
14
Simple Lie Algebras

In this chapter, we shall show that for each isomorphism class of irreducible root
systems there is a unique simple Lie algebra over C (up to isomorphism) with
that root system. Moreover, we shall prove that every simple Lie algebra has
an irreducible root system, so every simple Lie algebra arises in this way. These
results mean that the classification of irreducible root systems in Chapter 13
gives us a complete classification of all complex simple Lie algebras.

We have already shown in Proposition 12.4 that if the root system of a Lie
algebra is irreducible, then the Lie algebra is simple. We now show that the
converse holds; that is, the root system of a simple Lie algebra is irreducible.
We need the following lemma concerning reducible root systems.

Lemma 14.1

Suppose that Φ is a root system and that Φ = Φ1 ∪ Φ2 where (α, β) = 0 for all
α ∈ Φ1, β ∈ Φ2.

(a) If α ∈ Φ1 and β ∈ Φ2, then α + β �∈ Φ.

(b) If α, α′ ∈ Φ1 and α + α′ ∈ Φ, then α + α′ ∈ Φ1.

Proof

For (a), note that (α, α+β) = (α, α) �= 0, so α+β �∈ Φ2. Similarly, (β, α+β) =
(β, β) �= 0, so α + β �∈ Φ1.
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154 14. Simple Lie Algebras

To prove (b), we suppose for a contradiction that α+α′ ∈ Φ2. Remembering
that −α′ ∈ Φ1, we have α = −α′ + (α + α′), so α can be expressed as the sum
of a root in Φ1 and a root in Φ2. This contradicts the previous part.

Proposition 14.2

Let L be a complex semisimple Lie algebra with Cartan subalgebra H and root
system Φ. If L is simple, then Φ is irreducible.

Proof

By the root space decomposition, we may write L as

L = H ⊕
⊕
α∈Φ

Lα.

Suppose that Φ is reducible, with Φ = Φ1 ∪ Φ2, where Φ1 and Φ2 are non-
empty and (α, β) = 0 for all α ∈ Φ1 and β ∈ Φ2. We shall show that the root
spaces Lα for α ∈ Φ1 generate a proper ideal of L, and so L is not simple.

For each α ∈ Φ1 we have defined a Lie subalgebra sl(α) ∼= sl(2,C) of L with
standard basis {eα, fα, hα}. Let

I := Span{eα, fα, hα : α ∈ Φ1}.

The root space decomposition shows that I is a non-zero proper subspace of L.
We claim that I is an ideal of L; it is a subspace by definition, so we only

have to show that [x, a] ∈ L for all x ∈ L and a ∈ I. For this it suffices to take
a = eα and a = fα for α ∈ Φ1 since these elements generate I. Moreover, we
may assume that x lies in one of the summands of the root space decomposition
of L.

If x ∈ H, then [x, eα] = α(x)eα ∈ I and similarly [x, fα] = −α(x)eα ∈ I.
Suppose that x ∈ Lβ . Then, for any α ∈ Φ1, [x, eα] ∈ Lα+β by Lemma 10.1(i).
If β ∈ Φ2, then by Lemma 14.1(a) above, we know that α + β is not a root,
so Lα+β = 0, and hence [x, eα] ∈ I. Otherwise β ∈ Φ1, and then by Lemma
14.1(b) we know that α+β ∈ Φ1, so Lα+β ⊆ I, by the definition of I. Similarly,
one shows that [x, fα] ∈ I. (Alternatively, one may argue that as fα is a scalar
multiple of e−α, it is enough to look at the elements eα.)

14.1 Serre’s Theorem

Serre’s Theorem is a way to describe a complex semisimple Lie algebra by
generators and relations that depend only on data from its Cartan matrix. The
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reader will probably have seen examples of groups, such as the dihedral groups,
given by specifying a set of generators and the relations that they satisfy. The
situation for Lie algebras is analogous.

14.1.1 Generators

Let L be a complex semisimple Lie algebra with Cartan subalgebra H and root
system Φ. Suppose that Φ has as a base {α1, . . . , α�}. For each i between 1
and � let ei, fi, hi be a standard basis of sl(αi). We ask whether the ei, fi, hi for
1 ≤ i ≤ � might already generate L; that is, can every element of L be obtained
by repeatedly taking linear combinations and Lie brackets of these elements?

