
16
Appendix A: Linear Algebra

This appendix gives a summary of the results we need from linear algebra.
Recommended for further reading are Blyth and Robertson’s books Basic Lin-
ear Algebra [4] and Further Linear Algebra [5] and Halmos Finite-Dimensional
Vector Spaces [11].

We expect that the reader will already know the definition of vector spaces
and will have seen some examples. For most of this book, we deal with finite-
dimensional vector spaces over the complex numbers, so the main example to
bear in mind is Cn, which we think of as a set of column vectors.

We assume that the reader knows about bases, subspaces, and direct sums.
We therefore begin our account by describing quotient spaces. Next we discuss
the connection between linear maps and matrices, diagonalisation of matrices,
and Jordan canonical form. We conclude by reviewing the bilinear algebra
needed in the main text.

16.1 Quotient Spaces

Suppose that W is a subspace of the vector space V . A coset of W is a set of
the form

v + W := {v + w : w ∈ W}.

It is important to realise that unless W = 0, each coset will have many different
labels; in fact, v + W = v′ + W if and only if v − v′ ∈ W .
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190 16. Appendix A: Linear Algebra

The quotient space V/W is the set of all cosets of W . This becomes a vector
space, with zero element 0 + W = W , if addition is defined by

(v + W ) + (v′ + W ) := (v + v′) + W for v, v′ ∈ V

and scalar multiplication by

λ(v + W ) := λv + W for v, v′ ∈ V , λ ∈ F .

One must check that these operations are well-defined ; that is, they do not
depend on the choice of labelling elements. Suppose for instance that v + W =
v′ + W . Then, since v − v′ ∈ W , we have λv − λv′ ∈ W for any scalar λ, so
λv + W = λv′ + W .

The following diagram shows the elements of R2/W , where W is the sub-
space of R2 spanned by

(1
1

)
.

W

(1
0

)
+ W

(0
1

)
+ W

. . .

. . .

The cosets R2/W are all the translations of the line W . One can choose a
standard set of coset representatives by picking any line through 0 (other than
W ) and looking at its intersection points with the cosets of W ; this gives a
geometric interpretation of the isomorphism R2/W ∼= R.

It is often useful to consider quotient spaces when attempting a proof by
induction on the dimension of a vector space. In this context, it can be useful to
know that if v1, . . . , vk are vectors in V such that the cosets v1 +W, . . . , vk +W

form a basis for the quotient space V/W , then v1, . . . , vk, together with any
basis for W , forms a basis for V .



16.2 Linear Maps 191

16.2 Linear Maps

Let V and W be vector spaces over a field F . A linear map (or linear transfor-
mation) x : V → W is a map satisfying

x(λu + μv) = λx(u) + μx(v) for all u, v ∈ V and λ, μ ∈ F .

A bijective linear map between two vector spaces is an isomorphism. We assume
the reader knows about the definitions of the image and kernel of a linear map,
and can prove the rank-nullity theorem,

dimV = dim imx + dimkerx.

A corollary of the rank-nullity theorem is that if dimV = dimW and
x : V → W is injective, then, since dim imx = dimV , x is an isomorphism.
One can draw the same conclusion if instead we know that x is surjective. We
refer to this type of reasoning as an argument by dimension counting.

We can now state the isomorphism theorems for vector spaces.

Theorem 16.1 (Isomorphism theorems for vector spaces)

(a) If x : V → W is a linear map, then kerx is a subspace of V , imx is a
subspace of W , and

V/ ker x ∼= im x.

(b) If U and W are subspaces of a vector space, (U + W )/W ∼= U/(U ∩ W ).

(c) Suppose that U and W are subspaces of a vector space V such that U ⊆ W .
Then W/U is a subspace of V/U and (V/U)/(W/U) ∼= V/W .

Proof

For part (a), define a map ϕ : V/ ker x → im x by

ϕ(v + kerx) = x(v).

This map is well-defined since if v + ker x = v′ + ker x then v − v′ ∈ ker x, so
ϕ(v + ker x) = x(v) = x(v′) = ϕ(v′ + ker x). It is routine to check that ϕ is
linear, injective, and surjective, so it gives the required isomorphism.

