
15
Further Directions

Now that we have a good understanding of the complex semisimple Lie algebras,
we can also hope to understand their representation theory. This is the first
of the topics we shall discuss. By Weyl’s Theorem, every finite-dimensional
representation is a direct sum of irreducible representations; we shall outline
their construction. An essential tool in the representation theory of Lie algebras
is the universal enveloping algebra associated to a Lie algebra. We explain what
this is and why it is important.

The presentation of complex semisimple Lie algebras by generators and rela-
tions given in Serre’s Theorem has inspired the definition of new families of Lie
algebras. These include the Kac–Moody Lie algebras and their generalisations,
which also have been important in the remarkable “moonshine” conjectures.

The theory of complex simple Lie algebras was used by Chevalley to con-
struct simple groups of matrices over any field. The resulting groups are now
known as Chevalley groups or as groups of Lie type. We briefly explain the basic
idea and give an example.

Going in the other direction, given a group with a suitable ‘smooth’ struc-
ture, one can define an associated Lie algebra and use it to study the group. It
was in fact in this way that Lie algebras were first discovered. We have given a
very rough indication of this process in Exercise 4.9; as there are already many
accessible books in this area, for example Matrix Groups by Baker [3] in the
SUMS series, we refer the reader to them for further reading.

A very spectacular application of the theory of Lie algebra to group theory
occurs in the restricted Burnside problem, which we discuss in §15.5. This
involves Lie algebras defined over fields with prime characteristic. Lie algebras
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164 15. Further Directions

defined over fields of prime characteristic occur in several other contexts; we
shall mention restricted Lie algebras and give an example of a simple Lie algebra
that does not have an analogue in characteristic zero.

As well as classifying complex semisimple Lie algebras, Dynkin diagrams
also appear in the representation theory of associative algebras. We shall ex-
plain some of the theory involved. Besides the appearance of Dynkin diagrams,
one reason for introducing this topic is that there is a surprising connection
with the theory of complex semisimple Lie algebras.

The survey in this chapter is certainly not exhaustive, and in places it is
deliberately informal. Our purpose is to describe the main ideas; more detailed
accounts exist and we give references to those that we believe would be acces-
sible to the interested reader. For accounts of the early history of Lie algebras
we recommend Wilhelm Killing and the Structure of Lie algebras, by Hawkins
[12] and The Mathematician Sophus Lie, by Stubhaug [23].

15.1 The Irreducible Representations of a
Semisimple Lie Algebra

We begin by describing the classification of the finite-dimensional irreducible
representations of a complex semisimple Lie algebra L. By Weyl’s Theorem, we
may then obtain all finite-dimensional representations by taking direct sums of
irreducible representations.

Let L have Cartan subalgebra H and root system Φ. Choose a base Π =
{α1, . . . , α�} of Φ and let Φ+ and Φ− denote respectively the positive and
negative roots with respect to Π. It will be convenient to use the triangular
decomposition

L = N− ⊕ H ⊕ N+.

Here N+ =
⊕

α∈Φ+ Lα and N− =
⊕

α∈Φ+ L−α. Note that the summands
H, N−, and N+ are subalgebras of L.

15.1.1 General Properties

Suppose that V is a finite-dimensional representation of L. Each element of H

is semisimple, so it acts diagonalisably on L (see Exercise 9.14). Since finitely
many commuting linear maps can be simultaneously diagonalised, V has a basis
of simultaneous eigenvectors for H.
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We can therefore decompose V into weight spaces for H. For λ ∈ H�, let

Vλ = {v ∈ V : h · v = λ(h)v for all h ∈ H}
and let Ψ be the set of λ ∈ H� for which Vλ �= 0. The weight space decomposition
of V is then

V =
⊕
λ∈Ψ

Vλ.

Example 15.1

(1) Let V = L with the adjoint representation. Then weights are the same
thing as roots, and the weight space decomposition is just the root space
decomposition.

(2) Let L = sl(3,C), let H be the Cartan subalgebra of diagonal matrices,
and let V = C3 be its natural representation. The weights that appear are
ε1, ε2, ε3, where εi(h) is the i-th entry of the diagonal matrix h.

For each α ∈ Φ, we may regard V as a representation of sl(α). In particular,
this tells us that the eigenvalues of hα acting on V are integers, and hence the
weights in Ψ lie in the real span of the roots. We saw in §10.6 that this space
is an inner-product space.

Example 15.2

For example, the following diagram shows the weights of the natural and adjoint
representations of sl(3,C) with respect to the Cartan subalgebra H of diagonal
matrices projected onto a plane. The weight spaces of the natural representation
are marked. To locate ε1 we note that restricted to H, ε1 + ε2 + ε3 = 0, and
hence ε1 is the same map on H as 1

3 (2ε1 − ε2 − ε3) = 1
3 (2α + β).

α=ε1−ε2−α

α+β

−α−β

β=ε2−ε3

−β

ε1ε2

ε3

••

•

We now look at the action of eα and fα for α ∈ Φ. Let v ∈ Vλ. We leave
it to the reader to check that eα · v ∈ Vλ+α and fα · v ∈ Vλ−α; note that this
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generalises Lemma 8.3 for sl(2,C). Since the set Ψ of weights of V is finite,
there must be some λ ∈ Ψ such that for all α ∈ Φ+, λ + α �∈ Ψ . We call such a
λ a highest weight, and if v ∈ Vλ is non-zero, then we say v is a highest-weight
vector.

This agrees with our usage of these words in Chapter 8 since for representa-
tions of sl(2,C) a weight of the Cartan subalgebra spanned by h is essentially
the same thing as an eigenvalue of h.

In the previous example, the positive roots of sl(3,C) with respect to the
base Π = {α, β} are α, β, α + β, and so the (unique) highest weight of the
natural representation of sl(3,C) is ε1.

Lemma 15.3

Let V be a simple L-module. The set Ψ of weights of V contains a unique
highest weight. If λ is this highest weight then Vλ is 1-dimensional and all
other weights of V are of the form λ −∑αi∈Π aiαi for some ai ∈ Z, ai ≥ 0.

