
2
Ideals and Homomorphisms

In this chapter we explore some of the constructions in which ideals are involved.
We shall see that in the theory of Lie algebras ideals play a role similar to that
played by normal subgroups in the theory of groups. For example, we saw in
Exercise 1.6 that the kernel of a Lie algebra homomorphism is an ideal, just as
the kernel of a group homomorphism is a normal subgroup.

2.1 Constructions with Ideals

Suppose that I and J are ideals of a Lie algebra L. There are several ways we
can construct new ideals from I and J . First we shall show that I ∩ J is an
ideal of L. We know that I ∩ J is a subspace of L, so all we need check is that
if x ∈ L and y ∈ I ∩ J , then [x, y] ∈ I ∩ J : This follows at once as I and J are
ideals.

Exercise 2.1

Show that I + J is an ideal of L where

I + J := {x + y : x ∈ I, y ∈ J}.

We can also define a product of ideals. Let

[I, J ] := Span{[x, y] : x ∈ I, y ∈ J}.
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12 2. Ideals and Homomorphisms

We claim that [I, J ] is an ideal of L. Firstly, it is by definition a subspace.
Secondly, if x ∈ I, y ∈ J , and u ∈ L, then the Jacobi identity gives

[u, [x, y]] = [x, [u, y]] + [[u, x], y].

Here [u, y] ∈ J as J is an ideal, so [x, [u, y]] ∈ [I, J ]. Similarly, [[u, x], y] ∈ [I, J ].
Therefore their sum belongs to [I, J ].

A general element t of [I, J ] is a linear combination of brackets [x, y] with
x ∈ I, y ∈ J , say t =

∑
ci[xi, yi], where the ci are scalars and xi ∈ I and

yi ∈ J . Then, for any u ∈ L, we have

[u, t] =
[
u,
∑

ci[xi, yi]
]

=
∑

ci[u, [xi, yi]],

where [u, [xi, yi]] ∈ [I, J ] as shown above. Hence [u, t] ∈ [I, J ] and so [I, J ] is
an ideal of L.

Remark 2.1

It is necessary to define [I, J ] to be the span of the commutators of elements of
I and J rather than just the set of such commutators. See Exercise 2.14 below
for an example where the set of commutators is not itself an ideal.

An important example of this construction occurs when we take I = J = L.
We write L′ for [L, L]: Despite being an ideal of L, L′ is usually known as the
derived algebra of L′. The term commutator algebra is also sometimes used.

Exercise 2.2

Show that sl(2,C)′ = sl(2,C).

2.2 Quotient Algebras

If I is an ideal of the Lie algebra L, then I is in particular a subspace of L,
and so we may consider the cosets z + I = {z + x : x ∈ I} for z ∈ L and the
quotient vector space

L/I = {z + I : z ∈ L}.

We review the vector space structure of L/I in Appendix A. We claim that a
Lie bracket on L/I may be defined by

[w + I, z + I] := [w, z] + I for w, z ∈ L.

Here the bracket on the right-hand side is the Lie bracket in L. To be sure
that the Lie bracket on L/I is well-defined, we must check that [w, z] + I
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depends only on the cosets containing w and z and not on the particular coset
representatives w and z. Suppose w + I = w′ + I and z + I = z′ + I. Then
w − w′ ∈ I and z − z′ ∈ I. By bilinearity of the Lie bracket in L,

[w′, z′] = [w′ + (w − w′), z′ + (z − z′)]

= [w, z] + [w − w′, z′] + [w′, z − z′] + [w − w′, z − z′],

where the final three summands all belong to I. Therefore [w′ + I, z′ + I] =
[w, z] + I, as we needed. It now follows from part (i) of the exercise below that
L/I is a Lie algebra. It is called the quotient or factor algebra of L by I.

Exercise 2.3

(i) Show that the Lie bracket defined on L/I is bilinear and satisfies the
axioms (L1) and (L2).

(ii) Show that the linear transformation π : L → L/I which takes an
element z ∈ L to its coset z + I is a homomorphism of Lie algebras.