To prove (b), consider the composite of the inclusion map U → U + W

with the quotient map U + W → (U + W )/W . This gives us a linear map
U → (U + W )/W . Under this map, x ∈ U is sent to 0 ∈ (U + W )/W if and
only if x ∈ W , so its kernel is U ∩ W . Now apply part (a).

Part (c) can be proved similarly; we leave this to the reader.
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Parts (a), (b) and (c) of this theorem are known respectively as the first,
second, and third isomorphism theorems. See Exercise 16.5 for one application.

16.3 Matrices and Diagonalisation

Suppose that x : V → V is a linear transformation of a finite-dimensional
vector space V . Let {v1, . . . , vn} be a basis of V . Using this basis, we may
define scalars aij by

x(vj) =
n∑

i=1

aijvi.

We say that the n×n matrix A with entries (aij) is the matrix of x with respect
to our chosen basis. Conversely, given a basis of V and a matrix A, we can use
the previous equation to define a linear map x, whose matrix with respect to
this basis is A.

Exercise 16.1

(i) Let x : V → V and y : V → V be linear maps with matrices A and B

with respect to a basis of V . Show that, with respect to this basis,
the matrix of the composite map yx is the matrix product BA.

(ii) Suppose that x has matrix A with respect to the basis v1, . . . , vn

of V . Let w1, . . . , wn be another basis of V . Show that the matrix
of A in this new basis is P−1AP where the matrix P = (pij) is
defined by

wj =
n∑

i=1

pijvi.

Matrices related in this way are said to be similar.

It had been said that “a true gentleman never takes bases unless he really
has to.” We generally agree with this sentiment, preferring to use matrices
only when they are necessary for explicit computations (for example in Chap-
ter 12 when we look at the classical Lie algebras). When we are obliged to
consider matrices, then we can at least try to choose bases so that they are of
a convenient form.

Recall that a non-zero vector v ∈ V such that x(v) = λv is said to be an
eigenvector of x with corresponding eigenvalue λ. The eigenspace for eigen-
value λ is the vector subspace

{v ∈ V : x(v) = λv}.
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It is an elementary fact that non-zero vectors in different eigenspaces are
linearly independent. (This will often be useful for us; for example, see step 1
in the proof of Theorem 8.5.)

The linear map x can be represented by a diagonal matrix if and only if V

has a basis consisting of eigenvectors for x. This is the same as saying that the
space V is a direct sum of x-eigenspaces,

V = Vλ1 ⊕ Vλ2 ⊕ . . . ⊕ Vλr ,

where the λi are the distinct eigenvalues of x. If this is the case, we say that x

is diagonalisable.
Note that λ ∈ C is an eigenvalue of x if and only if ker(x − λ1V ) is non-

zero, which is the case if and only if det(x − λ1V ) = 0. The eigenvalues of x

are therefore the roots of the characteristic polynomial of x, defined by

cx(X) = det(x − X1V ),

where X is an indeterminant. Since over C any non-constant polynomial has a
root, this shows that any linear transformation of a complex vector space has
an eigenvalue.

The characteristic polynomial of x does not in itself give enough information
to determine whether x is diagonalisable — consider for example the matrices(

1 0
0 1

)
,

(
1 1
0 1

)
.

To get further, one needs the minimal polynomial. The minimal polynomial
of x is the monic polynomial of least degree which kills x, so m(X) = Xd +
ad−1X

d−1 + . . . + a1X + a0 is the minimal polynomial of x if

xd + ad−1x
d−1 + . . . + a1x + a01V = 0

and the degree d is as small as possible.
An important property of the minimal polynomial is that if f(X) is any

polynomial such that f(x) = 0 then m(X) divides f(X).

Exercise 16.2

Prove this assertion by using polynomial division to write f(X) =
a(X)m(X) + r(X), where the remainder polynomial r(X) is either 0
or has degree less than that of m(X), and then showing that r(x) = 0.

By the famous theorem of Cayley–Hamilton (see Exercise 16.4), the minimal
polynomial of x divides the characteristic polynomial of x. We now explore some
of the arguments in which the minimal polynomial is used.



194 16. Appendix A: Linear Algebra

16.3.1 The Primary Decomposition Theorem

Theorem 16.2 (Primary decomposition theorem)

Suppose the minimal polynomial of x factorises as

(X − λ1)a1 . . . (X − λr)ar ,

where the λi are distinct and each ai ≥ 1. Then V decomposes as a direct sum
of x-invariant subspaces Vi,

V = V1 ⊕ V2 ⊕ . . . ⊕ Vr,

where Vi = ker(x − λi1V )ai . The subspaces Vi are said to be the generalised
eigenspaces of x.