Proof

Take 0 �= v ∈ Vλ and let W be the subspace of V spanned by elements of the
form

fαi1
fαi2

. . . fαik
· v, (�)

where the αij are not necessarily distinct elements of Π. Note that each element
of the form (�) is an H-eigenvector. We claim that W is an L-submodule of V .

By Lemma 14.4, L is generated by the elements eα, fα for α ∈ Π, so it is
enough to check that W is closed under their action. For the fα, this follows at
once from the definition. Let w = fαi1

fαi2
. . . fαik

·v. To show that eα ·w ∈ W ,
we shall use induction on k.

If k = 0 (that is, w = v), then we know that eα · v = 0. For k ≥ 1, let
w1 = fαi2

. . . fαik
v so that w = fαi1

w1 and

eα · w = eα · (fαi1
· w1) = fαi1

· (eα · w1) + [eα, fαi1
] · w1.

Now [eα, fαi1
] ∈ [Lα, L−αi1

] ⊆ Lα−αi1
. Both α and αi1 are elements of the

base Π, so Lα−αi1
= 0, unless α = αi1 , in which case Lα−αi1

⊆ L0 = H. So
in either case w1 is an eigenvector for [fαi1

, eα]. Moreover, by the inductive
hypothesis, eα ·w1 lies in W , so by the definition of W we have fαi1

· (eα ·w1) ∈
W .

Since V is simple and W is non-zero, we have V = W . We can see from (�)
that the weights of V are of the form λ −∑i aiαi for αi ∈ Π and ai ≥ 0, so λ

is the unique highest weight.



15.1 The Irreducible Representations of a Semisimple Lie Algebra 167

Example 15.4

Let L = sl(� + 1,C) and let V = L, with the adjoint representation. By Ex-
ample 7.4, V is a simple L-module. We have seen above that the root space
decomposition of L is the same as the weight space decomposition of this mod-
ule. The unique highest weight is α1 +α2 + . . .+α�, and for the highest-weight
vector v in the lemma we can take e1,�+1.

Suppose that λ is a weight for a finite-dimensional representation V . Let
α ∈ Π. Suppose that λ(hα), the eigenvalue of hα on the λ-weight space, is
negative. Then, by the representation theory of sl(2,C), eα · Lλ �= 0, and so
α+λ ∈ Ψ . Thus, if λ is the highest weight for a finite-dimensional representation
V , then λ(hα) ≥ 0 for all α ∈ Π.

This motivates the main result, given in the following theorem.

Theorem 15.5

Let Λ be the set of all λ ∈ H∗ such that λ(hα) ∈ Z and λ(hα) ≥ 0 for all
α ∈ Π. For each λ ∈ Λ, there is a finite-dimensional simple L-module, denoted
by V (λ), which has highest weight λ. Moreover, any two simple L-modules with
the same highest weight are isomorphic, and every simple L-module may be
constructed in this way.

To describe Λ in general, one uses the fundamental dominant weights. These
are defined to be the unique elements λ1, . . . , λ� ∈ H∗ such that

λi(hαj
) = δij .

By the theorem above, Λ is precisely the set of linear combinations of the λi

with non-negative integer coefficients. One would also like to relate the λi to
the elements of our base of H�. Recall that λ(hα) = 〈λ, α〉; so if we write
λi =

∑�
k=1 dikαk, then

λi(hαj ) =
∑

k

dik〈αk, αj〉,

so the coefficients dik are given by the inverse of the Cartan matrix of L.

Example 15.6

Let L = sl(3,C). Then the inverse of the Cartan matrix is

1
3

(
2 1
1 2

)
,
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and the fundamental dominant weights are 1
3 (2α + β) = ε1 and 1

3 (α + 2β) =
−ε3. The diagram in 15.2 shows that ε1 is the highest weight of the natural
representation; ε3 appears as the highest weight of the dual of the natural
representation.

So far, for a general complex simple Lie algebra L, the only irreducible
representations we know are the trivial and adjoint representations. If L is a
classical Lie algebra, then we can add the natural representation to this list.
The previous theorem says there are many more representations. How can they
be constructed?

15.1.2 Exterior Powers

Several general methods of constructing new modules from old ones are known.
Important amongst these are tensor products and the related symmetric and
exterior powers.

Let V be a finite-dimensional complex vector space with basis v1, . . . , vn.
For each i, j with 1 ≤ i, j ≤ n, we introduce a symbol vi ∧ vj , which satisfies
vj ∧ vi = −vi ∧ vj . The exterior square V

∧
V is defined to be the complex

vector space of dimension
(
n
2

)
with basis given by {vi ∧ vj : 1 ≤ i < j ≤ n}.

Thus, a general element of V
∧

V has the form∑
i<j

cijvi ∧ vj for scalars cij ∈ C.

For v =
∑

aivi and w =
∑

bjvj , define v ∧ w by

v ∧ w =
∑
i,j

aibjvi ∧ vj .

This shows that the map (v, w) → v ∧ w is bilinear. One can show that the
definition does not depend on the choice of basis. That is, if w1, . . . , wn is some
other basis of V , then the set of all wi ∧ wj for 1 ≤ i < j ≤ n is a basis for
V
∧

V with the same properties as the previous basis.
Now suppose that L is a Lie algebra and ρ : L → gl(V ) is a representation.

We may define a new representation ∧2ρ : L → gl(V
∧

V ) by

(∧2ρ)(x)(vi ∧ vj) = ρ(x)vi ∧ vj + vi ∧ ρ(x)vj for x ∈ L

and extending it to linear combinations of basis elements. (The reader might
care to check that this really does define a representation of L.)
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More generally, for any integer r ≤ n, one introduces similarly symbols
vi1 ∧ vi2 ∧ . . . ∧ vir satisfying

vi1 ∧ . . . ∧ vik
∧ vik+1 ∧ . . . ∧ vir = −vi1 ∧ . . . ∧ vik+1 ∧ vik

∧ . . . ∧ vir .

The r-fold exterior power of V , denoted by
∧r

V is the vector space over C of
dimension

(
n
r

)
with basis

vi1 ∧ vi2 ∧ . . . ∧ vir , 1 ≤ i1 < . . . < ir ≤ n.

The action of L generalises so that

(∧rρ)(x)(vi1 ∧ . . . ∧ vir ) =
r∑

s=1

vi1 ∧ . . . ∧ ρ(x)vis ∧ . . . ∧ vir .

