so sl(2,C) is not solvable.

If L is solvable, then the derived series of L provides us with an “approxi-
mation” of L by a finite series of ideals with abelian quotients. This also works
the other way around.

Lemma 4.3

If L is a Lie algebra with ideals

L = I0 ⊇ I1 ⊇ . . . ⊇ Im−1 ⊇ Im = 0

such that Ik−1/Ik is abelian for 1 ≤ k ≤ m, then L is solvable.
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Proof

We shall show that L(k) is contained in Ik for k between 1 and m. Putting
k = m will then give L(m) = 0.

Since L/I1 is abelian, we have from Lemma 4.1 that L′ ⊆ I1. For the
inductive step, we suppose that L(k−1) ⊆ Ik−1, where k ≥ 2. The Lie algebra
Ik−1/Ik is abelian. Therefore by Lemma 4.1, this time applied to the Lie algebra
Ik−1, we have [Ik−1, Ik−1] ⊆ Ik. But L(k−1) is contained in Ik−1 by our inductive
hypothesis, so we deduce that

L(k) = [L(k−1), L(k−1)] ⊆ [Ik−1, Ik−1],

and hence L(k) ⊆ Ik.

This proof shows that if L(k) is non-zero then Ik is also non-zero. Hence
the derived series may be thought of as the fastest descending series whose
successive quotients are abelian.

Lie algebra homomorphisms are linear maps that preserve Lie brackets, and
so one would expect that they preserve the derived series.

Exercise 4.1

Suppose that ϕ : L1 → L2 is a surjective homomorphism of Lie algebras.
Show that

ϕ(L(k)
1 ) = (L2)(k).

This exercise suggests that the property of being solvable should be inher-
ited by various constructions.

Lemma 4.4

Let L be a Lie algebra.

(a) If L is solvable, then every subalgebra and every homomorphic image of L

are solvable.

(b) Suppose that L has an ideal I such that I and L/I are solvable. Then L is
solvable.

(c) If I and J are solvable ideals of L, then I + J is a solvable ideal of L.

Proof

(a) If L1 is a subalgebra of L, then for each k it is clear that L
(k)
1 ⊆ L(k), so if

L(m) = 0, then also L
(m)
1 = 0. For the second part, apply Exercise 4.1.
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(b) We have (L/I)(k) =
(
L(k) + I

)
/I. (Either apply Exercise 4.1 to the canon-

ical homomorphism L → L/I or prove this directly by induction on k.)
If L/I is solvable then for some m ≥ 1 we have (L/I)(m) = 0; that is,
L(m) + I = I and therefore L(m) ⊆ I. If I is also solvable, then I(k) = 0 for
some k ≥ 1 and hence (L(m))(k) ⊆ I(k) = 0. Now one can convince oneself
that by definition

(L(m))(k) = L(m+k).

(c) By the second isomorphism theorem (I + J)/I ∼= J/I ∩ J , so it is solvable
by Lemma 4.4(a). Since I is also solvable, part (b) of this lemma implies
that I + J is solvable.

Corollary 4.5

Let L be a finite-dimensional Lie algebra. There is a unique solvable ideal of L

containing every solvable ideal of L.

Proof

Let R be a solvable ideal of largest possible dimension. Suppose that I is any
solvable ideal. By Lemma 4.4(c), we know that R + I is a solvable ideal. Now
R ⊆ R + I and hence dimR ≤ dim(R + I). We chose R of maximal possible
dimension and therefore we must have dimR = dim(R+I) and hence R = R+I,
so I is contained in R.

This largest solvable ideal is said to be the radical of L and is denoted
radL. The radical will turn out to be an essential tool in helping to describe
the finite-dimensional Lie algebras. It also suggests the following definition.

Definition 4.6

A non-zero finite-dimensional Lie algebra L is said to be semisimple if it has
no non-zero solvable ideals or equivalently if radL = 0.

For example, by Exercise 1.13, sl(2,C) is semisimple. The reason for the
word “semisimple” is revealed in §4.3 below.

Lemma 4.7

If L is a Lie algebra, then the factor algebra L/radL is semisimple.
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Proof

Let J̄ be a solvable ideal of L/radL. By the ideal correspondence, there is
an ideal J of L containing radL such that J̄ = J/radL. By definition, radL

is solvable, and J/radL = J̄ is solvable by hypothesis. Therefore Lemma 4.4
implies that J is solvable. But then J is contained in radL; that is, J̄ = 0.

4.2 Nilpotent Lie Algebras

We define the lower central series of a Lie algebra L to be the series with terms

L1 = L′ and Lk = [L, Lk−1] for k ≥ 2.