The reader will not be surprised to learn that there are isomorphism theo-
rems for Lie algebras just as there are for vector spaces and for groups.

Theorem 2.2 (Isomorphism theorems)

(a) Let ϕ : L1 → L2 be a homomorphism of Lie algebras. Then kerϕ is an
ideal of L1 and imϕ is a subalgebra of L2, and

L1/ ker ϕ ∼= im ϕ.

(b) If I and J are ideals of a Lie algebra, then (I + J)/J ∼= I/(I ∩ J).

(c) Suppose that I and J are ideals of a Lie algebra L such that I ⊆ J .
Then J/I is an ideal of L/I and (L/I)/(J/I) ∼= L/J .

Proof

That ker ϕ is an ideal of L1 and imϕ is a subalgebra of L2 were proved in
Exercise 1.6. All the isomorphisms we need are already known for vector spaces
and their subspaces (see Appendix A): By part (ii) of Exercise 2.3, they are
also homomorphisms of Lie algebras.

Parts (a), (b), and (c) of this theorem are known respectively as the first,
second, and third isomorphism theorems.
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Example 2.3

Recall that the trace of an n × n matrix is the sum of its diagonal entries. Fix
a field F and consider the linear map tr : gl(n, F ) → F which sends a matrix
to its trace. This is a Lie algebra homomorphism, for if x, y ∈ gl(n, F ) then

tr[x, y] = tr(xy − yx) = trxy − tr yx = 0,

so tr[x, y] = [trx, tr y] = 0. Here the first Lie bracket is taken in gl(n, F ) and
the second in the abelian Lie algebra F .

It is not hard to see that tr is surjective. Its kernel is sl(n, F ), the Lie algebra
of matrices with trace 0. Applying the first isomorphism theorem gives

gl(n, F )/sl(n, F ) ∼= F.

We can describe the elements of the factor Lie algebra explicitly: The coset
x + sln(F ) consists of those n × n matrices whose trace is tr x.

Exercise 2.4

Show that if L is a Lie algebra then L/Z(L) is isomorphic to a subalgebra
of gl(L).

2.3 Correspondence between Ideals

Suppose that I is an ideal of the Lie algebra L. There is a bijective corre-
spondence between the ideals of the factor algebra L/I and the ideals of L

that contain I. This correspondence is as follows. If J is an ideal of L contain-
ing I, then J/I is an ideal of L/I. Conversely, if K is an ideal of L/I, then
set J := {z ∈ L : z + I ∈ K}. One can readily check that J is an ideal of L and
that J contains I. These two maps are inverses of one another.

Example 2.4

Suppose that L is a Lie algebra and I is an ideal in L such that L/I is abelian.
In this case, the ideals of L/I are just the subspaces of L/I. By the ideal
correspondence, the ideals of L which contain I are exactly the subspaces of L

which contain I.



Exercises 15

EXERCISES

2.5.† Show that if z ∈ L′ then tr ad z = 0.

2.6. Suppose L1 and L2 are Lie algebras. Let L := {(x1, x2) : xi ∈ Li}
be the direct sum of their underlying vector spaces. Show that if we
define

[(x1, x2), (y1, y2)] := ([x1, y1], [x2, y2])

then L becomes a Lie algebra, the direct sum of L1 and L2. As for
vector spaces, we denote the direct sum of Lie algebras L1 and L2

by L = L1 ⊕ L2.

(i) Prove that gl(2,C) is isomorphic to the direct sum of sl(2,C)
with C, the 1-dimensional complex abelian Lie algebra.

(ii) Show that if L = L1 ⊕ L2 then Z(L) = Z(L1) ⊕ Z(L2) and L′ =
L′

1 ⊕ L′
2. Formulate a general version for a direct sum L1 ⊕ . . . ⊕ Lk.

(iii) Are the summands in the direct sum decomposition of a Lie
algebra uniquely determined? Hint : If you think the answer is yes,
now might be a good time to read §16.4 in Appendix A on the
“diagonal fallacy”. The next question looks at this point in more
detail.