This theorem may be proved by repeatedly applying the following lemma.

Lemma 16.3

If f(X) ∈ C[X] and g(X) ∈ C[X] are coprime polynomials such that
f(x)g(x) = 0, then im f(x) and im g(x) are x-invariant subspaces of V . More-
over,

(i) V = im f(x) ⊕ im g(x), and

(ii) im f(x) = ker g(x) and im g(x) = ker f(x).

Proof

If v = f(x)w, then xv = f(x)xw, so the subspaces im f(x) and im g(x) are
x-invariant. By Euclid’s algorithm, there exist polynomials a(X), b(X) ∈ C[X]
such that a(X)f(X) + b(X)g(X) = 1, so for any v ∈ V ,

f(x)(a(x)v) + g(x)(b(x)v) = v. (�)

This shows that V = im f(x) + im g(x). If v ∈ im g(x) with, say, v = g(x)w,
then f(x)v = f(x)g(x)w = 0, so im g(x) ⊆ ker f(x). On the other hand, if
f(x)v = 0, then by (�), v = g(x)(b(x)v) so v ∈ im g(x). Finally, if

v ∈ im f(x) ∩ im g(x) = ker f(x) ∩ ker g(x),

then as f(x)a(x)v = a(x)f(x)v = 0 and similarly b(x)g(x) = 0, it follows
from (�) that v = 0.

The following criterion for a linear map to be diagonalisable follows directly
from the primary decomposition theorem.
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Theorem 16.4

Let x : V → V be a linear map of a vector space V . Then x is diagonalisable
if and only if the minimal polynomial of x splits as a product of distinct linear
factors.

Corollary 16.5

Let x : V → V be a diagonalisable linear transformation. Suppose that U is a
subspace of V which is invariant under x, that is, x(u) ∈ U for all u ∈ U .

(a) The restriction of x to U is diagonalisable.

(b) Given any basis of U consisting of eigenvectors for x, we may extend this
basis to a basis of V consisting of eigenvectors for x.

Proof

Let m(X) be the minimal polynomial of x : V → V . Let mU (X) be the
minimal polynomial of x, regarded just as a linear transformation of U . Then
m(x)(U) = 0, so mU (X) must divide m(X). Hence mU (X) is a product of
distinct linear factors.

Now let V = Vλ1 ⊕ . . . ⊕ Vλr be the decomposition of V into distinct
eigenspaces of x. Since x acts diagonalisably on U we have

U = U ∩ Vλ1 ⊕ . . . ⊕ U ∩ Vλr .

Extend the basis of each U ∩ Vλi
to a basis of Vλi

. This gives us a basis of V

of the required form.

We now give another application of the primary decomposition theorem.

Lemma 16.6

Suppose that x has minimal polynomial

f(X) = (X − λ1)a1 . . . (X − λr)ar ,

where the λi are pairwise distinct. Let the corresponding primary decomposi-
tion of V as a direct sum of generalised eigenspaces be

V = V1 ⊕ . . . ⊕ Vr,

where Vi = ker(x − λi1V )ai . Then, given any μ1, . . . , μr ∈ C, there is a poly-
nomial p(X) such that

p(x) = μ11V1 + μ21V2 . . . + μr1Vr
.
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Proof

Suppose we could find a polynomial f(X) ∈ C[X] such that

f(X) ≡ μi mod (X − λi)ai .

Take v ∈ Vi = ker(x−λi1V )ai . By our supposition, f(X) = μi+a(X)(X−λi)ai

for some polynomial a(X). Hence

f(x)v = μi1Vi
v + a(x)(x − λi)aiv = μiv,

as required.
The polynomials (X − λ1)a1 . . . , (X − λr)ar are coprime. We may therefore

apply the Chinese Remainder Theorem, which states that in these circum-
stances the map

C[X] →
r⊕

i=1

C[X]
(X − λi)ai

f(X) �→ (f(X) mod (X − λ1)a1 , . . . , f(X) mod (X − λr)ar )

is surjective, to obtain a suitable p(X).

In terms of matrices, this lemma says that

p(x) =

⎛
⎜⎜⎜⎝

μ1In1 0 . . . 0
0 μ2In2 . . . 0
...