Example 14.3

Let L = sl(� + 1,C). We shall show that the elements ei,i+1 and ei+1,i for
1 ≤ i ≤ � already generate L as a Lie algebra. By taking the commutators
[ei,i+1, ei+1,i] we get a basis for the Cartan subalgebra H of diagonal matrices.
For i + 1 < j, we have [ei,i+1, ei+1,j ] = eij , and hence by induction we get all
eij with i < j. Similarly, we may obtain all eij with i > j.

It is useful to look at these in terms of roots. Recall that the root system of
L with respect to H has as a base α1, . . . , α�, where αi = εi − εi+1. For i < j,
we have Span{eij} = Lβ , where β = αi + γ and γ = αi+1 + . . . + αj−1. This
can be expressed neatly using reflections since

sαi
(γ) = γ − 〈γ, αi〉 αi = γ + αi = β.

In fact, this method gives a general way to obtain any non-zero root space. To
show this, we only need to remind ourselves of some earlier results.

Lemma 14.4

Let L be a complex semisimple Lie algebra, and let {α1, . . . , α�} be a base of
the root system. Suppose {ei, fi, hi} is a standard basis of sl(αi). Then L can
be generated, as a Lie algebra, by {e1, . . . , e�, f1, . . . , f�}.

Proof

We first show that every element of H can be obtained. Since hi = [ei, fi],
it is sufficient to prove that H is spanned by h1, . . . , h�. Recall that we have
identified H with H∗, via the Killing form κ, so that αi ∈ H∗ corresponds to
the element tαi

∈ H. As H� is spanned by the roots α1, . . . , α�, H has as a
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basis {tαi : 1 ≤ i ≤ �}. By Lemma 10.6, hi is a non-zero scalar multiple of tαi .
Hence {h1, . . . , h�} is a basis for H.

Now let β ∈ Φ. We want to show that Lβ is contained in the Lie subalgebra
generated by the ei and the fi. Call this subalgebra L̃. By Proposition 11.14,
we know that β = w(αj), where w is a product of reflections sαi

for some base
elements αi. Hence, by induction on the number of reflections, it is enough to
prove the following: If β = sαi

(γ) for some γ ∈ Φ with Lγ ⊆ L̃, then Lβ ⊆ L̃.
By hypothesis, β = γ − 〈γ, αi〉αi. In Proposition 10.10, we looked at the

sl(αi)-submodule of L defined by⊕
k

Lγ+kαi
,

where the sum is over all k ∈ Z such that γ+kαi ∈ Φ, and the module structure
is given by the adjoint action of sl(αi). We proved that this is an irreducible
sl(αi)-module. If 0 �= eγ ∈ Lγ , then by applying powers of ad e or ad f we may
obtain eγ+kαi whenever γ + kαi ∈ Φ. Hence, if we take k = 〈γ, αi〉, then we
will obtain eβ . Hence Lβ is contained in L̃.

14.1.2 Relations

Next, we search for relations satisfied by the ei, fi, and hi. These should only
involve information which can be obtained from the Cartan matrix. We write
cij = 〈αi, αj〉. Note that since the angle between any two base elements is
obtuse (see Exercise 11.3), cij ≤ 0 for all i �= j.

Lemma 14.5

The elements ei, fi, hi for 1 ≤ i ≤ � satisfy the following relations.

(S1) [hi, hj ] = 0 for all i, j;

(S2) [hi, ej ] = cjiej and [hi, fj ] = −cjifj for all i, j;

(S3) [ei, fi] = hi for each i and [ei, fj ] = 0 if i �= j;

(S4) (ad ei)1−cji(ej) = 0 and (ad fi)1−cji(fj) = 0 if i �= j.

Proof

We know H is a Cartan subalgebra and hence it is abelian, so (S1) holds.
Condition (S2) follows from

[hi, ej ] = αj(hi)ej = 〈αj , αi〉 ej = cjiej ,
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while the first part of (S3) follows from the isomorphism of sl(αi) with sl(2,C).
If i �= j, we have [ei, fj ] ∈ Lαi−αj

; see Lemma 10.1(i). But since α1, . . . , α�

form a base for Φ, αi − αj �∈ Φ. Therefore Lαi−αj
= 0. This proves the second

part of (S3).
To prove (S4), we fix αi, αj in the base and consider

M =
⊕

k

Lαj+kαi ,

where the sum is taken over all k ∈ Z such that αj + kαi ∈ Φ. As before,
this is an sl(αi)-module. Since αj − αi �∈ Φ, the sum only involves k ≥ 0 and
k = 0 does occur. Thus the smallest eigenvalue of ad hi on M is 〈αj , αi〉 = cji.
By the classification of irreducible sl(2,C)-modules in Chapter 8, the largest
eigenvalue of adhi must be −cji.