It is known that if V is the natural module of a classical Lie algebra, then
all the exterior powers V are irreducible. This is very helpful when constructing
the irreducible representations of the classical Lie algebras.

We shall now use exterior powers to give a direct proof that so(6,C) and
sl(4,C) are isomorphic. (In Chapter 14, we noted that this follows from Serre’s
Theorem, but we did not give an explicit isomorphism.)

Let L = sl(4,C), and let V be the 4-dimensional natural L-module. Then∧2
V is a 6-dimensional L-module. Now

∧4
V has dimension

(4
4

)
= 1. If we fix

a basis v1, . . . , v4 of V , then
∧4

V is spanned by ṽ := v1 ∧ v2 ∧ v3 ∧ v4. We may
define a bilinear map

2∧
V ×

2∧
V → C

by setting (v, w) = c if v ∧ w = cṽ for c ∈ C.

Exercise 15.1

Find the matrix describing this bilinear form on
∧2

V with respect to
the basis {vi ∧ vj : i < j}. Show that it is congruent to the bilinear form
defined by the matrix S, where

S =
(

0 I

I 0

)
.

The module
∧4

V is a 1-dimensional module for a semisimple Lie algebra,
so it must be the trivial module for L. So for x ∈ L and v, w ∈ ∧2

V , we have
x · (v ∧ w) = 0. But by the definition of the action of L, we get

x · (v ∧ w) = v ∧ (xw) + (xv) ∧ w.

Hence, if we translate this into the bilinear form, we have

(v, xw) = −(xv, w).
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Thus the image of ϕ : L → gl(
∧2

V ) is contained in glS(6,C) = so(6,C), where
S is as above. Since L is simple and ϕ is non-zero, ϕ must be one-to-one, so by
dimension counting it gives an isomorphism between sl(4,C) and so(6,C).

15.1.3 Tensor Products

Let V and W be finite-dimensional complex vector spaces with bases v1, . . . , vm

and w1, . . . , wn, respectively. For each i, j with 1 ≤ i ≤ m and 1 ≤ j ≤ n, we
introduce a symbol vi ⊗ wj . The tensor product space V ⊗ W is defined to be
the mn-dimensional complex vector space with basis given by {vi ⊗ wj : 1 ≤
i ≤ n, 1 ≤ j ≤ m}. Thus a general element of V ⊗ W has the form∑

i,j

cijvi ⊗ wj for scalars cij ∈ C.

For v =
∑

i aivi ∈ V and w =
∑

j bjwj ∈ W , we define v ⊗ w ∈ V ⊗ W by

v ⊗ w =
∑
i,j

aibj(vi ⊗ wj).

This shows that (v, w) → v ⊗ w is bilinear. Again one can show that this
definition of V ⊗ W does not depend on the choice of bases.

Suppose we have representations ρ1 : L → gl(V ), ρ2 : L → gl(W ). We
may define a new representation ρ : L → gl(V ⊗ W ) by

ρ(x)(v ⊗ w) = ρ1(x)(v) ⊗ w + v ⊗ ρ2(x)(w).

Example 15.7

Let L = sl(2,C), and let V = C2 be the natural module with standard basis
v1, v2. Let W = C2 be another copy of the natural module, with basis w1, w2.
With respect to the basis v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2, one finds that the
matrices of e, f , and h are

ρ(e) =

⎛
⎜⎜⎝

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , ρ(f) =

⎛
⎜⎜⎝

0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

⎞
⎟⎟⎠ , ρ(h) =

⎛
⎜⎜⎝

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

⎞
⎟⎟⎠ .

By Exercise 8.4, an sl(2,C)-module is determined up to isomorphism by
the eigenvalues of h. Here the highest eigenvalue appearing is 2, so V2 is a
submodule of V ⊗ W . This leaves only an eigenvalue of 0, so we must have

V ⊗ W ∼= V0 ⊕ V2.
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Exercise 15.2

Find an explicit direct sum decomposition of V ⊗ W into irreducible
submodules.

The book Representation Theory by Fulton and Harris [10] works out many
more examples of this type.

For a general semisimple Lie algebra L, there is a more efficient and uni-
fied construction of the simple L-modules, which also allows one to construct
certain infinite-dimensional representations. This uses the universal enveloping
algebra of L. We shall now introduce this algebra and explain how to use it to
construct the simple L-modules. We also explain the main idea in the proof of
Theorem 15.5 above.

15.2 Universal Enveloping Algebras

Given a Lie algebra L over a field F , one can define its universal enveloping
algebra, denoted by U(L). This is an associative algebra (see §1.5) over F , which
is always infinite-dimensional unless L is zero.

Assume that L is finite-dimensional with vector space basis {x1, x2, . . . , xn}.
The structure constants with respect to this basis are the scalars ak

ij given by

[xi, xj ] =
∑

k

ak
ijxk for 1 ≤ i, j ≤ n.

Then U(L) can be defined as the unital associative algebra, generated by
X1, X2, . . . , Xn, subject to the relations

XiXj − XjXi =
n∑

k=1

ak
ijXk for 1 ≤ i, j ≤ n.

It can be shown (see Exercise 15.8) that the algebra U(L) does not depend on
the choice of the basis. That is, if we start with two different bases for L, then
the algebras we get by this construction are isomorphic.

Example 15.8

(1) Let L = Span{x} be a 1-dimensional abelian Lie algebra over a field F . The
only structure constants come from [x, x] = 0. This gives us the relation
XX − XX = 0, which is vacuous. Hence U(L) is the associative algebra
generated by the single element X. In other words, U(L) is the polynomial
algebra F [X].



172 15. Further Directions

(2) More generally, let L be the n-dimensional abelian Lie algebra with basis
{x1, x2, . . . , xn}. As before, all structure constants are zero, and hence U(L)
is isomorphic to the polynomial algebra in n variables.

We now consider a more substantial example. Let L = sl(2,C) with its usual
basis, f , h, e. We know the structure constants and therefore we can calculate
in the algebra U(L). We should really write F, H, E for the corresponding
generators of U(L), but unfortunately this creates an ambiguity as H is already
used to denote Cartan subalgebras. So instead we also write f, h, e for the
generators of U(L); the context will make clear the algebra in which we are
working.