...
. . .

...
0 0 . . . μrInr

⎞
⎟⎟⎟⎠ ,

where ni = dimVi and Is denotes the s × s identity matrix.

16.3.2 Simultaneous Diagonalisation

In the main text, we shall several times have a finite family of linear transfor-
mations of a vector space V , each of which is individually diagonalisable. When
can one find a basis of V in which they are all simultaneously diagonal?

Lemma 16.7

Let x1, . . . , xk : V → V be diagonalisable linear transformations. There is a
basis of V consisting of simultaneous eigenvectors for all the xi if and only if
they commute. (That is, xixj = xjxi for all pairs i, j.)
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Proof

For the “only if” direction we note that diagonal matrices commute with one
another, so if we can represent all the xi by diagonal matrices, they must
commute.

The main step in the “if” direction is the case k = 2. Write V as a direct
sum of eigenspaces for x1, say V = Vλ1 ⊕ . . .⊕Vλr

, where the λi are the distinct
eigenvalues of x1. If v ∈ Vλi

then so is x2(v), for

x1x2(v) = x2x1(v) = x2(λiv) = λi(x2(v)).

We now apply Corollary 16.5(a) to deduce that x2 restricted to Vλi is di-
agonalisable. A basis of Vλi

consisting of eigenvectors for x2 is automatically a
basis of eigenvectors for x1, so if we take the union of a basis of eigenvectors
for x2 on each Vλi

, we get a basis of V consisting of simultaneous eigenvectors
for both x1 and x2.

The inductive step is left to the reader.

In Exercise 16.6, we give a small generalisation which will be needed in the
main text.

16.4 Interlude: The Diagonal Fallacy

Consider the following (fallacious) argument. Let V be a 2-dimensional vector
space, say with basis v1, v2. Let x : V → V be the linear map whose matrix
with respect to this basis is (

0 1
0 0

)
.

We claim that if U is a subspace of V such that x(U) ⊆ U , then either U = 0,
U = Span{v1}, or U = V . Clearly each of these subspaces is invariant under x,
so we only need to prove that there are no others. But since x(v2) = v1,
Span{v2} is not x-invariant. (QED?)

Here we committed the diagonal fallacy : We assumed that an arbitrary
subspace of V would contain one of our chosen basis vectors. This assumption
is very tempting — which perhaps explains why it is so often made — but it
is nonetheless totally unjustified.

Exercise 16.3

Give a correct proof of the previous result.
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The following diagram (which is frequently useful as a counterexample in
linear algebra) illustrates how the fallacy we have been discussing gets its name.

Span{(11)}Span{(01)}

Span{(10)}

16.5 Jordan Canonical Form

Let V be a finite-dimensional complex vector space and let x : V → V be a
linear map. Exercise 6.2 outlines the proof that one can always find a basis of V

in which x is represented by an upper triangular matrix. For many purposes,
this result is sufficient. For example, it implies that a nilpotent map may be
represented by a strictly upper triangular matrix, and so nilpotent maps have
trace 0.

Sometimes, however, one needs the full strength of Jordan canonical form.
A general matrix in Jordan canonical form looks like⎛

⎜⎜⎜⎝
A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ar

⎞
⎟⎟⎟⎠ ,

where each Ai is a Jordan block matrix Jt(λ) for some t ∈ N and λ ∈ C:

Jt(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

t×t

.

We now outline a proof that any linear transformation of a complex vector
space can be represented by a matrix in Jordan canonical form.



16.5 Jordan Canonical Form 199

The first step is to reduce to the case where xq = 0 for some q ≥ 1; that
is, x is a nilpotent linear map.

By the primary decomposition theorem, it suffices to consider the case
where x has only one eigenvalue, say λ. Then by considering x − λ1V , we
may reduce to the case where x acts nilpotently. So it suffices to show that a
nilpotent transformation can be put into Jordan canonical form.

16.5.1 Jordan Canonical Form for Nilpotent Maps

We shall work by induction on dimV .
Suppose that xq = 0 and xq−1 �= 0. Let v ∈ V be any vector such that

xq−1v �= 0. One can check that the vectors v, xv, . . . , xq−1v are linearly inde-
pendent. Their span, U say, is an x-invariant subspace of V . With respect to
the given basis of U , the matrix of x : U → U is the q × q matrix

Jq(0) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ .

Suppose we can find an x-invariant complementary subspace to U ; that is,
a subspace C such that x maps C into C and V = U ⊕ C. Then, by induction,
there is a basis of C in which the matrix of x restricted to C is in Jordan
canonical form. Putting the bases of C and U together gives us a suitable basis
for V .

To show that a suitable complement exists, we use a further induction on q.
If q = 1, then x = 0 and any vector space complement to Span {v} will do.
Now suppose we can find complements when xq−1 = 0.

Consider imx ⊆ V . On imx, x acts as a nilpotent linear map whose q − 1
power is 0, so by induction on q we get

im x = Span
{
xv, . . . , xq−1v

}⊕ W

for some x-invariant subspace W . Note that U∩W = 0. Our task is to extend W

to a suitable x-invariant complement for U in V .
Suppose first that W = 0. In this case, im x = Span

{
xv, . . . , xq−1v

}
and

ker x ∩ im x =
〈
xq−1v

〉
. Extend xq−1v to a basis of kerx, say by v1, . . . , vs. By

the rank-nullity formula

v, xv . . . , xq−1v, v1, . . . , vs
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is a basis of V . The subspace spanned by v1, . . . , vs is an x-invariant complement
to U .

Now suppose that W �= 0. Then x induces a linear transformation, say x̄,
on V/W . Let v̄ = v + W . Since im x̄ = Span

{
x̄v̄, . . . , x̄q−1v̄

}
, the first case im-

plies that there is an x̄-invariant complement in V/W to Span
{
v̄, x̄v̄, . . . x̄q−1v̄

}
.

The preimage of this complement in V is a suitable complement to U .

16.6 Jordan Decomposition

Any linear transformation x of a complex vector space V has a Jordan de-
composition, x = d + n, where d is diagonalisable, n is nilpotent, and d and n

commute.
One can see this by putting x into Jordan canonical form: Fix a basis of V

in which x is represented by a matrix in Jordan canonical form. Let d be the
map whose matrix in this basis has the diagonal entries of x down its diagonal,
and let n = x − d. For example we might have

x =

⎛
⎝1 1 0

0 1 0
0 0 1

⎞
⎠ , d =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , n =

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ .

As n is represented by a strictly upper triangular matrix, it is nilpotent. We
leave it to the reader to check that d and n commute.

In applications it is useful to know that d and n can be expressed as poly-
nomials in x. In the following lemma, we also prove a related result that is
needed in Chapter 9.

Lemma 16.8

Let x have Jordan decomposition x = d+n as above, where d is diagonalisable,
n is nilpotent, and d, n commute.

(a) There is a polynomial p(X) ∈ C[X] such that p(x) = d.

(b) Fix a basis of V in which d is diagonal. Let d̄ be the linear map whose
matrix with respect to this basis is the complex conjugate of the matrix
of d. There is a polynomial q(X) ∈ C[X] such that q(x) = d̄.
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Proof

Let λ1, . . . , λr be the distinct eigenvalues of x. The minimal polynomial of x is
then

m(X) = (X − λ1)a1 . . . (X − λr)ar ,

where ai is the size of the largest Jordan block with eigenvalue λi.
We can now apply Lemma 16.6 to get the polynomials we seek. For part

(a) take μi = λi, and for part (b) take μi = λ̄i.

Part (a) of this lemma can be used to prove that the Jordan decomposition
of a linear map is unique — see Exercise 16.7 below.

16.7 Bilinear Algebra

As well as the books already mentioned, we recommend Artin’s Geometric
Algebra [1] for further reading on bilinear algebra. From now on, we let V be
an n-dimensional vector space over a field F .

16.7.1 Dual spaces

The dual space of V , denoted V �, is by definition the set of all linear maps from
V to F . Thus, if f, g ∈ V �, then f + g is defined by (f + g)(v) = f(v) + g(v)
for v ∈ V , and if λ ∈ F , then λf is defined by (λf)(v) = λf(v).

Given a vector space basis {v1, . . . , vn} of V , one defines the associated
dual basis of V as follows. Let fi : V → F be the linear map defined on basis
elements by

fi(vj) =

{
1 i = j

0 i �= j.

It is not hard to check that f1, . . . , fn is a basis for V �. In particular dimV =
dimV �.