An adhi eigenvector with eigenvalue −cji is given by x = (ad ei)−cji(ej), so
applying ad ei to x gives zero. This proves the first part of (S4). In fact, we have
even proved that 1−cji is the minimal integer r ≥ 0 such that (ad ei)r(ej) = 0.

The other part of (S4) is proved by the same method. (Alternatively, one
might note that the set of −αj also is a base for the root system with standard
basis fi, ei, −hi.)

Serre’s Theorem says that these relations completely determine the Lie
algebra.

Theorem 14.6 (Serre’s Theorem)

Let C be the Cartan matrix of a root system. Let L be the complex Lie algebra
which is generated by elements ei, fi, hi for 1 ≤ i ≤ �, subject to the relations
(S1) to (S4). Then L is finite-dimensional and semisimple with Cartan subal-
gebra H spanned by {h1, . . . , h�}, and its root system has Cartan matrix C.

We immediately give our main application. Suppose that L is a complex
semisimple Lie algebra with Cartan matrix C. By Lemma 14.5 this Lie algebra
satisfies the Serre relations, so we can deduce that it must be isomorphic to
the Lie algebra in Serre’s Theorem with Cartan matrix C. Hence, up to iso-
morphism, there is just one Lie algebra for each root system. (We remarked at
the end of Chapter 12 on some examples that support this statement.)

Serre’s Theorem also solves the problem of constructing Lie algebras with
the exceptional root systems G2, F4, E6, E7, and E8: Just apply it with the
Cartan matrix for the type required! Moreover, it shows that, up to isomor-
phism, there is just one exceptional Lie algebra for each type.
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One might like to know whether the exceptional Lie algebras occur in any
natural way. They had not been encountered until the classification. But subse-
quently, after looking for them, they have all been found as algebras of deriva-
tions of suitable algebras. See Exercise 14.4 below for an indication of the
approaches used.

14.2 On the Proof of Serre’s Theorem

We will now give an outline of the proof of Serre’s Theorem. The full details
are quite involved; they are given for example in Humphreys, Introduction to
Lie Algebras and Representation Theory, [14].

Step 1. One first considers the Lie algebra L generated by the elements
ei, fi, hi for 1 ≤ i ≤ � which satisfies the relations (S1) to (S3) but where
(S4) is not yet imposed. This Lie algebra is (usually) infinite-dimensional. Its
structure had been determined before Serre by Chevalley, Harish-Chandra, and
Jacobson.

One difficulty of studying L is that one cannot easily see how large it is,
and therefore one needs some rather advanced technology: Just defining a Lie
algebra by generators and relations may well produce something which is either
much smaller or larger than one intended — see Exercise 14.2 for a small
illustration of this.

The structure of L is as follows. Let E be the Lie subalgebra of L generated
by {e1, . . . , e�}, and let F be the Lie subalgebra of L generated by {f1, . . . , f�}.
Let H be the span of {h1, . . . , h�}. Then, as a vector space,

L = F ⊕ H ⊕ E .

We pause to give two examples.

Example 14.7

Consider the root system of type A1 × A1 shown in Example 11.6(d). Here E
is the Lie algebra generated by e1 and e2, with the only relations being those
coming from the Jacobi identity and the anticommutativity of the Lie bracket.
A Lie algebra of this kind is known as a free Lie algebra and, as long as it has
at least two generators, it is infinite-dimensional.

If instead we take the root system of type A1, then each of E and F is
1-dimensional and L is just sl(2,C). This is the only case where L is finite-
dimensional.
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Step 2. Now we impose the relations (S4) onto L. Let U+ be the ideal of E
generated by all θij , where

θij := (ad ei)1−cji(ej).

Similarly, let U− be the ideal of F generated by all θ−
ij , where

θ−
ij := (ad fi)1−cji(fj).

Let U := U+ ⊕ U−, and let

N+ := E/U+, N− := F/U−.

One shows that U+, U−, and hence U are actually ideals of L. Hence the
Lie algebra L in Serre’s Theorem, which by definition is L/U , decomposes as

L = N− ⊕ H ⊕ N+.