The triangular decomposition of L,

L = N− ⊕ H ⊕ N+,

where N− = Span{f}, H = Span{h}, and N+ = Span{e}, gives us three sub-
algebras of U(L). For example, U(L) contains all polynomials in e; this subal-
gebra can be thought of as the universal enveloping algebra U(N+). Similarly,
U(L) contains all polynomials in f and in h. But, in addition, U(L) contains
products of these elements. Using the relations ef − fe = h, he − eh = 2e, and
hf − fh = −2f , valid in U(L), one can show the following.

Lemma 15.9

Let L = sl(2,C). The associative algebra U(L) has as a vector space basis

{fahbec : a, b, c ≥ 0}.

To show that this set spans the universal enveloping algebra, it suffices
to verify that every monomial in the generators can be expressed as a linear
combination of monomials of the type appearing in the lemma. The reader
might, as an exercise, express the monomial hef as a linear combination of the
given set; this should be enough to show the general strategy.

Proving linear independence is considerably harder, so we shall not go into
the details. Indeed it is not even obvious that the elements e, f ∈ U(L) are
linearly independent, but this much at least will follow from Exercise 15.8.

In general, if the Lie algebra L has basis x1, . . . , xn, then the algebra U(L)
has basis

{Xa1
1 Xa2

2 . . . Xan
n : a1, . . . an ≥ 0}.

This is known as a Poincaré–Birkhoff–Witt-basis or PBW-basis of U(L). The
previous lemma is the special case where L = sl(2,C) and X1 = f , X2 = h,
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and X3 = e. We could equally well have taken the basis elements in a different
order.

An important corollary is that the elements X1, X2, . . . , Xn are linearly
independent, and so L can be found as a subspace of U(L). Furthermore, if L1

is a Lie subalgebra of L, then U(L1) is an associative subalgebra of U(L); this
justifies our earlier assertions about polynomial subalgebras of U(sl(2,C)).

15.2.1 Modules for U(L)

We now explain the sense in which the universal enveloping algebra of a Lie
algebra L is “universal”. We first need to introduce the idea of a representation
of an associative algebra.

Let A be a unital associative algebra over a field F . A representation of A

on an F -vector space V is a homomorphism of associative algebras

ϕ : A → EndF (V ),

where EndF (V ) is the associative algebra of linear maps on V . Thus ϕ is
linear, ϕ maps the multiplicative identity of A to the identity map of V , and

ϕ(ab) = ϕ(a) ◦ ϕ(b) for all a, b ∈ A.

Unlike in earlier chapters, we now allow V to be infinite-dimensional. Note that
the underlying vector space of EndF (V ) is the same as that of gl(V ); we write
EndF (V ) if we are using its associative structure and gl(V ) if we are using its
Lie algebra structure.

In what follows, it is most convenient to use the language of modules, so we
shall indicate the action of L implicitly by writing a · v rather than ϕ(a)(v).

Lemma 15.10

Let L be a Lie algebra and let U(L) be its universal enveloping algebra. There is
a bijective correspondence between L-modules and U(L)-modules. Under this
correspondence, an L-module is simple if and only if it is simple as a module
for U(L).

Proof

Let V be an L-module. Since the elements Xi generate U(L) as an associative
algebra, the action U(L) on V is determined by the action of the Xi. We
let Xi ∈ U(L) act on V in the same way as xi ∈ L acts on V . To verify that
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this defines an action of U(L), one only needs to check that it satisfies the
defining relations for U(L). Consider the identity in L

[xi, xj ] =
∑

k

ak
ijxk.

For the action to be well-defined, we require that on V

(XiXj − XjXi)v =
∑

k

ak
ijXkv.

By definition, the left-hand side is equal to (xixj − xjxi)v; that is,

[xi, xj ]v =
∑

k

ak
ijxkv.

Since Xk acts on V in the same way as xk, this is equal to the right-hand side,
as we required.

Conversely, suppose V is a U(L)-module. By restriction, V is also an L-
module since L ⊆ U(L). Furthermore, V is simple as an L-module if and only
if it is simple as a module for U(L). This is a simple change of perspective and
can easily be checked formally.

The proof of this lemma demonstrates a certain universal property of U(L).
See Exercise 15.8 for more details.

15.2.2 Verma Modules

Suppose that L is a complex semisimple Lie algebra and U(L) is the universal
enveloping algebra of L. We shall use the equivalence between modules for U(L)
and L to construct an important family of L-modules.

Let H be a Cartan subalgebra of L, let Φ be the corresponding root system,
and let Π be a base of Φ. As usual, we write Φ+ for the positive roots with
respect to Π. We may choose a basis h1, . . . , h� of H such that hi = hαi

for αi ∈ Π. For λ ∈ H∗ let I(λ) be the left ideal of U(L) generated by the
elements eα for α ∈ Φ and also hi − λ(hi)1 for 1 ≤ i ≤ �. Thus I(λ) consists of
all elements ∑

uαeα +
∑

yi(hi − λ(hi)1),

where the uα and the yi are arbitrary elements of U(L). We may consider I(λ)
as a left module for U(L). Let M(λ) be the quotient space

M(λ) := U(L)/I(λ).

This becomes a U(L)-module with the action u · (v + I(λ)) = uv + I(λ). We
say M(λ) is the Verma module associated to λ.
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Proposition 15.11

If v̄ = 1 + I(λ), then v̄ generates M(λ) as a U(L)-module. For α ∈ Φ+ and
eα ∈ Lα, we have eαv̄ = 0; and for h ∈ H we have hv̄ = λ(h)v̄. The module
M(λ) has a unique maximal submodule, and the quotient of M(λ) by this
submodule is the simple module V (λ) with highest weight λ.