The dual space of V ∗ can be identified with V in a natural way. Given
v ∈ V , we may define an evaluation map εv : V ∗ → F by

εv(f) := f(v) for all f ∈ V ∗.

It is straightforward to check that εv is linear and so belongs to the dual space
of V �; that is, to V ��. Moreover, the map v �→ εv (which we might call ε)
from V to V �� is itself linear. We claim that ε : V → V �� is an isomorphism.
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Since we have already shown that dimV = dimV � = dimV ��, it is sufficient
to show that εv = 0 implies v = 0. One way to do this is as follows. If v �= 0,
then we may extend v to a basis of V and take the associated dual basis.
Then f1(v) = 1 and hence εv(f1) �= 0, so εv �= 0.

If U is a subspace of V we let

U◦ = {f ∈ V � : f(u) = 0 for all u ∈ U}
be the annihilator of U in V �. One can show that U◦ is a subspace of V � and
that

dimU + dimU◦ = dimV.

A proof of the last statement is outlined in Exercise 16.8.
Given a subspace W of V ∗, we can similarly define the annihilator of W

in V ��. Under the identification of V �� with V , the annihilator of W becomes

W 0 = {v ∈ V : f(v) = 0 for all f ∈ W}.

In particular, we have dimW + dimW 0 = dimV .

16.7.2 Bilinear Forms

Definition 16.9

A bilinear form on V is a map

(−,−) : V × V → F

such that

(λ1v1 + λ2v2, w) = λ1(v1, w) + λ2(v2, w),

(v, μ1w1 + μ2w2) = μ1(v, w1) + μ2(v, w2),

for all v, w, vi, wi ∈ V and λi, μi ∈ F .

For example, if F = R and V = Rn, then the usual dot product is a bilinear
form on V .

As for linear transformations, we can represent bilinear forms by matrices.
Suppose that (−,−) is a bilinear form on the vector space V and that V has
basis {v1, . . . , vn}. The matrix of (−,−) with respect to this basis is A = (aij),
where aij = (vi, vj). If we change the basis, say to {w1, . . . , wn}, then the new
matrix representing (−,−) is P tAP where P = (pij) is the n×n matrix defined
by

wj =
n∑

i=1

pijvi.
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Matrices related in this way are said to be congruent.
Conversely, given an n × n matrix S = (sij), we may define a bilinear form

on V by setting
(vi, vj) = sij

and extending “bilinearly” to arbitrary elements in V × V . That is, if v =∑
i λivi and w =

∑
j μjvj with λi and μj scalars, then

(v, w) =
n∑

i=1

n∑
j=1

sijλiμj .

The last equation may be written in matrix form as

(v, w) = (λ1 . . . λn)

⎛
⎜⎝

s11 . . . s1n

...
. . .

...
sn1 . . . snn

⎞
⎟⎠
⎛
⎜⎝

μ1
...

μn

⎞
⎟⎠ .

Given a subset U of V , we set

U⊥ := {v ∈ V : (u, v) = 0 for all u ∈ U}.

This is always a subspace of V . We say that the form (−,−) is non-degenerate
if V ⊥ = {0}.

Example 16.10

Let U be a 2m-dimensional vector space with basis u1, . . . , u2m, and let

S =
(

0 Im

Im 0

)
,

where Im is the identity matrix of size m × m. The bilinear form associated
to S may be shown to be non-degenerate. (For example, this follows from
Exercise 16.9.) However, the restriction of the form to the subspace spanned
by u1, . . . , um is identically zero.

For a more substantial example, see Exercise 16.10 below.

We now explain the connection between bilinear forms and dual spaces.
Let ϕ : V → V � be the linear map defined by ϕ(v) = (−, v). That is, ϕ(v)
is the linear map sending u ∈ V to (u, v). If (−,−) is non-degenerate, then
ker ϕ = 0, so by dimension counting, ϕ is an isomorphism. Thus every element
of V � is of the form (−, v) for a unique v ∈ V ; this is a special case of the Riesz
representation theorem. A small generalisation of this argument can be used to
prove the following lemma — see Exercise 16.8.
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Lemma 16.11

Suppose that (−,−) is a non-degenerate bilinear form on the vector space V .
Then, for all subspaces U of V , we have

dimU + dimU⊥ = dimV.