Then L ⊇ L1 ⊇ L2 ⊇ . . .. As the product of ideals is an ideal, Lk is even an
ideal of L (and not just an ideal of Lk−1). The reason for the name “central
series” comes from the fact that Lk/Lk+1 is contained in the centre of L/Lk+1.

Definition 4.8

The Lie algebra L is said to be nilpotent if for some m ≥ 1 we have Lm = 0.

The Lie algebra n(n, F ) of strict upper triangular matrices over a field F

is nilpotent (see Exercise 4.4). Furthermore, any nilpotent Lie algebra is solv-
able. To see this, show by induction on k that L(k) ⊆ Lk. There are solvable
Lie algebras which are not nilpotent; the standard example is the Lie algebra
b(n, F ) of upper triangular matrices over a field F for n ≥ 2 (see Exercise 4.5).
Another is the two-dimensional non-abelian Lie algebra (see §3.1).

Lemma 4.9

Let L be a Lie algebra.

(a) If L is nilpotent, then any Lie subalgebra of L is nilpotent.

(b) If L/Z(L) is nilpotent, then L is nilpotent.

Proof

Part (a) is clear from the definition. By induction, or by a variation of Ex-
ercise 4.1, one can show that (L/Z(L))k is equal to

(
Lk + Z(L)

)
/Z(L). So if

(L/Z(L))m is zero, then Lm is contained in Z(L) and therefore Lm+1 = 0.
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Remark 4.10

The analogue of Lemma 4.4(b) does not hold; that is, if I is an ideal of a Lie
algebra L, then it is possible that both L/I and I are nilpotent but L is not. An
example is given by the 2-dimensional non-abelian Lie algebra. This perhaps
suggests that solvability is more fundamental to the structure of Lie algebras
than nilpotency.

4.3 A Look Ahead

The previous section suggests that we might have a chance to understand all
finite-dimensional Lie algebras. The radical radL of any Lie algebra L is solv-
able, and L/radL is semisimple, so to understand L it is necessary to under-
stand

(i) an arbitrary solvable Lie algebra and

(ii) an arbitrary semisimple Lie algebra.

Working over C, an answer to (i) was found by Lie, who proved (in essence)
that every solvable Lie algebra appears as a subalgebra of a Lie algebras of
upper triangular matrices. We give a precise statement of Lie’s Theorem in §6.4
below.

For (ii) we shall show that every semisimple Lie algebra is a direct sum of
simple Lie algebras.

Definition 4.11

The Lie algebra L is simple if it has no ideals other than 0 and L and it is not
abelian.

The restriction that a simple Lie algebra may not be abelian removes only
the 1-dimensional abelian Lie algebra. Without this restriction, this Lie algebra
would be simple but not semisimple: This is obviously undesirable.

We then need to find all simple Lie algebras over C. This is a major theorem;
the proof is based on work by Killing, Engel, and Cartan. We shall eventually
prove most of the following theorem.
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Theorem 4.12 (Simple Lie algebras)

With five exceptions, every finite-dimensional simple Lie algebra over C is
isomorphic to one of the classical Lie algebras:

sl(n,C), so(n,C), sp(2n,C).

The five exceptional Lie algebras are known as e6, e7, e8, f4, and g2.

We have already introduced the family of special linear Lie algebras,
sl(n,C). The remaining families can be defined as certain subalgebras of
gl(n,C) using the construction introduced in Exercise 1.15. Recall that if
S ∈ gl(n,C), then we defined a Lie subalgebra of gl(n,C) by

glS(n,C) :=
{
x ∈ gl(n,C) : xtS = −Sx

}
.

Assume first of all that n = 2�. Take S to be the matrix with � × � blocks:

S =
(

0 I�

I� 0

)
.

We define so(2�,C) = glS(2�,C). When n = 2� + 1, we take

S =

⎛
⎝1 0 0

0 0 I�

0 I� 0

⎞
⎠

and define so(2� + 1,C) = glS(2� + 1,C). These Lie algebras are known as the
orthogonal Lie algebras.

The Lie algebras sp(n,C) are only defined for even n. If n = 2�, we take

S =
(

0 I�

−I� 0

)

and define sp(2�,C) = glS(2�,C). These Lie algebras are known as the sym-
plectic Lie algebras.

It follows from Exercise 2.12 that so(n,C) and sp(n,C) are subalgebras of
sl(n,C). (This also follows from the explicit bases given in Chapter 12.)

We postpone discussion of the exceptional Lie algebras until Chapter 14.