The first part of the theorem is easy: We have

eα · v̄ = eα + I(λ),

which is zero in M(λ). Moreover,

hi · v̄ = hi + I(λ) = λ(hi)1 + I(λ)

since hi − λ(hi)1 ∈ I(λ). Since

x + I(λ) = x · (1 + I(λ) = x · v̄ for all x ∈ U(L),

the coset v̄ generates M(λ).
One can show that a vector space basis for M(λ) is given by the elements

u · v̄, where u runs through a basis of U(N−). By the PBW-Theorem, U(N−)
has a basis consisting of monomials in the fα for α ∈ Φ; this shows that M(λ)
decomposes as a direct sum of simultaneous H-eigenspaces. We can then see
that M(λ) has a unique maximal weight, namely λ.

Knowing this, one can complete the proof of the proposition. Details can
be found in Humphreys [14] (Chapter 20), or Dixmier [9]. Note, however, that
the labelling in Dixmier is slightly different.

Example 15.12

We give two examples of Verma modules for L = sl(2,C). First we construct one
which is irreducible; this will show that L has infinite-dimensional irreducible
representations.

(1) Let λ = −d, where d > 0. Thus M(λ) = U(L)/I(λ), where

I(λ) = U(L)e + U(L)(h + d1).

As a vector space, M(λ) has basis{
f̄a = fa + Iλ : a ≥ 0

}
.

It follows by induction for each a ≥ 0 that f̄a is an eigenvector for h with
eigenvalue −d − 2a. Furthermore, we have e · 1̄ = 0, e · f̄ = −d · 1̄, and
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inductively e· f̄a = ca−1f̄
a−1, where ca−1 is a negative integer. As in §8.1.1,

we can draw M(λ) as

. . .

c2
		 •

c1
��

1





−d−4

•
c0

��

1

��

−d−2

•
0

��

1

��

−d

. . . f̄2 f̄ 1̄

where loops represent the action of h, arrows to the right represent the
action of e, and arrows to the left represent the action of f . Using this, one
can check that for any non-zero x ∈ M(λ) the span of

{x, e · x, e2 · x, . . .}
contains the generator 1̄ = 1 + I(λ) and hence M(λ) is an infinite-
dimensional simple module.

(2) We consider the Verma module M(0). In this case, the span of all f̄a where
a > 0 is a proper submodule of M(λ). For example,

e · f̄ = ef + I(0) = (fe + h) + I(0),

which is zero, since e, h ∈ I(0). The quotient of M(0) by this submodule is
the trivial L-module, V (0).

Verma modules are the building blocks for the so-called category O, which
has recently been of major interest. Here the starting point is the observation
that although each M(λ) is infinite-dimensional, when viewed as U(L)-module
it has finite length. That is, there are submodules

0 = M0 ⊆ M1 ⊆ M2 ⊆ . . . ⊆ Mk = M(λ)

such that Mi/Mi−1 is simple for 1 ≤ i ≤ k. A proof of this and more proper-
ties of Verma modules can be found in Dixmier [9] or Humphreys [14] (note,
however, that Dixmier uses different labelling.)

In 1985, Drinfeld and Jimbo independently defined quantum groups by “de-
forming” the universal enveloping algebras of Lie algebras. (So contrary to
what one might expect, quantum groups are really algebras!) Since then, quan-
tum groups have found numerous applications in areas including theoretical
physics, knot theory, and representations of algebraic groups. In 1990, Drinfeld
was awarded a Fields Medal for his work. For more about quantum groups, see
Jantzen, Lectures on Quantum Groups [16].
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15.3 Groups of Lie Type

The theory of simple Lie algebras over C was used by Chevalley to construct
simple groups of matrices over any field.

How can one construct invertible linear transformations from a complex
Lie algebra? Let δ : L → L be a derivation of L such that δn = 0 for some
n ≥ 1. In Exercise 15.9, we define the exponential exp(δ) and show that it is
an automorphism of L.

Given a complex semisimple Lie algebra L, let x be an element in a root
space. We know that ad x is a derivation of L, and by Exercise 10.1 adx is
nilpotent. Hence exp(adx) is an automorphism of L. One then takes the group
generated by all the exp(ad cx), for c ∈ C, for x in a strategically chosen basis
of L. This basis is known as the Chevalley basis; it is described in the following
theorem.

Theorem 15.13

Let L be a simple Lie algebra over C, with Cartan subalgebra H and associated
root system Φ, and let Π be a base for Φ. For each α ∈ Φ, one may choose
hα ∈ H so that hα ∈ [L−α, Lα] and α(hα) = 2. One may also choose an element
eα ∈ Lα such that [eα, e−α] = hα and [eα, eβ ] = ±(p + 1)eα+β , where p is the
greatest integer for which β + pα ∈ Φ.

The set {hα : α ∈ Π} ∪ {eβ : β ∈ Φ} is a basis for L. Moreover, for all
γ ∈ Φ, [eγ , e−γ ] = hγ is an integral linear combination of the hα for α ∈ Π.
The remaining structure constants of L with respect to this basis are as follows:

[hα, hβ ] = 0,

[hα, eβ ] = β(hα)eβ ,

[eα, eβ ] =

{
±(p + 1)eα+β α + β ∈ Φ

0 α + β �∈ Φ ∪ {0}.

In particular, they are all integers.

Recall that in §10.4 we found for each α ∈ Φ a subalgebra Span{eα, fα, hα}
isomorphic to sl(2,C). Chevalley’s Theorem asserts that the eα and fα = e−α

can be chosen so as to give an especially convenient form for the structure
constants of L.

Exercise 15.3

By using the calculations in Chapter 12, determine a Chevalley basis for
the Lie algebra so(5,C) of type B2.
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Since the structure constants are integers, the Z-span of such a basis, de-
noted by LZ, is closed under Lie brackets. If one now takes any field F , one
can define a Lie algebra LF over F as follows. Take as a basis

{h̄α : α ∈ Π} ∪ {ēβ , β ∈ Φ}
and define the Lie commutator by taking the structure constants for LZ and
interpreting them as elements in the prime subfield of F . For example, the stan-
dard basis e, h, f of sl(2,C) is a Chevalley basis, and applying this construction
gives sl(2, F ).

Now we can describe the automorphisms. First take the field C. For c ∈ C
and α ∈ Φ, define

xα(c) := exp(c ad eα).