If U ∩ U⊥ = 0, then V = U ⊕ U⊥ and, furthermore, the restrictions of (−,−)
to U and to U⊥ are non-degenerate.

16.7.3 Canonical Forms for Bilinear Forms

Definition 16.12

Suppose that (−,−) : V × V → F is a bilinear form. We say that (−,−) is
symmetric if (v, w) = (w, v) for all v, w ∈ V and that (−,−) is skew-symmetric
or symplectic if (v, w) = −(w, v) for all v, w ∈ V .

In the main text, we shall only need to deal with bilinear forms that are
either symmetric or skew-symmetric. For such a form, (v, w) = 0 if and only
if (w, v) = 0. When F = R, a symmetric bilinear form with (v, v) ≥ 0 for all
v ∈ V and such that (v, v) = 0 if and only if v = 0 is said to be an inner
product.

A vector v ∈ V is said to be isotropic with respect to a form (−,−) if
(v, v) = 0. For example, if (−,−) is symplectic and the characteristic of the
field is not 2, then all elements in V are isotropic. But symmetric bilinear
forms can also have isotropic vectors (as long as they do not come from inner
products). For example, in Example 16.10 above, the basis of U consists of
isotropic vectors.

If (−,−) is non-degenerate and v ∈ V is isotropic, then there exists some
w ∈ V such that (v, w) �= 0. Clearly v and w must be linearly independent.
This observation motivates the following lemma (which we use in Appendix C).

Lemma 16.13

Suppose V has a non-degenerate bilinear form (−,−). Suppose U1 and U2 are
trivially-intersecting subspaces of V such that (u, v) = 0 for all u, v ∈ U1 and
for all u, v ∈ U2 and that (−,−) restricted to U1 ⊕U2 is non-degenerate. Then,
if {u1, . . . , um} is a basis of U1 there is a basis {u′

1, . . . , u
′
n}, of U2 such that

(ui, u
′
j) =

{
1 i = j

0 i �= j.
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Proof

Consider the map γ : U2 → U∗
1 defined by γ(v) = (−, v). That is, γ(v)(u) =

(u, v) for all u ∈ U1. This map is linear, and it is injective because the restriction
of (−,−) to U1 ⊕ U2 is non-degenerate, so we have

dimU2 ≤ dimU∗
1 = dimU1.

By symmetry, we also have dim U1 ≤ dimU2, so γ must be an isomorphism.
Given the basis {u1, . . . , un} of U1, let {f1, . . . , fn} be the corresponding

dual basis of U∗
1 . For 1 ≤ j ≤ n, let u′

j ∈ U2 be the unique vector such that
γ(u′

j) = fj . Then we have

(ui, u
′
j) = fj(ui) =

{
1 i = j

0 i �= j

as required.

Note that if (−,−) is symmetric, then the matrix of (−,−) with respect to
this basis of U1 ⊕ U2 is (

0 Im

Im 0

)
.

An analogous result holds if (−,−) is skew-symmetric.
In the following we assume that the characteristic of F is not 2.

Lemma 16.14

Let (−,−) be a non-degenerate symmetric bilinear form on V . Then there is a
basis {v1, . . . , vn} of V such that (vi, vj) = 0 if i �= j and (vi, vi) �= 0.

Proof

We use induction on n = dimV . If n = 1, then the result is obvious, so we may
assume that dim V ≥ 2.

Suppose that (v, v) = 0 for all v ∈ V . Then, thanks to the identity

(v + w, v + w) = (v, v) + (w, w) + 2(v, w),

we have (v, w) = 0 for all v, w ∈ V , which contradicts our assumption that
(−,−) is non-degenerate. (This is where we need our assumption on the char-
acteristic of F .)

We may therefore choose v ∈ V so that (v, v) �= 0. Let U = Span{v}. By
hypothesis U ∩U⊥ = {0}, so by Lemma 16.11 we have V = U ⊕U⊥. Moreover,
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the restriction of (−,−) to U⊥ is non-degenerate. By the inductive hypothesis,
there is a basis of U⊥, say {v2, . . . , vn}, such that (vi, vj) = 0 for i �= j and
(vi, vi) �= 0 for 2 ≤ i ≤ n. Since also (v, vj) = 0 for j �= 1, if we put v1 = v then
the basis {v1, . . . , vn} has the required properties.