By definition, U+ and U− are invariant under adhi for each i and therefore adhi

acts diagonally on L. One now has to show that L is finite-dimensional, with
Cartan subalgebra H, and that the corresponding root space decomposition
has a base giving the prescribed Cartan matrix.

Example 14.8

For the root system A1 × A1, we have, by definition, c12 = c21 = 0 and hence
U+ is the ideal generated by (ad e1)(e2) and (ad e2)(e1); that is, by [e1, e2].
This produces a very small quotient E/U+, which is spanned by the cosets of
e1, e2 and is 2-dimensional.

This is not quite obvious, so we sketch a proof. Given x ∈ E , we can subtract
off an element in the span of e1 and e2 to leave x as a sum of elements of the
form [u, v] for u, v ∈ E . Now, as [e1, e1] = [e2, e2] = 0, the bracket [e1, e2]
must appear in every element in E ′ (when expressed in terms of e1 and e2), so
E ′ = U+ and x ∈ Span{e1, e2} + U+.

Similarly, F/U− is 2-dimensional, spanned by the cosets of f1 and f2. Write
x̄ for the coset of x in L. We see directly that L = L/U has a direct sum
decomposition

Span{ē1, f̄1, h1} ⊕ Span{ē2, f̄2, h2},

where ē1 denote the coset e + U+, and so on. These are ideals in L, and each
is isomorphic to sl(2,C), so in this case we get that L is the direct sum of two
copies of sl(2,C), as we should expect.

For the general proof, more work is needed. The reader might like to try to
construct a Lie algebra of type B2 by this method to get some flavour of what
is required.
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14.3 Conclusion

The definition of a semisimple Lie algebra does not, on the face of it, seem very
restrictive, so the fact that the complex semisimple Lie algebras are determined,
up to isomorphism, by their Dynkin diagrams should seem quite remarkable.

In Appendix C, we show that the root system of a semisimple Lie algebra
is uniquely determined (up to isomorphism). Thus complex semisimple Lie
algebras with different Dynkin diagrams are not isomorphic. This is the last
ingredient we need to establish a bijective correspondence between isomorphism
classes of complex semisimple Lie algebras and the Dynkin diagrams listed in
Theorem 13.1.

This classification theorem is one of the most important and far-reaching
in mathematics; we look at some of the further developments it has motivated
in the final chapter.

EXERCISES

14.1. Use Serre’s Theorem to show that the Lie algebra so(6,C) is isomor-
phic to sl(4,C). (This isomorphism can also be shown by geometric
arguments; see Chapter 15.)

14.2. Let L be the Lie algebra generated by x, y, z subject to the relations

[x, y] = z, [y, z] = x, [z, x] = x.

Show that L is one-dimensional.

14.3. Let L be a Lie algebra generated by x, y, with no relations other
than the Jacobi identity, and [u, v] = −[v, u] for u, v ∈ L. Show that
any Lie algebra G generated by two elements occurs as a homomor-
phic image of L. (So if you could establish that there are such G of
arbitrary large dimensions, then you could deduce that L must be
infinite-dimensional.)

14.4. Let H be the algebra of quaternions. Thus H is the 4-dimensional
real associative algebra with basis 1, i, j, k and multiplication de-
scribed by i2 = j2 = k2 = ijk = −1. (These are the equations fa-
mously carved in 1843 by Hamilton on Brougham Bridge in Dublin.)

(i) Let δ ∈ Der H, the Lie algebra of derivations of H. Show
that δ preserves the subspace of H consisting of purely imagi-
nary quaternions (that is, those elements of the form xi+yj+zk)
and that δ(1) = 0. Hence show that Der H is isomorphic to the
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Lie algebra of antisymmetric 3 × 3 real matrices. (In particular,
it has a faithful 3-dimensional representation.)

(ii) Show that if we complexify DerH by taking the algebra of an-
tisymmetric 3 × 3 complex matrices, we obtain sl(2,C).

One step up from the quaternions lies the 8-dimensional Cayley al-
gebra of octonions. One can construct the exceptional Lie algebra g2

of type G2 by taking the algebra of derivations of the octonions and
then complexifying; this construction also gives its smallest faithful
representation. The remaining exceptional Lie algebras can also be
constructed by related techniques. For details, we refer the reader
to either Schafer, An Introduction to Nonassociative Algebras [21] or
Baez, “The Octonions”[2].