As explained, this is an automorphism of L. One can show that it takes elements
of the Chevalley basis to linear combinations of basis elements with coefficients
of the form aci, where a ∈ Z and i ≥ 0. Let Aα(c) be the matrix of xα(c) with
respect to the Chevalley basis of L. By this remark, the entries of Aα(c) have
the form aci for a ∈ Z and i ≥ 0. Define the Chevalley group associated to L

by
GC(L) := 〈Aα(c) : α ∈ Φ, c ∈ C〉.

We can also define automorphisms of LF . Take t ∈ F . Let Ãα(t) be the
matrix obtained from Aα(c) by replacing each entry aci by āti, where ā is a

viewed as an element in the prime subfield of F . The Chevalley group of L over
F is then defined to be the group

GF (L) := 〈Ãα(t) : α ∈ Φ, t ∈ F 〉.
Exercise 15.4

Let L = sl(2,C). Let c ∈ C. Show that with respect to the Chevalley
basis e, h, f , the matrix of exp(c ad e) is⎛

⎝1 −2c −c2

0 1 c

0 0 1

⎞
⎠

and find the matrix of exp(c ad f). Then describe the group GF2(L),
where F2 is the field with 2-elements.

The structure of these groups is studied in detail in Carter’s book Simple
Groups of Lie Type [7], see also [13].
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Remark 15.14

One reason why finite groups of Lie type are important is the Classification
Theorem of Finite Simple Groups. This theorem, which is one of the greatest
achievements of twentieth century mathematics (though to date not yet com-
pletely written down), asserts that there are two infinite families of finite simple
groups, namely the alternating groups and the finite groups of Lie type, and
that any finite simple group is either a member of one of these two families or
is one of the 26 sporadic simple groups.

15.4 Kac–Moody Lie Algebras

The presentation of complex semisimple Lie algebras given by Serre’s Theorem
can be generalized to construct new families of Lie algebras. Instead of taking
the Cartan matrix associated to a root system, one can start with a more
general matrix and then use its entries, together with the Serre relations, to
define a new Lie algebra. These Lie algebras are usually infinite-dimensional; in
fact the finite-dimensional Lie algebras given by this construction are precisely
the Lie algebras of types A, B, C, D, E, F, G which we have already seen.

We shall summarize a small section from the introduction of the book In-
finite Dimensional Lie Algebras by Kac [18]. One defines a generalised Cartan
matrix to be an n × n matrix A = (aij) such that

(a) aij ∈ Z for all i, j;

(b) aii = 2, and aij ≤ 0 for i �= j;

(c) if aij = 0 then aji = 0.

The associated Kac–Moody Lie algebra is the complex Lie algebra over C
generated by the 3n elements ei, fi, hi, subject to the Serre relations, as stated
in §14.1.2.

When the rank of the matrix A is n−1, this construction gives the so-called
affine Kac–Moody Lie algebras. Modifications of such algebras can be proved
to be simple; there is much interest in their representation theory, and several
new applications have been discovered.
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15.4.1 The Moonshine Conjecture

The largest of the 26 sporadic simple groups is known (because of its enormous
size) as the monster group. Its order is

246.320.59.76.112.133.17.19.23.29.31.41.47.59.71 ≈ 8 × 1053.

Like Lie algebras and associative algebras, groups also have representations.
The three smallest representations of the monster group over the complex num-
bers have dimensions 1, 196883 (it was through this representation that the
monster was discovered), and 21296876.

In 1978, John MacKay noticed a near coincidence with the coefficients of
the Fourier series expansion of the elliptic modular function j,

j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . . ,

where q = e2πiτ . As well as noting that 196884 = 196883 + 1 and 21493760 =
21296876 + 196883 + 1, he showed that (with a small generalisation) this con-
nection persisted for all the coefficients of the j-function.

That there could be an underlying connection between the monster group
and modular functions seemed at first so implausible that this became known as
the Moonshine Conjecture. Yet in 1998 Borcherds succeeded in establishing just
such a connection, thus proving the Moonshine Conjecture. A very important
part of his work was a further generalisation of the Kac–Moody Lie algebras
connected with the exceptional root system of type E8.

Borcherds was awarded a Fields Medal for his work. A survey can be found
in Ray [19]. The reader might also like to read the article by Carter [8].

15.5 The Restricted Burnside Problem

In 1902, William Burnside wrote “A still undecided point in the theory of
discontinuous groups is whether the order of a group may not be finite, while
the order of every operation it contains is finite.” Here we shall consider a
variation on his question which can be answered using techniques from Lie
algebras.

We must first introduce two definitions: a group G has exponent n if gn = 1
for all g ∈ G, and, moreover, n is the least number with this property. A group is
r-generated if all its elements can be obtained by repeatedly composing a fixed
subset of r of its elements. The restricted Burnside problem asks: Given r, n ≥
1, is there an upper bound on the orders of the finite r-generated groups of
exponent n?
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Since there are only finitely many isomorphism classes of groups of any given
order, the restricted Burnside problem has an affirmative answer if and only if
there are (up to isomorphism) only finitely many finite r-generated groups of
exponent n.

The reader may well have already seen this problem in the case n = 2.

Exercise 15.5

Suppose that G has exponent 2 and is generated by g1, . . . , gr. Show that
G is abelian and that |G| ≤ 2r.

So for n = 2, our question has an affirmative answer. In 1992, Zelmanov
proved that this is the case whenever n is a prime power. Building on earlier
work of Hall and Higman, this was enough to show that the answer is affirmative
for all n and r. In 1994, Zelmanov was awarded a Fields Medal for his work.

We shall sketch a proof for the case n = 3, which shows some of the ideas
in Zelmanov’s proof.

Let G be a finitely generated group of exponent p, where p is prime. We
define the lower central series of G by G0 = G and Gi = [G, Gi−1] for i ≥
1. Here [G, Gi−1] is the group generated by all group commutators [x, y] =
x−1y−1xy for x ∈ G, y ∈ Gi−1. We have

G = G0 ≥ G1 ≥ G2 ≥ . . . .

If for some m ≥ 1 we have Gm = 1, then we say G is nilpotent.
The notation for group commutators used above is standard; x and y are

group elements and the operations are products and inverses in a group. It
should not be confused with a commutator in a Lie algebra.