Depending on the field, we may be able to be more precise about the diag-
onal entries di = (vi, vi). Suppose that F = R. Then we may find λi ∈ R such
that λ2

i = |di|. By replacing vi with vi/λi, we may assume that (vi, vi) = ±1.
The bilinear form (−,−) is an inner product if and only if (vi, vi) > 0 for all i.

If F = C, then we can find λi so that λ2
i = di, and hence we may assume

that (vi, vi) = 1 for all i, so the matrix representing (−,−) is the n×n identity
matrix.

Lemma 16.15

Suppose that (−,−) is a non-degenerate symplectic bilinear form on V . Then
we have dimV = 2m for some m. Moreover, there is a basis of V such that
(vi, vi+n) �= 0 for 1 ≤ i ≤ n and (vi, vj) = 0 if |i − j| �= n.

Proof

Again we work by induction dimV . Let 0 �= v ∈ V . Since (−,−) is non-
degenerate, we may find w ∈ V such that (v, w) �= 0. Since v, w are isotropic,
it is clear that {v, w} is linearly independent. Set v1 = v and v2 = w. If
dimV = 2, then we are done. Otherwise, let U be the orthogonal complement
of the space W spanned by v1, v2. One shows easily that U ∩ W = {0} and
that by dimension counting V = U ⊕ W . Now, the restriction of (−,−) to U is
non-degenerate and also symplectic. The result now follows by induction.

When F = R or F = C, it is again useful to scale the basis elements. In
particular, when F = C we may arrange that the matrix representing (−,−)
has the form (

0 Im

−Im 0

)
,

where Im is the m × m identity matrix.

EXERCISES

16.4. Let x : V → V be a linear transformation of a complex vector space.
By the result mentioned at the start of §16.5, we may find a basis
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v1, . . . , vn of V in which x is represented by an upper triangular
matrix. Let λ1, . . . , λn be the diagonal entries of this matrix. Show
that if 1 ≤ k ≤ n then

(x − λk1V ) . . . (x − λn1V )V ⊆ Span{v1, . . . , vk−1}.

Hence prove the Cayley–Hamilton theorem for linear maps on com-
plex vector spaces.

16.5. Let A be an m × n matrix with entries in a field F . Show that there
is a bijective correspondence between solution sets of the equation
Ax = y for y ∈ im A and elements of the quotient vector space
Fn/ ker A.

16.6.† Let V be a finite-dimensional vector space.

(i) Show that Hom(V, V ), the set of linear transformations of V , is
a vector space, and determine its dimension.

(ii) Let A ⊆ Hom(V, V ) be a collection of commuting linear maps,
each individually diagonalisable. Show that there is a basis of V

in which all the elements of A are simultaneously diagonal.

(iii)� Can the assumption that V is finite-dimensional be dropped?

16.7.† Suppose that x : V → V is a linear map on a vector space V and
that x = d + n = d′ + n′ where d, d′ are diagonalisable and n, n′ are
nilpotent, d and n commute and d′ and n′ commute. Show that d

and d′ commute. Hence show that d − d′ = n′ − n = 0. Deduce that
the Jordan decomposition of a linear map is unique.

16.8. Let U be a subspace of the F -vector space V .

(i) Consider the restriction map r : V � → U�, which takes a linear
map f : V → F and regards it just as a map on U . Show that
ker r = U◦ and im r = U�. Hence prove that

dimU + dimU0 = dimV.

(ii) Now suppose that (−,−) is a non-degenerate bilinear form on
V . By considering the linear map ϕ : V → U� defined by

ϕ(v)(u) = (u, v),

show that dimU + dimU⊥ = dimV .



208 16. Appendix A: Linear Algebra

16.9. Let V be a finite-dimensional vector space with basis {v1, . . . , vn}.
Suppose that (−,−) is a bilinear form on V , and let aij = (vi, vj).
Show that V ⊥ = {0} if and only if the matrix A = (aij) is non-
singular.

16.10. Let V be a finite-dimensional vector space and let Hom(V, V ) be the
vector space of all linear transformations of V . Show that

(x, y) �→ tr(xy)

defines a non-degenerate symmetric bilinear form on Hom(V, V ). By
Exercise 16.8(ii) this form induces an isomorphism

Hom(V, V ) → Hom(V, V )�.

What is the image of the identity map 1V : V → V under this
isomorphism?