Exercise 4.2

Let x ∈ gl(2�,C). Show that x belongs to sp(2�,C) if and only if it is of
the form

x =
(

m p

q −mt

)
,

where p and q are symmetric. Hence find the dimension of sp(2�,C). (See
Exercise 12.1 for the other families.)
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EXERCISES

4.3. Use Lemma 4.4 to show that if L is a Lie algebra then L is solvable
if and only if adL is a solvable subalgebra of gl(L). Show that this
result also holds if we replace “solvable” with “nilpotent.”

4.4. Let L = n(n, F ), the Lie algebra of strictly upper triangular n × n

matrices over a field F . Show that Lk has a basis consisting of all
the matrix units eij with j − i > k. Hence show that L is nilpotent.
What is the smallest m such that Lm = 0?

4.5. Let L = b(n, F ) be the Lie algebra of upper triangular n×n matrices
over a field F .

(i) Show that L′ = n(n, F ).

(ii) More generally, show that L(k) has a basis consisting of all the
matrix units eij with j − i ≥ 2k−1. (The commutator formula
for the eij given in §1.2 will be helpful.)

(iii) Hence show that L is solvable. What is the smallest m such
that L(m) = 0?

(iv) Show that if n ≥ 2 then L is not nilpotent.

4.6. Show that a Lie algebra is semisimple if and only if it has no non-
zero abelian ideals. (This was the original definition of semisimplicity
given by Wilhelm Killing.)

4.7. Prove directly that sl(n,C) is a simple Lie algebra for n ≥ 2.

4.8.† Let L be a Lie algebra over a field F such that [[a, b], b] = 0 for all
a, b ∈ L, (or equivalently, (ad b)2 = 0 for all b ∈ L).

(i) Suppose the characteristic of F is not 3. Show that then L3 = 0.

(ii)� Show that if F has characteristic 3 then L4 = 0. Hint : show
first that the Lie brackets [[x, y], z] are alternating; that is,

[[x, y], z] = −[[y, x], z], [[x, y], z] = −[[x, z], y]

for all x, y, z ∈ L.

4.9.� The purpose of this exercise is to give some idea why the families
of Lie algebras are given the names that we have used. We shall
not need to refer to this exercise later; some basic group theory is
needed.
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We begin with the Lie algebra sl(n,C). Recall that the n × n ma-
trices with determinant 1 form a group under matrix multiplication,
denoted SL(n,C). Let I denote the n × n identity matrix. We ask:
when is I + εX ∈ SL(n,C) for X an n × n matrix?

(i) Show that det(I + εX) is a polynomial in ε of degree n with the
first two terms

det(I + εX) = 1 + (trX)ε + . . . .

If we neglect all powers of ε except 1 and ε, then we obtain the
statement

I + εX ∈ SL(n,C) ⇐⇒ X ∈ sl(n,C).

This could have been taken as the definition of sl(n,C). (This is
despite the fact that, interpreted literally, it is false!)

(ii) (a) Let S be an n × n matrix. Let (−,−) denote the complex
bilinear form with matrix S. Show that if we let GS(n,C) be
the set of invertible matrices A such that (Av, Av) = (v, v)
for all v ∈ Cn, then GS(n,C) is a group.

(b) Show that if we perform the construction in part (i) with
GS(n,C) in place of SL(n,C), we obtain glS(n,C).

(iii) (a) An invertible matrix A is customarily said to be orthogonal
if AtA = AAt = I; that is, if A−1 = At. Show that the set of
n×n orthogonal matrices with coefficients in C is the group
GI(n,C) and that the associated Lie algebra, gI(n,C), is
the space of all anti-symmetric matrices.

(b) Prove that gI(n,C) ∼= so(n,C). Hint : Use Exercise 2.11.
(The reason for not taking this as the definition of so(n,C)
will emerge.)

(iv) A bilinear form (see Appendix A) on a vector space v is said to
be symplectic if (v, v) = 0 for all v ∈ V . Show that

S =
(

0 I�

−I� 0

)

is the matrix of a non-degenerate symplectic bilinear form on a
2�-dimensional space. The associated Lie algebra is glS(2�,C) =
sp(2�,C).
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The reader is entitled to feel rather suspicious about our cavalier
treatment of the powers of ε. A rigorous and more general treatment
is given in books on matrix groups and Lie groups, such as Matrix
Groups by Baker [3] in the SUMS series. We shall not attempt to go
any further in this direction.

4.10.� Let F be a field. Exercise 2.11 shows that if S, T ∈ gl(n, F ) are
congruent matrices (that is, there exists an invertible matrix P such
that T = P tSP ), then glS(n, F ) ∼= glT (n, F ). Does the converse hold
when F = C? For a challenge, think about other fields.