Remark 15.15

It is no accident that the definition of nilpotency for groups mirrors that for Lie
algebras. Indeed, nilpotency was first considered for Lie algebras and only much
later for groups. This is in contrast to solvability, which was first considered
for groups by Galois in his 1830s work on the solution of polynomial equations
by radicals.

Each Gi/Gi+1 is a finitely generated abelian group all of whose non-identity
elements have order p. In other words, it is a vector space over Fp, the field with
p elements. We may make the (potentially infinite-dimensional) vector space

B =
∞⊕

i=0

Gi/Gi+1
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into a Lie algebra by defining

[xGi, yGj ] = [x, y]Gi+j

and extending by linearity to arbitrary elements of B. Here on the left we
have a commutator in the Lie algebra B and on the right a commutator taken
in the group G. It takes some work to see that with this definition the Lie
bracket is well defined and satisfies the Jacobi identity — see Vaughan-Lee,
The Restricted Burnside Problem [24] §2.3, for details. Anticommutativity is
more easily seen since if x, y ∈ G, then [x, y]−1 = [y, x].

If G is nilpotent (and still finitely generated) then it must be finite, for each
Gi/Gi+1 is a finitely generated abelian group of exponent p, and hence finite.
Moreover, if G is nilpotent, then B is a nilpotent Lie algebra. Unfortunately, the
converse does not hold because the lower central series might terminate with
Gi = Gi+1 still being an infinite group. However, one can still say something:
For the proof of the following theorem, see §2.3 of Vaughan-Lee [24].

Theorem 15.16

If B is nilpotent, then there is an upper bound on the orders of the finite
r-generated groups of exponent n. �

The general proof that B is nilpotent is hard. When p = 3, however, there
are some significant simplifications. By Exercise 4.8, it is sufficient to prove
that [x, [x, y]] = 0 for all x, y ∈ B. By the construction of B, this will hold if
and only if [g, [g, h]] = 1 for all g, h ∈ G, now working with group commutators.
We now show that this follows from the assumption that G has exponent 3:

[g, [g, h]] = g−1[g, h]−1g[g, h]

= g−1h−1g−1hggg−1h−1gh

= g−1h−1(g−1hg−1)ggh−1gh

= g−1h−1h−1gh−1g−1h−1gh

= g−1hg(h−1g−1h−1)gh

= g−1hgghggh

= (g−1hg−1)hg−1h

= h−1gh−1hg−1h

= 1,

where the bracketing indicates that in the coming step the “rewriting rule”
aba = b−1a−1b−1 for a, b ∈ G will be used; this identity holds because ababab =
(ab)3 = 1. The reader might like to see if there is a shorter proof.
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We must use the elementary argument of Exercise 4.8 rather than En-
gel’s Theorem to prove that B is nilpotent since we have only proved Engel’s
Theorem for finite-dimensional Lie algebras. In fact, one of Zelmanov’s main
achievements was to prove an infinite-dimensional version of Engel’s Theorem.

15.6 Lie Algebras over Fields of Prime
Characteristic

Many Lie algebras over fields of prime characteristic occur naturally; for exam-
ple, the Lie algebras just seen in the context of the restricted Burnside problem.
We have already seen that such Lie algebras have a behaviour different from
complex Lie algebras; for example, Lie’s Theorem does not hold — see Exer-
cise 6.4. However, other properties appear. For example, let A be an algebra
defined over a field of prime characteristic p. Consider the Lie algebra DerA of
derivations of A. The Leibniz formula (see Exercise 1.19) tells us that

Dp(xy) =
p∑

k=0

(
p

k

)
Dk(x)Dp−k(y) = xDp(y) + Dp(x)y

for all x, y ∈ A. Thus the p-th power of a derivation is again a derivation. This
was one of the examples that led to the formulation of an axiomatic definition of
p-maps on Lie algebras. A Lie algebra with a p-map is known as a p-Lie algebra.
Details of this may be found in Jacobson’s book Lie Algebras [15] and also in
Strade and Farnsteiner, Modular Lie Algebras and their Representations [22]
or, especially for the representation theory, Jantzen [17].

What can be said about simple Lie algebras over fields of prime charac-
teristic p? Since Lie’s Theorem fails in this context, one might expect that
the classification of simple Lie algebras over the complex numbers would not
generalise. For example, Exercise 15.11 shows that sl(n, F ) is not simple when
the characteristic of F divides n. Moreover, new simple Lie algebras have been
discovered over fields of prime characteristic that do not have any analogues in
characteristic zero.

As an illustration, we shall define the Witt algebra W (1). Fix a field F of
characteristic p. The Witt algebra W (1) over F is p-dimensional, with basis

e−1, e0, . . . , ep−2

and Lie bracket

[ei, ej ] =

{
(j − i)ei+j −1 ≤ i + j ≤ p − 2

0 otherwise.
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When p = 2, this algebra is the 2-dimensional non-abelian Lie algebra.

Exercise 15.6

Show that W (1) is simple for p ≥ 3. Show that if p = 3, the Lie al-
gebra W (1) is isomorphic to sl(2, F ). Show that if p > 3 then W (1) is
not isomorphic to any classical Lie algebra defined over F . Hint : The
dimensions of the classical Lie algebras (defined over any field) are as
given in Exercise 12.1.

A classification of the simple Lie algebras over prime characteristic p is work
currently in progress by Premet and Strade.

15.7 Quivers

A quiver is another name for a directed graph, for instance,

·
γ

4

��· α

1
�� · β

32
��

is a quiver with vertices labelled 1, 2, 3, 4 and arrows labelled α, β, γ. The
underlying graph of a quiver is obtained by ignoring the direction of the arrows.

A path in a quiver is a sequence of arrows which can be composed. In the
example above, βα is a path (we read paths from right to left as this is the
order in which we compose maps), but αβ and αγ are not.

Let Q be a quiver and let F be a field. The path algebra FQ is the vector
space which has as basis all paths in Q, including the vertices, regarded as
paths of length zero. For example, the path algebra of the quiver above has
basis

{e1, e2, e3, e4, α, β, γ, βα, βγ}.

If two basis elements can be composed to make a path, then their product is
defined to be that path. Otherwise, their product is zero. For example, the
product of β and α is βα since βα is a path, whereas the product of α and γ

is zero. The behaviour of the vertices is illustrated by e2
1 = e1, e2α = αe1 = α,

e1e2 = 0. This turns FQ into an associative algebra, which is finite-dimensional
precisely when Q has no oriented cycles.