2.7. Suppose that L = L1 ⊕ L2 is the direct sum of two Lie algebras.

(i) Show that {(x1, 0) : x1 ∈ L1} is an ideal of L isomorphic to L1

and that {(0, x2) : x2 ∈ L2} is an ideal of L isomorphic to L2.
Show that the projections p1(x1, x2) = x1 and p2(x1, x2) = x2

are Lie algebra homomorphisms.

Now suppose that L1 and L2 do not have any non-trivial proper
ideals.

(ii) Let J be a proper ideal of L. Show that if J ∩ L1 = 0 and
J ∩ L2 = 0, then the projections p1 : J → L1 and p2 : J → L2

are isomorphisms.

(iii) Deduce that if L1 and L2 are not isomorphic as Lie algebras,
then L1 ⊕ L2 has only two non-trivial proper ideals.

(iv) Assume that the ground field is infinite. Show that if L1 ∼= L2

and L1 is 1-dimensional, then L1 ⊕ L2 has infinitely many dif-
ferent ideals.

2.8. Let L1 and L2 be Lie algebras, and let ϕ : L1 → L2 be a surjective
Lie algebra homomorphism. True or false:
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(a)† ϕ(L′
1) = L′

2;

(b) ϕ(Z(L1)) = Z(L2);

(c) if h ∈ L1 and adh is diagonalisable then adϕ(h) is diagonalis-
able.

What is different if ϕ is an isomorphism?

2.9. For each pair of the following Lie algebras over R, decide whether
or not they are isomorphic:

(i) the Lie algebra R3
∧ where the Lie bracket is given by the vector

product;

(ii) the upper triangular 2 × 2 matrices over R;

(iii) the strictly upper triangular 3 × 3 matrices over R;

(iv) L = {x ∈ gl(3,R) : xt = −x}.

Hint : Use Exercises 1.15 and 2.8.

2.10. Let F be a field. Show that the derived algebra of gl(n, F ) is sl(n, F ).

2.11.† In Exercise 1.15, we defined the Lie algebra glS(n, F ) over a field F

where S is an n × n matrix with entries in F .

Suppose that T ∈ gl(n, F ) is another n × n matrix such that T =
P tSP for some invertible n × n matrix P ∈ gl(n, F ). (Equivalently,
the bilinear forms defined by S and T are congruent.) Show that the
Lie algebras glS(n, F ) and glT (n, F ) are isomorphic.

2.12. Let S be an n × n invertible matrix with entries in C. Show that if
x ∈ glS(n,C), then trx = 0.

2.13. Let I be an ideal of a Lie algebra L. Let B be the centraliser of I in
L; that is,

B = CL(I) = {x ∈ L : [x, a] = 0 for all a ∈ I}.

Show that B is an ideal of L. Now suppose that

(1) Z(I) = 0, and

(2) if D : I → I is a derivation, then D = adx for some x ∈ I.

Show that L = I ⊕ B.

2.14.†� Recall that if L is a Lie algebra, we defined L′ to be the subspace
spanned by the commutators [x, y] for x, y ∈ L. The purpose of this
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exercise, which may safely be skipped on first reading, is to show
that the set of commutators may not even be a vector space (and so
certainly not an ideal of L).

Let R[x, y] denote the ring of all real polynomials in two variables.
Let L be the set of all matrices of the form

A(f(x), g(y), h(x, y)) =

⎛
⎝0 f(x) h(x, y)

0 0 g(y)
0 0 0

⎞
⎠ .

(i) Prove that L is a Lie algebra with the usual commutator bracket.
(In contrast to all the Lie algebras seen so far, L is infinite-
dimensional.)

(ii) Prove that

[A(f1(x), g1(y), h1(x, y)), A(f2(x), g2(y), h2(x, y))] =

A(0, 0, f1(x)g2(y) − f2(x)g1(y)).

Hence describe L′.

(iii) Show that if h(x, y) = x2 + xy + y2, then A(0, 0, h(x, y)) is not
a commutator.