One would like to understand the representations of FQ. Let V be an FQ-
module. The vertices ei are idempotents whose sum is the identity of the algebra
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FQ and eiej = 0 if i �= j, so we can use them to decompose V as a direct sum
of subspaces

V =
⊕

eiV.

The arrows act as linear maps between the eiV . For example, in the quiver
above, α = e2αe1 so α(e1V ) ⊆ e2V . This allows us to draw a module pictorially:
For instance,

0

0
��

F
1 �� F

0 �� 0

shows a 2-dimensional module V , where e1V ∼= e2V ∼= F and α acts as an
isomorphism between e1V and e2V (and β and γ act as the zero map).

The simple FQ-modules are all 1-dimensional, with one for each vertex. For
example,

0

0
��

0
0 �� F

0 �� 0

shows the simple module corresponding to vertex 2. In this module, e2V = V

and all the other basis elements act as 0.
Usually there will be FQ-modules which are not direct sums of simple

modules. For example, the first module defined above has e2V as its unique non-
trivial submodule, and so it does not split up as a direct sum of simple modules.
Thus there are indecomposable FQ-modules which are not irreducible. One can
measure the extent to which complete reducibility fails to hold by asking how
many indecomposable FQ-modules there are.

If there are only finitely indecomposable modules (up to isomorphism), the
algebra FQ is said to have finite type. In the 1970s, Gabriel found a necessary
and sufficient condition for a quiver algebra to have finite type. He proved the
following theorem.

Theorem 15.17 (Gabriel’s Theorem)

The path algebra FQ has finite type if and only if the underlying graph of Q
is a disjoint union of Dynkin diagrams of types A, D, E. Moreover, the inde-
composable KQ-modules are parametrized naturally by the positive roots of
the associated root system.
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Example 15.18

Consider the quiver of type A4

· α1

1
�� · α2

2
�� · α3

3 4
�� ·

By Gabriel’s Theorem, the indecomposable representations of this quiver are
in bijection with the positive roots in the root system of type A4. The simple
roots α1, α2, α3, α4 correspond to the simple modules. The positive root α1+α2

corresponds to the module

F
1 �� F

0 �� 0
0 �� 0

and so on.

One might wonder whether this connection with Dynkin diagrams is merely
an accident. Not long ago, Ringel discovered a deep connection between quivers
and the theory of Lie algebras. He showed that, when F is a finite field, one may
define an algebra which encapsulates all the representations of FQ. This algebra
is now known as the Ringel–Hall algebra; Ringel proved that this algebra is
closely related to the quantum group of the same type as the underlying graph
of the quiver.

EXERCISES

15.7. Tensor products can also be used to construct representations of a
direct sum of two Lie algebras. Let L1 and L2 be isomorphic copies
of sl(2,C) and let L = L1 ⊕ L2. Let V (a) and V (b) be irreducible
modules for sl(2,C) with highest weights a and b, respectively.

(i) Show that we may make V (a) ⊗ V (b) into a module for L by
setting

(x, y) · v ⊗ w = ((x · v) ⊗ w) + (v ⊗ (y · w))

for x ∈ L1, y ∈ L2, v ∈ V (a), and w ∈ V (b).

(ii) Show that V (a)⊗V (b) is an irreducible representation of L with
highest weight λ defined by

λ(h, 0) = a λ(0, h) = b.
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It can be shown that this construction gives every irreducible L-
module. By Exercise 10.8, sl(2,C) ⊕ sl(2,C) ∼= so(4,C), so we have
constructed all the finite-dimensional representations of so(4,C).
Generalising these ideas, one can show that any semisimple Lie alge-
bra has a faithful irreducible representation; from this it is not hard
to prove a (partial) converse of Exercise 12.4.

15.8. Let L be a Lie algebra and let U(L) be its universal enveloping
algebra as defined above. Let ι : L → U(L) be the linear map defined
by ι(xi) = Xi.

Let A be an associative algebra; we may also view A as a Lie algebra
with Lie bracket [x, y] = xy − yx for x, y ∈ A (see §1.5).

(i) Show that U(L) has the following universal property : Given a
Lie algebra homomorphism ϕ : L → A, there exists a unique
homomorphism of associative algebras θ : U(L) → A such that
θ ◦ ι = ϕ. In other words, the following diagram commutes:

L
ϕ ��

ι ����
��

��
�� A

U(L)

θ



(ii) Suppose that V is an associative algebra and ι′ : L → V is a Lie
algebra homomorphism (where we regard V as a Lie algebra)
such that if we replace ι with ι′ and U(L) with V in the com-
mutative diagram above then V has the universal property of
U(L). Show that V and U(L) are isomorphic. In particular, this
shows that U(L) does not depend on the choice of basis of L.

(iii) Let x1, . . . , xk ∈ L. Suppose that L has a representation ϕ :
L → gl(V ) such that ϕ(x1), . . . , ϕ(xk) are linearly indepen-
dent. Show that X1, . . . , Xk are linearly independent elements
of U(L). Hence prove that if L is semisimple then ι is injective.

15.9. Let δ : L → L be a derivation of a complex finite-dimensional Lie
algebra L. Suppose that δn = 0 where n ≥ 1. Define exp(δ) : L → L

by

exp(δ)(x) =
(

1 + δ +
δ2

2!
+ . . .

)
x.

(By hypothesis the sum is finite.) Prove that exp(δ) is an automor-
phism of L; that is, exp(δ) : L → L is an invertible linear map such
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that

[exp δ(x), exp δ(y)] = exp δ([x, y]) for all x, y ∈ L.

15.10. Let L be a finite-dimensional complex Lie algebra and let α be an
automorphism of L. For ν ∈ C, let

Lν = {x ∈ L : α(x) = ν(x)}.

Show that [Lλ, Lμ] ⊆ Lλμ. Now suppose that we have α3 = 1, and
that α fixes no non-zero element of L. Prove that L is nilpotent.

15.11. Let F be a field of prime characteristic p. Show that if p divides n

then sl(n, F ) is not simple.




